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The acoustic radiation pressure has found practical application in recent years in instruments measuring 
sound intensity and in experiments on acoustic levitation. The concept of radiation pressure has, however, 
long fascinated both optical and acoustical physicists. The history of light radiation pressure goes back 
more than 200 years to Leonhard Euler, while the concept of acoustic radiation pressure dates from the 
time and work of Rayleigh. It was pointed out by Brillouin that what we call radiation pressure is not a 
pressure at all, but a diagonal tensor, all the diagonal terms of which are not identical. Tbe size of the 
effect is small, and the values obtained for the radiation pressure are very sensitive to boundary 
conditions and to the approximations that must necessarily bc employed. In addition, although the 
phenomenon is primarily one of nonlinear acoustics, it can be observed down to the lowest sound 
intensities under certain conditions. Thus, the Rayleigh radiation pressure vanishes for the linear ease, but 
the usually measured Langevin pressure does not. It might be said that radiation pressure is a 
phenomenon that the observer thinks he understands--for short intervals, and only every now and then. 

PACS numbers: 43.25.Qp 

INTRODUCTION 

The subject of radiation pressure has been one of the 
most widely studied "small subjects" of acoustics, with 
viriually every big name in the field applying himself to 
the subject at one time or another, and with many little 
names doing likewise. The literature is replete with 
original studies, reviews, and reviews of reviews, of 
which this is, perhaps, just one more. t And hidden in 
these papers are bright ideas and erroneous assump- 
tions and conclusions, making the writing of another re- 
view a dangerous exercise. 

In the year of my birth, the novelist Edith Wharton 
wrote in The Age of Innocence 

"... An unalterable and unquestioned law of the 
music world required that the German text of 
French operas sung by Swedish artists should be 
translated into Italian for the clearer understand- 

ing of English-speaking audiences. "a 

I am reminded of that quotation as I begin the histori- 
es/background of the subject of radiation pressure with 
a quotation from an article written in Latin by a Swiss 
scientist, but translated into French in order to appear 
in a German journal, and given its English translation 
by this American speaker. I can only hope that a clear- 
er understanding will result in this case. 

It was in 1746 that Leonhard Euler wrote 

"If it is established that... there is a propaga- 
tion of streams of light through the ether... in 
such a way that this light propagation in the ether 
resembles that of sound in air, then it appears 
to be more difficult to explain how such streams 
can carry away the particles that tumble in the 
atmosphere. While a sound vigorously excites 
not only a vibratory motion in the air particles, 
but one also observes a real motion in small, 
very light dust particles which tumble in the air, 

a)This tutorial paper was given at the 92rid Meeting of the 
Acoustical Society of America, San Diego, California, 16 
November 1976 [J. Acoust. Soc. Am. 60, S21(A) (1976)]. 

it cannot be doubted that the vibratory motion 

caused by the light produces a similar effect."s 

It was Euler's idea that the rays of light, hitting loose 
particles near the limbs of a comet, exerted sufficient 
force on them to knock them loose but, since the gravi- 
tational pull of the comet itself continued to be exerted 
onthe particles, they would fall into a train behind the 
comet, thus forming its tail. Figure I is taken from 
Euler's original paper. 

Euler did not give any reason why the alternation of 
the wave should give rise to a steady force, but seemed 
to think that the action was much like that of the pushing 
of a swing, in which case the force is periodic but the 
effect is one directional. 

The next move forward came 100 years later when 
Maxwell published his treatise on Electricity and Mc•- 
netism (1874) in which, with an appeal to Faraday, he 
wrote that 

"... in a medium in which waves are propagated, 
there is a pressure in the direction normal to the 
waves, and numerically equal to the energy in 
unit of volume. "4 

Time prevents my citing the interesting works of 
others such as Boltzmann, Lebedev, and Poynting. •-? It 
is curious, however, to reflect that one seems always to 

i 

FIG. 1. Displacement of the outer portions of comet by radia- 
tion force as envisaged by Euler in 1746. s ADBD = solid core 
of cometl ESF= limit of atmosphere of comet; EHGJF are 
sun's rays, entering from the right. 
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FIG. 2. Pendulum with string con- 
strained by ring. 

have accepted the idea that the pressure was exerted in 
a specific direction, which is, of course, not what we 
mean by pressure at all. We shall see this again in the 
acoustic case. 

Now the study of one form of wave motion does not 
long lag behind the other. If they have photons, then we 
have phonons, if they have radar, we have sonar, and 
if they have radiation pressure, then we must have it 
tOO. 

