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Coupled finite-infinite element computations are very efficient for modeling large scale acoustics
problems. Parallel algorithms, like sub-structuring and domain decomposition methods, have shown
to be very efficient for solving huge linear systems arising from acoustics. In this paper, a coupled
finite-infinite element method is described, formulated and analyzed for parallel computations pur-
pose. New numerical results illustrate the efficiency of this method for academic test cases and
industrial problems alike.
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1. Introduction

The finite element solution of acoustic problems usually involves huge meshes since the
mesh size should be proportional to the frequency of the problem in order to have a good
approximation of the solution. So, the discretization leads to an extremely large linear sys-
tem of equations with a sparse matrix. This becomes a crucial point for acoustic scattering
problems where the domain around the scattered object is unbounded. If one wants to keep
the sparsity of the matrix and reduce the number of unknowns of the linear system, the
infinite element methods1–3 are an efficient alternative to the boundary element methods
which leads to a dense matrix,4,5 or to the absorbing boundary conditions which should
be defined far enough from the object.6–9 The accuracy of the infinite element methods is
linked with a parameter called the order of the infinite element. The highest this order, the
smallest the error between the approximate solution and the exact solution. Unfortunately,
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increasing the value of this parameter tends to deteriorate the conditioning number of the
assembly matrix.10–12 Additionally the infinite element methods can only be applied for
convex objects. A remedy of this drawback is to use a coupled finite-infinite element for-
mulation. The coupled method consists of surrounding the object with a convex envelope.
The volume between the object and the convex envelope is meshed with finite elements,
and infinite elements are defined on the surface of the convex envelope.

The iterative methods used to solve the linear system of equations arising from
the discretization are very easy to program.13 Preconditioning techniques based on sub-
structuring can additionally be applied.14 The domain decomposition methods for example,
are based on a mesh partitioning of the global domain. Then the methods consist of solv-
ing iteratively a linear system defined at the interface between the subdomains, and each
iteration of the algorithm involves a direct solution of an acoustic problem inside each sub-
domain. Such methods are very well suited for distributed parallel computing. In the case
of a general mesh partitioning the interface between the subdomains may have an infinite
length which leads to some difficulties to define the absorbing boundary conditions at such
interfaces.

In this paper, a coupled finite-infinite element method is described, formulated and
analyzed for parallel computations purposes. This method has been successfully imple-
mented in the SYSNOISE software, for solving huge computational acoustic problems in
parallel on high performance computers or on networks of PC’s. Some numerical investiga-
tions in unbounded domains, using the SYSNOISE software, are presented to demonstrate
the efficiency and robustness of this method.

The scope of this paper is as follows. Section 2 describes the general scattering problem
analyzed in the following. Then in Secs. 3.1 and 3.2 the finite element methods and the
infinite element methods are reminded in an homogeneous formulation. Then in Sec. 3.3
the coupling between infinite and finite elements is presented. Section 4.1 presents the sub-
structuring method followed in Sec. 4.2 by the nonoverlapping Schwarz method with zeroth
order absorbing boundary conditions. Some novel discussions on the coupling between infi-
nite and finite elements in a parallel computing context are investigated in Sec. 4.3. In
Sec. 5, new numerical experiments are presented on large computational acoustics prob-
lems which demonstrate the performance and robustness of the nonoverlapping Schwarz
algorithm equipped with zeroth order absorbing boundary conditions. This analysis investi-
gates the dependency of the method upon different parameters for general mesh partition-
ing. Both two dimensional and three dimensional analysis are performed on academic and
industrial test cases. The conclusions of our study are presented in Sec. 6.

2. Mathematical Formulation

A model radiation problem is considered in an unbounded domain. The main motivation
for this analysis is to determine the frequency response functions arising from the vibrations
of a structure. These vibrations can be caused by various phenomena, like a fluid flow or
a wave diffraction. In the following the radiation of an object delimited by a boundary ΓN
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ΓN

Ωe

Fig. 1. Acoustic scattering problem.

immersed in an unbounded domain Ωe, as shown in the Fig. 1 is considered. This problem
can be expressed as:

−�u − k2u = 0 in Ωe

∂u

∂n
= g on ΓN∣∣∣∣∂u

∂r
− iku

∣∣∣∣ = O(1/r2) when r → +∞ (1)

where g ∈ L2(ΓN ) is the prescribed Neumann boundary conditions and k ∈ R+ the wave
number. The normal unitary vector along the boundary ΓN is denoted by n, and r represents
the radius in the spherical coordinates. Equation (1) is the Sommerfeld condition which
ensures the propagation of the acoustic waves to infinity.

For the sake of simplicity the following equations are derived for the particular case
where ΓN is the unitary sphere, but the general case does not lead to special difficulties as
will be demonstrated in the numerical experiments.

3. Infinite and Finite Element Methods

3.1. Finite element method

In summary, the finite element method consists of meshing the volume of a domain, for
example with hexahedra, and to discretize the solution in this volume with shape basis
functions, for example with Q1 shape functions.15,16

3.1.1. Problem definition

In the case of exterior acoustics problems, the domain of interest is unbounded and therefore
cannot be meshed. The first step of the finite element method consists of defining a trun-
cation of the unbounded domain Ωe called Ωe

γ as:

Ωe
γ = Ωe ∩ {x ∈ R3; |x| < γ}

where the artificial boundary Sγ (here, the sphere of radius γ > 1) has been introduced.
The domain Ωe

γ is now bounded and can thus be meshed. An absorbing boundary condition
is defined on the boundary Sγ . The optimal distance between the object and the artificial



March 22, 2006 13:53 WSPC/130-JCA 00292

24 J.-C. Autrique & F. Magoulès

boundary Sγ will be dependant upon the quality of the absorbing boundary condition. The
main motivation is to avoid the numerical reflections of the wave on this boundary.7,17,6,9

The difficulty is that increasing the distance between this artificial boundary and the object
increases the number of elements of the mesh.

In the following a first order approximation of the Sommerfeld boundary condition is
applied on the boundary Sγ . Our initial expression can now be reformulated using the
Sommerfeld boundary condition on the boundary Sγ :

−�u − k2u = 0 in Ωe
γ

∂u

∂n
= g on ΓN

∂u

∂r
− iku = 0 on Sγ

where g ∈ L2(ΓN ) is the prescribed Neumann boundary conditions.

3.1.2. Variational formulation

In the variational formulation, the Helmholtz equation is first multiplied by the complex
conjugate of the test function v (noted v). The integration in the domain Ωe

γ is then per-
formed, and the Green formula is applied. The solution u belongs to the space:

H1(Ωe
γ) = {u : ‖u‖1 < ∞}

with ‖u‖1 the norm associated to the scalar product

(u, v)1 =
∫

Ωe
γ

∇u∇v dV +
∫

Ωe
γ

uv dV

where dV denotes the volume integration. After substitution of the Neumann boundary
condition on ΓN and of the Robin boundary condition on Sγ , the following variational
formulation is obtained: Find u ∈ H1(Ωe

γ) such as∫
Ωe

γ

∇u∇v dV − k2

∫
Ωe

γ

uv dV − ik

∫
Sγ

uv dS =
∫

ΓN

gv dS

for ∀ v ∈ H1(Ωe
γ) and g ∈ L2(ΓN ), where dS denotes the surface integration.

3.1.3. Discretization

In the cartesian coordinates system denoted by (x, y, z) in the current finite element
and by (ξ, η, ζ) in the reference finite element, the approximate solution can be expressed
in the form:

uh(ξ, η, ζ) =
ne∑

j=1

aj Nj(ξ, η, ζ)
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ΓN

Ωe
γ

Sγ

Fig. 2. Example of a finite element mesh with triangles.

with aj the ne unknown complex coefficients associated to the degree of freedom and Nj

the basis shape functions defined on the reference finite element. For example ne = 8 in the
case of a discretization with Q1 shape functions defined on hexahedra elements. Figure 2
illustrates a finite element mesh example. After discretization of the variational formulation,
the following linear system is obtained:

Zuh = f

where f is the right hand side, and Z the impedance matrix. In the following, the subscript
fem denotes a discretization with finite elements. If the degrees of freedom located inside the
volume Ωe

γ and the degrees of freedom located on the boundary Sγ are respectively denoted
by subscripts i and p, the linear block matrix is obtained:Z

(fem)
ii Z

(fem)
ip

Z
(fem)
pi Z

(fem)
pp − ikMR

pp

(x
(fem)
i

x
(fem)
p

)
=

(
b
(fem)
i

b
(fem)
p

)

where Z(fem) is the impedance matrix equal to (K(fem)−k2M (fem)) with K(fem) the volume
stiffness matrix and M (fem) the volume mass matrix. The surface matrix MR arises from
the Robin boundary condition defined on Sγ . The fact that all these matrices are sparse is
important to remember.

3.2. Infinite element method

In summary, the infinite element method consists of meshing the surface of a convex object
with finite elements and to extrude this mesh to infinite. The shape basis functions includes
some classical finite elements shape functions and some shape functions issue from the series
expansion of the Green function. The method presented in the next section is the one first
introduced in Ref. 1 and then reformulated and analyzed in Refs. 10 and 3.
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3.2.1. Variational formulation

The first step consists of defining a truncation of the unbounded domain Ωe called Ωe
γ

following a similar approach to that introduced in Sec. 3.1. For the particular case where
the unbounded domain is the exterior of the unitary sphere, an annulus is obtained:

Ωe
γ = {x ∈ R3; 1 < |x| < γ}.

After the multiplication of the Helmholtz equation by the complex conjugate of the test
function v, the application of the Green formula, and applying the Neumann boundary
condition on ΓN , we obtain:∫

Ωe
γ

∇u∇v dV − k2

∫
Ωe

γ

uv dV −
∫

Sγ

∂u

∂r
v dS =

∫
ΓN

gv dS.