As usual, the story begins with Rayleigh. In 1902, 
Rayleigh noted the various efforts mentioned above and 
remarked 

"... it wouldbe of interest to inquire whether other 
kinds of vibration exercise a pressure, and if possi- 
ble to frame a general theory of the action. ,,6-8 

Three years and 28 papers later, Rayleigh arrived at 
the acoustic radiation pressure which bears his name, 
i.e., the difference between the average pressure at a 
surface moving with the sound displacements (the La- 
grangianpressure) and the pressure that would have ex- 
isted in the fluid of the same mean density at rest. 9 

Rayleigh first solved the problem of a vibrating pen- 
dulum, the length of which is constrained by a ring that 
can move only vertically (Fig. 2). If the tension in the 
string is approximately equal to the weight of the bob, 
r•g (for small angles 0), then the net upward force onthe 
ring will be r•g{1 - cos0). But tho potontial onorgy of 
the bob V is equal to V=mgl(1-cos0). Hence the mean 
upward force is equal to the mean value of V/I. But the 
mean value of the potential energy is one-half the mean 
value of the total energy, so that the mean force is equal 
to one-half the mean energy per unit length of the pen- 
dulum. 

Writing a generation later, Brillouin lø noted that this 
could be derived more generally from the Boltzmann- 
Ehrenfest theory of adiabatic invariance. it That is, 
under a very slow and continuous change of a constraint 
parameter, the product of the period 7. and the mean val- 

ue of the kinetic energy 7' remains a constant, i.e., 
6(7.T) = 0. Thus, as we shorten the length of a pendulum, 
the mean kinetic energy will change, and an amount of 
work dW=- dT =-•E will be done on the constraint pa- 
rameter. The force that is exerted is therefore 

Fdl = - dE . 

But 

d•' +{ = 0 and 7. = 2•(l/g) '/• 7' ' 

so that 

F= _ E 
7. dl 2l 

I. VIBRATING STRING 

If we follow the analysis of either Rayleigh or Bril- 
louin for the vibrating string, one finds that again 

F: ---E d.---• . 
7. dl 

If the velocity c of the wave in the string remains con- 
stant, then c•= • = 2l for the fundamental mode, so that 

d? 2 and F= --E. 
dl c 1 

However, if c is not a constant, then 

dT. dc dl 

and our expression for the force becomes 

E 

II. FLUID COLUMN 

Brillouin then noted that if we are dealing with.a fluid 
column of length •, cross section $, density D, volume 
V/= $l the mass remains constant, so that $l• = const; 
then 

dl - dp dV/ 
• p 

so that 

or 

c av e ' 
where (E) is the energy per unit volume. 

Brillouin was sufficiently pleased with this result t•t 
he summed up his results in the form of a table of com- 
ponents of •e mean stress tensor in the interior of a 
fluid traversed by a plane acoustic wave. We would 
write this today in •e form 

S•: - •v• - •u , (4) 

where • is the Kronecker delta. Thus, for a sound 
wave traveling in •e x direction, vz = va = 0 and we ob- 
tain 
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- (p(x0) (5) 

o - (p(x,)) , 

where, of course, <pvt• is equal to the mean energy den- 
sity (E). The problem is then the evaluation of the mean 
pressure at a point x•. This corresponds to the mean 
pressure in Eulerian coordinates. As can be seen from 
above, the quantity P(xt) was identified by Brillouin with 
the term - (E)(V•,/c)(4c/dVt). 

Brillouin was not concerned with the evaluation of the 

terms involving dc/dV and didn't observe that he had, in 
fact, made an error in calculating the terms of the ten- 
sor. The correct analysis was made by Fubini, 12 who 
was a student of Brillouts's, but Brillouts did not alter 
this in his book on tensors in 1938. •s This correct form 
was publicized by Westervelt '4 in 1950 and we shall now 
proceed to its development. 

We shall carry out the calculation for an ideal gas, 
but the case can be extended to liquids by replacing 3'-- 
the ratio of specific heats--by I+(B/A), where B/A is 
called the parameter of nonlinearity, = Poco(OC/Op) s. 

If we deal in Lagrangian or material coordinates, the 
fluid density f is related to the space derivative 
-= œ• by the equation 

0r/00= 1/(1 + . (6) 

We now consider the adiabatic relation p =po(p/90) y. If 
we substitute for O r. and expand in powers of },, we ob- 
tain for the Lagrangian pressure at the position of a 
particle that was at rest at the point x: 

=po+ mc[- (7) 
where c•=7P0/P•. It will be useful also to write out the 
Eulerian expression for the pressure at a fixed point. 
Since an Eulerian quantity g is related to the correspond- 
ing Lagrangian quantity œ through the expression 

$=•-• • , (•) 
then p• is given by 

P• =Po+ Poc2o[ - {i• + «(y+ 1) • + 

Ill. RAYLEIGH AND LANGEVIN RADIATION 

PRESSURES 

We are now in the position to work out the detailed dif- 
ferences of Rayleigh and Langevin pressures. Rayleigh 
first. This pressure has been defined as the difference 
between the average pressure at a surface moving with 
the particle (the mean pr.) and the pressure that would 
have existed in the fluid of the same mean density at 
rest (/)•). Thus, 

: mc<- + + ) ß 
If we now assume a plane harmonic wave that is under- 

going the distortion of nonlinear acoustics, 
for its first terms 

• = (011 - cos(co/- kx]+•[M2(y+ 1)x] 

x[1- cos2(cot- kx)] , (11) 

where M = •ok/co is the acoustic Maeh number. Substi- 
tuting, we get 

p•, = po½•[_ •(•+ 1) + •(•+ 1) IM•- = •-' . Ooc0 •(Y+ 1) M 2 
(12) 