The Sommerfeld condition Eq. (1) can be expressed as:

∂u

∂r
= iku + φ

where φ = O(1/r2) is an unknown function. After substitution in the variational formulation
(because ∂u/∂n = ∂u/∂r), the equation can be rewritten as:∫

Ωe
γ

∇u∇v dV − k2

∫
Ωe

γ

uv dV − ik

∫
Sγ

uv dS =
∫

ΓN

gv dS +
∫

Sγ

φv dS.

The second steps consist of taking the limit of the previous expression when γ tend
to infinity. The Atkinson–Wilcox results11 shows that the leading term of the solution u

is of the form eikr/r. As a consequence, u and ∇u can no longer be integrated to infinity
over L2. The idea consists of using special shape functions of the form O(1/r3). This helps
to consider the previous integral as Lebesgue integral. With this choice, the integral on Sγ

with φ vanishes when γ tends to infinity. The problem is that the integral on Sγ with u

vanishes too. In other words, this particular choice of the tests functions does not allow to
keep the Sommerfeld condition in the variational formulation. An idea proposed in Ref. 18
consists of introducing the Sommerfeld condition directly in the definition of the space. The
solution u belongs to the Sobolev weighted space:

H1,+
w (Ωe) = {u : ‖u‖+

1,w < ∞}
with ‖u‖+

1,w the norm associated to the scalar product

(u, v)+1,w =
∫

Ωe

w∇u∇v dV +
∫

Ωe

wuv dV +
∫

Ωe

(
∂u

∂r
− iku

)(
∂v

∂r
− ikv

)
dV.

Two common weights are of interest, w = 1/r2 and the dual weight w∗ = r2. With these
notations, the variational formulation can be written: Find u ∈ H1,+

w (Ωe) such as∫
Ωe

∇u∇v dV − k2

∫
Ωe

uv dV =
∫

ΓN

gv dS

for ∀ v ∈ H1,+
w∗ (Ωe) and g ∈ L2(ΓN ).
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3.2.2. Discretization

A complete overview of the infinite element methods can be obtained in Refs. 12 and 11. The
exact solution in the spherical coordinates system (r, θ, ϕ) of the current infinite element
can be expended in the form (Atkinson–Wilkox):

u(r, θ, ϕ) = e−ikr
∞∑

κ=1

Gκ(θ, ϕ, k)
rκ

. (3)

This series converges for r > γ. Considering only the first m terms of this series, and
expressing these terms in the coordinates systems (ξ, η, r) of the reference infinite element
leads to the approximate solution:

uh(ξ, η, r) = e−ikr
m∑

µ=1

G̃µ(ξ, η, k)
rµ

where the functions G̃µ(ξ, η, k) are defined by:

G̃µ(ξ, η, k) =
n∑

ν=1

Qν,µ(k) Nν(ξ, η)

with n an integer defined below. After substitution, the following expression is obtained:

uh(ξ, η, r) =
ne∑

j=1

aj Nj(ξ, η, r) with Nj(ξ, η, r) = Nν(ξ, η) Nµ(r)

for ν = 1, . . . , n, µ = 1, . . . ,m, ne = n×m, and with aj the ne unknowns complex coefficients
associated to the degree of freedom. The shapes functions Nj are defined on the reference
infinite element: Nν denotes the angular functions with a total number of n and Nµ the
radial functions with a total number of m. The integer m is called the order of the infinite
element. The highest this order, the smallest the error between the approximate solution
and the exact solution. Figure 3 illustrates an infinite element mesh example. The linear
system issue from the discretization is the following:

Zuh = f

where f is the right hand side, and Z the impedance matrix. In the following, the subscript
ifem denotes a discretization with infinite elements. If the degrees of freedom located outside
the object, i.e. in the domain Ωe, and the degrees of freedom located on the boundary of
the object ΓN are respectively denoted by subscripts i and p, the linear block matrix is
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eΩ

ΓN

Fig. 3. Example of an infinite element mesh.

obtained: Z
(ifem)
ii Z

(ifem)
ip

Z
(ifem)
pi Z

(ifem)
pp

(x
(ifem)
i

x
(ifem)
p

)
=

(
b
(ifem)
i

b
(ifem)
p

)

where Z(ifem) is the impedance matrix equal to (K(ifem) − k2M (ifem)) with K(ifem) the
volume stiffness matrix and M (ifem) the volume mass matrix. It is important to point out
that all these matrices are sparse matrices.

3.3. Coupled finite-infinite element method

The coupled finite-infinite element method consists of surrounding the object with a convex
envelope. The volume between the object and the convex envelope is meshed with finite
elements and infinite elements are defined on the surface of the convex envelope, as shown
in Fig. 4. This approach is mandatory if ones want to use infinite elements for nonconvex
objects, like a submarine for example. Indeed Eq. (3) is not valid anymore if the surface of
the object is nonconvex. The solution is then discretized with finite elements basis shape
functions inside the volume between the object and the envelope and with infinite elements
basis shape functions outside the envelope. The linear system can be expressed as:

Zuh = f

where f is the right hand side, and Z the impedance matrix. In the following, the subscript
fem and ifem denotes a discretization with finite elements or with infinite elements respec-
tively. If the degrees of freedom located in the domain between the object and the convex
envelope, then the degrees of freedom located outside the convex envelope, and finally the
degrees of freedom located on the convex envelope are respectively numbered, the linear
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ΓN

Fig. 4. Coupled finite-infinite element mesh.

block matrix is obtained:
Z

(fem)
ii 0 Z

(fem)
ip

0 Z
(ifem)
ii Z

(ifem)
ip

Z
(fem)
pi Z

(ifem)
pi Z

(fem)
pp + Z

(ifem)
pp




x
(fem)
i

x
(ifem)
i

xp

 =


b
(fem)
i

b
(ifem)
i

b
(fem)
p + b

(ifem)
p


where the above mentioned matrices have been defined in the previous section. The previous
numbering of the degrees of freedom is very similar to the sub-structuring methodology, as
presented in the following section.

4. Parallel Computing

4.1. Sub-structuring methods

Let us now consider in detail a number of algorithms to solve the linear system Zuh = f

efficiently on parallel computers. The following discretization scheme is presented for a
decomposition of a general domain Ω into two subdomains Ω(1) and Ω(2) with an interface
Γ as shown in Fig. 5. The domain Ω is meshed with finite elements only. The degrees of
freedom located inside subdomain Ω(s), s = 1, 2 and on the interface Γ are denoted by
subscripts i and p. With this notation the contribution of subdomain Ω(s), s = 1, 2 to the
impedance matrix and to the right-hand side can be written as in Refs. 19 and 20:

Z(s) =

Z
(s)
ii Z

(s)
ip

Z
(s)
pi Z

(s)
pp

 , b(s) =

(
b
(s)
i

b
(s)
p

)
, s = 1, 2.
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Γ

Ω
Ω

(2)

(1)

Fig. 5. Nonoverlapping domain splitting.

The global problem is a block system obtained by assembling the local contributions from
each subdomain: 

Z
(1)
ii 0 Z

(1)
ip

0 Z
(2)
ii Z

(2)
ip

Z
(1)
pi Z

(2)
pi Zpp


x

(1)
i

x
(2)
i

xp

 =

 b
(1)
i

b
(2)
i

bp

 . (4)

The matrices Z
(1)
pp and Z

(2)
pp represent the interaction matrices between the nodes on the

interface obtained by integration on Ω(1) and on Ω(2). The block Zpp is the sum of these two
blocks. In a same way the term bp = b

(1)
p + b

(2)
p is obtained by local integration of the right

hand side over each subdomain and the summation on the interface.
In order to solve this linear system with an iterative method, a matrix vector product of

the matrix Z by a descent direction vector w = (w(1)
i , w

(2)
i , wp)T should be computed at each

iteration. This matrix vector product can be performed using the previous sub-structuring
expression in two successive steps:

• Computation of local matrix vector product in each subdomain:(
v

(1)
i

v
(1)
p

)
=

Z
(1)
ii Z

(1)
ip

Z
(1)
pi Z

(1)
pp

(w
(1)
i

wp

)
,

(
v

(2)
i

v
(2)
p

)
=

Z
(2)
ii Z

(2)
pi

Z
(2)
pi Z

(2)
pp

(w
(2)
i

wp

)
.

• Assembly of the vectors on the interface:

vp = v(1)
p + v(2)

p

which gives the vector v = (v(1)
i , v

(2)
i , vp)T . In the case of a general multi-domain mesh

splitting, adding the contributions of the local dot products will introduce a weighting
factor per node in the dot product equal to the number of subdomains the node belongs to.
A weighting vector on the interface must be introduced in order to avoid having to consider
multiple contribution of the vector component at such cross points.
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4.2. Domain decomposition methods

The previous sub-structuring method requires at each iteration a local matrix vector
product, which is computed in parallel in each subdomain, and assembly of the vectors
on the interface between the subdomain. This method is very easy to implement,13 but
the convergence may be difficult to achieve in the case of large acoustic problems with-
out preconditioning techniques. In order to improve the convergence speed of the iterative
algorithm, some preconditioning techniques based on domain decomposition methods are an
efficient alternative. The nonoverlapping Schwarz method for example involves an iterative
method (performed on the degrees of freedom located on the interface) and a local matrix
factorization (on the degrees of freedom located inside each subdomain). At each iteration
a local forward backward substitution is involved in each subdomain, and assembly on the
interface. This algorithm is based on the following theorem.

Theorem 4.1. Under a splitting of the form Zpp = Z
(1)
pp + Z

(2)
pp and bp = b

(1)
p + b

(2)
p , for all

matrices A(1), A(2) there is one and only one associated value λ(1), λ(2) such as the following
coupled problems: Z

(1)
ii Z

(1)
ip

Z
(1)
pi Z

(1)
pp + A(1)

(x
(1)
i

x
(1)
p

)
=

(
b
(1)
i

b
(1)
p + λ(1)

)
(5)

Z
(2)
ii Z

(2)
ip

Z
(2)
pi Z

(2)
pp + A(2)

(x
(2)
i

x
(2)
p

)
=

(
b
(2)
i

b
(2)
p + λ(2)

)
(6)

x(1)
p − x(2)

p = 0 (7)

λ(1) + λ(2) − A(1)x(1)
p − A(2)x(2)

p = 0 (8)

are equivalent to the problem (4).

Proof. The admissibility condition (7) derives from the relation x
(1)
p = x

(2)
p = xp.

If x
(1)
p = x

(2)
p = xp, the first rows of local systems (5) and (6) are the same as the two

first rows of the global system (4), and adding the last rows of the local systems (5) and
(6) gives:

Z
(1)
pi x

(1)
i + Z

(2)
pi x

(2)
i + Zpp xp − bp = λ(1) + λ(2) − A(1)x(1)

p − A(2)x(2)
p .

So, the last equation of global system (4) is satisfied only if:

λ(1) + λ(2) − A(1)x(1)
p − A(2)x(2)

p = 0.

Conversely, if x
(1)
p , x

(2)
p and xp are derived from the global system (4), then the local systems

(5) and (6) define λ(1) and λ(2) in a unique way.

The complete nonoverlapping Schwarz algorithm consists of searching iteratively for the
value of (λ(1), λ(2))T such as the value of (x(1)

p , x
(2)
p )T satisfy Eqs. (7) and (8). The only
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restriction imposed on the matrices A(1) and A(2) in the previous theorem is that for a
given right hand side the local sub-problems defined in Eqs. (5) and (6) have an unique
solution. The elimination of x

(1)
i and x

(2)
i in favor of x

(1)
p and x

(2)
p in the previous equations

leads to the following linear system:(
I I − (A(1) + A(2))[S(2) + A(2)]−1

I − (A(1) + A(2))[S(1) + A(1)]−1 I

)(
λ(1)

λ(2)

)

=

(
(A(1) + A(2))[S(2) + A(2)]−1c

(2)
p

(A(1) + A(2))[S(1) + A(1)]−1c
(1)
p

)
(9)

where S(q) = Z
(q)
pp −Z

(q)
pi [Z(q)

ii ]−1Z
(q)
ip is the condensed matrix and c

(q)
p = b

(q)
p −Z

(q)
pi [Z(q)

ii ]−1b
(q)
i

is the condensed right hand side, for q = 1, 2. This linear system is solved with an itera-
tive method, and each iteration involves a solution of an Helmholtz sub-problem in each
subdomain.

The choice of the matrices A(1) and A(2) has a strong influence on the convergence
speed of the nonoverlapping Schwarz algorithm. Different choice of these matrices has been
investigated in Refs. 21–23. In the following the matrices A(1) and A(2) are obtained from a
Taylor zeroth order approximation of the Steklov–Poincaré operator and from an optimized
zeroth order approximation of the Steklov–Poincaré operator for internal acoustics problems
discretized with finite elements, as introduced in Ref. 23. These matrices are equal to

A(1) := α MΓ, A(2) := α MΓ

where α is equal to ik for a Taylor zeroth order approximation and obtained from the
solution of a minimization problem for an optimized zeroth order approximation.24 The
matrix MΓ is a surface mass matrix defined on the interface between the subdomains.

4.3. Coupling finite and infinite element

When a general mesh partitioning of the global domain is performed, the interface joins
some (finite or infinite) elements sharing a common edge on the interface and belonging to
different subdomains. Three possibilities may appear: two finite elements sharing an edge on
the interface, or one finite element and one infinite element sharing an edge on the interface,
or two infinite elements sharing an edge on the interface. In this last case the length of the
interface is infinite.

If some Lagrange finite elements are considered, for example P1-finite elements, the
degrees of freedom of an element corresponds to the nodes of the triangle. Defining the
Lagrange multipliers at the nodes of the finite element helps to apply the sub-structuring
methodology described Sec. 4.2. Figure 6 shows the definition of the degrees of freedom and
of the Lagrange multipliers for two finite elements sharing one edge on the interface.

In the second case, the Lagrange multipliers should be defined at the element nodes as
shown in Fig. 7. Indeed in this case, the restriction on the edge of the angular basis functions
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Fig. 6. Definition of the degree of freedom (white and black bullets) of the elements and of the Lagrange
multipliers (black bullets) between two finite elements.

Fig. 7. Definition of the degree of freedom (white and black bullets) of the elements and of the Lagrange
multipliers (black bullets) between an infinite element and a finite element.

of the infinite element is similar to the restriction of the P1-finite element basis functions.
As a consequence, there is no difference between this case and the previous one.

In the third case, the Lagrange multipliers should be defined at the element nodes and at
the Gauss points of the infinite elements as shown in Fig. 7. These Gauss points correspond
to the degree of freedom of the infinite element and are used to compute the integrals of
Sec. 3.2. Increasing the order of the infinite element implies increasing the number of Gauss
points and so far the number of Lagrange multipliers. As a consequence the size of the linear
system defined Eq. (9) becomes much bigger. A second consequence is that increasing the
order of the infinite element tends to deteriorate the conditioning number of the assembly
matrix.

In summary, the Lagrange multipliers are simply defined on the degrees of freedom.
This can be the nodes of the elements (for finite elements) or the Gauss points (for the
infinite elements). If zeroth order absorbing boundary conditions are considered in the
nonoverlapping Schwarz algorithm, a surface mass matrix should be computed on the inter-
face between the subdomain. This matrix is of the form:

MΓ =
∫

Γ
uv dS.

In the case of an interface between two finite elements, the coefficients of the matrix MΓ

are computed as:

[MΓ]lm =
∫

Ω(1)∩Ω(2)

NlNm dS
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Fig. 8. Definition of the degree of freedom (white and black bullets) of the elements and of the Lagrange
multiplier (black bullets) between two infinite elements.

where Nl and Nm are the finite element shape functions associated with node l and node
m on the common edge on the interface between subdomains Ω(1) and Ω(2). In the case of
an interface between one finite element and one infinite element, the finite element shape
functions on the common edge is similar to the angular infinite element shape function i.e.
the functions Nν . When two infinite elements share a common edge, the integral along this
infinite edge only involves the radial shape functions i.e. the functions Nµ, and the integral
is computed using the Gauss points along the infinite edge.

5. Numerical Experiments

5.1. Radiation of an infinite cylinder

In this section the convergence properties of the parallel iterative GMRES preconditioned
by the diagonal versus the nonoverlapping Schwarz method are analyzed. The behavior of
these methods upon different parameters is investigated.

The test case consist of a multi-pole radiation of an infinite cylinder of radius a. Due to
the symmetry of the geometry, only one half cross section is considered for the analysis. The
radiation of the cylinder is generated by the vibration of the surface. These vibration are
modeled by a normal acceleration of the particles along the surface. The normal velocity
distribution is defined by the relation Vn(θ) = V cos(pθ) where θ denotes the angle in
cylindric coordinates and where p = 0, 1, 2 . . . for a multi-pole of order 0, 1, 2 . . . . An artificial
boundary is defined on an infinite cylinder of radius 1.5a. The volume between the cylinder
and the artificial boundary is meshed with quadrilateral finite elements. Infinite elements
are defined on the surface of the artificial boundary. Because of the order p of the multi-
pole, the order of the infinite elements should be at least equal to m = p + 1, see Ref. 3.
The six elements per wavelength criteria is ensured over all the mesh presented in Fig. 9.
The domain is then split in subdomains with a geometric based algorithm, in such a way
that each subdomain has at most two neighboring subdomains as shown in Fig. 10. The
mesh partitioning software ensures a load balancing distribution of the degree of freedom



March 22, 2006 13:53 WSPC/130-JCA 00292

A Coupled Finite-Infinite Element Method for Exterior Helmholtz Problems 35

Fig. 9. Radiation of an infinite cylinder: Finite element mesh.

Fig. 10. Radiation of an infinite cylinder: Mesh partitioning.

in each subdomain. This decomposition has first the advantage of reducing the numerical
error by ensuring that the interfaces between the subdomains are parallel to the cylinder.
Secondly, this decomposition presents the advantage of collecting all the infinite elements
in the same subdomain. The acoustic solution of a multi-pole of order four is presented in
Fig. 11. The parameters indicated are the radius of the infinite cylinder a, the mesh size h,
the wave number k, the order of the infinite element m, the order of the multi-pole p, and
the number of subdomains Ns, respectively.

Fig. 11. Radiation of an infinite cylinder: Acoustic pressure.
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The parallel iterative GMRES preconditioned by the diagonal and the nonoverlapping
Schwarz method have been implemented in the SYSNOISE software for trial purpose.
The condensed interface problem of the nonoverlapping Schwarz algorithm is solved with
the GMRES algorithm, and local Crout factorizations are performed in each subdomain.
The CPU time indicated for the nonoverlapping Schwarz algorithm is the total CPU time,
including the factorization of the matrix. The convergence is analyzed with the following
stopping criteria

‖Zuh − f‖L2 ≤ 10−8 ‖f‖L2

where ‖f‖L2 denotes the module of the complex number ff . The numerical simulation are
performed on a SGI Origin 200 with four processors.

As expected from the theory, the convergence speed of the nonoverlapping Schwarz
algorithm is weakly dependent upon the mesh size, see Table 1. On the contrary the parallel
GMRES preconditioned by the diagonal presents a strong dependance upon this parameter.
As already reported for internal acoustic problems,24 the nonoverlapping Schwarz algorithm
performs up to 35% better with an optimized zeroth order (OO0) absorbing boundary
conditions than with a Taylor zeroth order (TO0) absorbing boundary conditions.

The results presented in Table 2 illustrate the dependence upon the wave number. Once
again, the good convergence properties of the nonoverlapping Schwarz method with zeroth
order absorbing boundary conditions can be noticed.

Since the number of iterations of the preconditioned GMRES does not depend upon
the number of subdomains resulting from the mesh partitioning, the results reported in
Table 3 may appear disappointing. However, increasing the number of subdomains in the
GMRES method increases the number of data exchange between the processors, and each
iteration requires more time. For this reason the nonoverlapping Schwarz algorithm is still
very competitive.

Finally the results reported in Table 4 illustrate the dependence of the methods upon
the order of the infinite element. Since all the infinite elements are collected in the same
subdomains, and because the nonoverlapping Schwarz algorithm involves a direct solution
inside each subdomains, the dependence is very weak. This dependence even disappears

Table 1. Number of iterations versus the mesh size parameter for the radiation
problem. The multi-pole order is equal to p = 2, the wave number equal to
ka = 20, and the order of the infinite element equal to m = 3. A total number
of Ns = 4 subdomains have been used for the simulation.

GMRES with Diag. Prec. Schwarz with TO0 Schwarz with OO0

h # Iterations CPU # Iterations CPU # Iterations CPU

1/24 723 � 10 sec 239 2 sec 159 1 sec

1/32 972 � 10 sec 229 4 sec 164 2 sec

1/40 1248 � 10 sec 262 8 sec 169 4 sec
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Table 2. Number of iterations versus the wave number parameter for the radi-
ation problem. The multi-pole order is equal to p = 2, the mesh size parameter
equal to h = 1/40, and the order of the infinite element equal to m = 3. A
total number of Ns = 4 subdomains have been used for the simulation.

GMRES with Diag. Prec. Schwarz with TO0 Schwarz with OO0

ka # Iterations CPU # Iterations CPU # Iterations CPU

10 980 � 40 sec 152 7 sec 101 4 sec

20 1248 � 40 sec 262 8 sec 169 4 sec

30 1523 � 40 sec 412 9 sec 245 6 sec

40 1781 � 40 sec 463 9 sec 301 6 sec

Table 3. Number of iterations versus the number of subdomains for the radiation
problem. The multi-pole order is equal to p = 2, the mesh size parameter equal
to h = 1/40, the wave number equal to ka = 40, and the infinite element order
parameter equal to m = 3.

GMRES with Diag. Prec. Schwarz with TO0 Schwarz with OO0

Ns # Iterations CPU # Iterations CPU # Iterations CPU

2 1781 � 40 sec 150 5 sec 121 4 sec

3 1781 � 40 sec 294 6 sec 186 4 sec

4 1781 � 40 sec 463 9 sec 301 6 sec

5 1781 � 40 sec 650 12 sec 337 6 sec

6 1781 � 40 sec 691 12 sec 383 7 sec

Table 4. Number of iterations versus the infinite element order for the radia-
tion problem. The multi-pole order is equal to p = 2, the mesh size parameter
equal to h = 1/40, the wave number equal to ka = 40. A total number of
Ns = 4 subdomains have been used for the simulation.

GMRES with Diag. Prec. Schwarz with TO0 Schwarz with OO0

m # Iterations CPU # Iterations CPU # Iterations CPU

3 1781 � 40 sec 463 9 sec 301 6 sec

4 1933 � 40 sec 449 8 sec 301 6 sec

5 2087 � 40 sec 465 9 sec 306 6 sec

6 2216 � 40 sec 475 9 sec 307 6 sec

when the nonoverlapping Schwarz algorithm is equipped with an optimized zeroth order
absorbing boundary conditions.

5.2. Acoustic scattering

In this section a three dimensional acoustic scattering problem where the obstacle has the
shape of a submarine is analyzed. The length of the submarine is equal to 76 meters,
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the height equal to 9.25 meters and the diameter equal to 7.5 meters. The characteristic
of the ocean are a density equal to 1000 kg/m3 and a sound speed equal to c = 1500 m/s.
The goal of this analysis consists of evaluating the frequency response functions generated
by the vibration of the structure of the submarine issue from the scattering of an incident
wave. The computing steps can be expressed as the following sequence:

• An incident planar wave is defined in the ocean and strikes the submarine. A coupled
fluid-structure computation is performed. The fluid is discretized with boundary elements
and the structure of the submarine is discretized with shell finite element. The solution,
i.e. the acoustic pressure for the fluid and the displacement for the structure, of this
coupled problem are obtained for different frequencies.

• An acoustic computation is then performed. The ocean around the submarine is
discretized with coupled finite-infinite elements. An ellipsoid is defined around the sub-
marine and the volume between the submarine and the ellipsoid is meshed with finite
elements. Infinite elements are defined on the surface of the ellipsoid. The criteria of six
nodes per wavelength is satisfied over all the mesh. The final mesh is composed with
32 000 nodes, 162 000 tetrahedra finite elements and 11 500 infinite elements. Using the
displacement of the structure of the submarine — given by the fluid-structure problem —
as the boundary conditions of the acoustic problem, the acoustic pressure can be obtained
for different frequencies.

The fluid-structure computation is performed with the MSC-NASTRAN software. The
acoustic problem is solved with the SYSNOISE software equipped with the nonoverlap-
ping Schwarz method.

Figure 12 shows the shape of the submarine, whilst Fig. 13 shows the finite element mesh
of the volume between the submarine and the ellipsoid. Two examples of mesh partitioning
are presented in Figs. 14 and 15. These two mesh partitionings generate load balancing sub-
domains. Figure 14 presents a geometric based mesh partitioning. In this case all the infinite
elements are located in the same subdomain. The coupling between the only subdomain —
with all the infinite elements — and the only neighboring subdomain — with only finite
elements — becomes similar to the coupling between two subdomains — with only finite
elements. Figure 15 presents a mesh partitioning performed with the METIS software.25,26

In this case, the mesh partitioning generates subdomains which can share a common infi-
nite interface. Figure 16 shows the acoustic pressure in decibel in the ocean around the

Fig. 12. Submarine acoustic problem: Geometry.
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Fig. 13. Submarine acoustic problem: Finite element mesh.

Fig. 14. Submarine acoustic problem: Geometric based mesh partitioning.

Fig. 15. Submarine acoustic problem: METIS mesh partitioning.
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Fig. 16. Submarine acoustic problem: Acoustic pressure in decibel.

Fig. 17. Submarine acoustic problem: Comparison of frequency responses function for a solution computed
with coupled finite-infinite element versus a solution computed with boundary element.

submarine for a frequency equal to 10 Hz. Figure 17 represents the accuracy of the coupled
finite-infinite elements solution compared to the solution computed with boundary elements.
An infinite element order equal to three is mandatory in order to ensure the same accu-
racy between the coupled finite-infinite element computation, and the boundary element
computation. Bearing in mind that increasing the frequency requires a finer mesh and will
increase the dimension of the dense matrix issued from the boundary element method. For
such high frequencies, the coupled finite-infinite element, which keeps the sparsity of the
matrix, is definitely a good alternative to the boundary element method.
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Tables 5 and 6 present the convergence results for a frequency equal to 47 Hz and a
stopping criteria equal to 10−8. The first table consider a mesh partitioning based on a
geometric algorithm, and the second table consider a mesh partitioning with METIS.

In Table 5, similar properties than in the previous subsection can be noticed. The
GMRES algorithm is not presented here since for this simulation this algorithm would
require more than 1000 iterations and more than 3600 seconds CPU time, compared to
423 seconds CPU time for the nonoverlapping Schwarz algorithm with an optimized zeroth
order absorbing boundary conditions.

Table 5. Number of iterations for different number of subdomains and different infinite
element order for the submarine acoustic problem. The wave number is equal to ka = 0.2,
and the mesh partitioning is based on a geometric algorithm.

Schwarz with TO0 Schwarz with OO0

Ns m # Iterations CPU # Iterations CPU

2 3 36 780 sec 24 530 sec

— 4 36 780 sec 24 530 sec

— 5 38 797 sec 24 530 sec

3 3 106 540 sec 70 420 sec

— 4 108 551 sec 71 425 sec

— 5 108 551 sec 71 425 sec

4 3 113 570 sec 73 408 sec

— 4 113 570 sec 73 408 sec

— 5 115 576 sec 75 421 sec

Table 6. Number of iterations for different number of subdomains and different
infinite element order for the submarine acoustic problem. The wave number
is equal to ka = 0.2, and the mesh partitioning is obtained with METIS.

Schwarz with TO0 Schwarz with OO0

Ns m # iterations # iterations

8 3 86 57

— 4 90 59

— 5 94 61

16 3 210 139

— 4 221 144

— 5 232 151

32 3 422 280

— 4 438 294

— 5 456 307
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The results presented in Table 6 show the dependence of the nonoverlapping Schwarz
algorithm upon the number of subdomains and upon the order of the infinite element for a
general mesh partitioning.

6. Conclusions

In this paper, a review of the finite element method and of the infinite element method
is first presented. Then the coupled finite-infinite element method is described in detail.
This coupled method is interesting for solving acoustic scattering problems in unbounded
domain involving nonconvex scattered objects. The description of two parallel algorithms
implemented in the SYSNOISE software is then presented. The first algorithm consists
of a parallel preconditioned iterative method. The second algorithm consists of a parallel
nonoverlapping Schwarz method with absorbing boundary conditions defined on the inter-
face between the subdomains. The definition of these absorbing boundary conditions in
the case of a finite and/or an infinite interface is analyzed. Then the parallel precondi-
tioned iterative method and the parallel nonoverlapping Schwarz method with zeroth order
absorbing boundary are compared. A wide range of numerical experiments are studied
for computational acoustics scattering problems in unbounded domains that demonstrate
the performance and robustness of the nonoverlapping Schwarz method with zeroth order
absorbing boundary conditions.
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