Therefore 

(gas) , 

pa,,= «[1 +(B/2A)](E) (liquid) . 

we can write 

(13) 

Let me now point out a few places where one can and 
does go wrong here. If we fail to take the second har- 
monic of the sound wave into account we get 

paa, = •¾+ 1)(E) , (14) 
which is the value used by Hertz and Mende, •s and which 
I used in my 1950 reviewl6; it appears again in the 1972 
article by Roehey and Nyborg. •? The same result can 
be obtained from the Brillouts stress tensor, since we 
can calculate 

p •c Y-1 
c 80 2 

so that the radiation pressure for the fluid column be- 
comes 

P,td =<E)[I+«(y+ 1)]= «(¾+ 1)(E) . (15) 

Incidentally, it is clear that the components of the stress 
tensor in the 3' and • direction should be negative of the 
F. ulerian pressure, as our first tensor indicates. Thus, 
the radiation stress tensor should be written 

0 - i(•- a)<E) (10) 

0 0 - •V- 3)<E> . 

Another possible error is to consider an elastic linear 
liquid. This in effect sets «(¾+ 1) = 0 and the Rayleigh 
radiation pressure vanishes. It is thus fair to say that 
the Rayleigh pressure depends only on nonlinear terms 
and is wholly a nonlinear phenomenon. 

Unfortunately, we rarely if ever measure this quanti- 
ty, but rather carry out a measurement of the so-called 
Langevin radiation pressure p •.a., which is defined as 
the difference between the mean force per unit area at 
a wall and the pressure in the same acoustic medium at 
rest behind the wall, where the fluid medium is in com- 
plete contact on the two sides of the wall. 

It is perhaps worth remarking that Langevin published 
the derivation of his radiation pressure only on the 
blackboards of the CollSge do France in Paris. How- 
ever, one of his students, Pierre Biquard, wrote an ac- 
count of his derivation in Revue d'Aeoustique so that 
Langevin's contribution can be documented. •a 

To illustrate the distinction between the Rayleigh and 
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• Sound ,•, p_pE_ pL=p ø 
• (outside) 

•Y (b) 
sure •d (b) •vm pressure. He• • = •+B/•. 

Langevin pressures, we look at Fig. 3, which has been 
modified from a fzgure in the paper of Hertz and Mende 
A somewhat similar drawing appears in Brillouin's 
book. 

In the first picture, both pistons X and Y are fixed in 
position, and a plane harmomc wave passes from left 
to right in the medium. Although the piston X •s fixed, 
its inside face must move under the action of the sound 

wave, in order to satisfy continuity at the boundary. We 
shall assume that •Y is perfectly absorbing. The pres- 
sure at X is then equal to the Lagrang[an pressure 
=po+ «•{E). The pressure at Y is the Eulerian value 
of the pressure pc =p0= •y_ 3) (E) =<pL ) - 

We therefore obtmn the Rayleigh pressure from the 
difference between the pressures on the [we sides of X: 

pn== •r ) _p0= «B(E) = •(•,+ 1)(E) . (17) 

We now consider the second drawing, in which Y is 
free to move. As can be seen, the mean pressure at 
the upper face of Y is different from that in the outside 
medium. The piston Y wall therefore move until the 
pressure •nside the cylinder is equal to the pressure 
outside Po. Hence 

• = (pc,) = (•,) _ (E') =Po ß 

Substituting •n the expression for Px, we obtain 

p•=<f') =po (/r') . 
The Langevin radialran pressure is therefore given by 
the difference of p• and P0, i.e., 

the differences between {E} and {E'} being of higher or- 
der. 

We now remove the cylinder and piston ¾, keeping 
only •. The situation remains unchanged, except that 
the sound beam will now change gradually from a maxi- 
mum on its axis to zero at large transverse distances. 
The hydrostatic pressure makes the adjustment of the 

second picture gradually instead of the single adjust- 
men[ at piston Y, but the effect must be the same. 

In this stmphfied presentation, I have just passed 
over many complicated variations of the radiation prob- 
lem in order to emphasize the basic principles involved. 
One of these complications is the existence of reflec- 
tions. Without going into detail, it can be shown that 
the Langevm "pressure" becomes equal to the total mean 
energy density, or (1 + R)(E), where R is the reflection 
coefficient. 

Another comphcatton •s the incidence of the beam at 
an angle. This was treated by Brtllouin, who showed 
that the term in his radtation stress tensor involving 
(t•) must be multiplied by costa, where 0 is the angle 
of incidence. As you can see, as 0 -00 ø, this term dis- 
appears and we are left only with the Eulerian pressure 

Of course, when there is imperfect reflection at an 
interface, some sound penetrates into the next medium. 
Hence there will be a radiation pressure in the second medi- 
um. ff little sound is present in this medium (for example, 
if the second medium is air), the net force of the radiation 
pressure will be in the direction liquid-air, and a foun- 
tain results (see Fig. 4). t, 

Hertz and Mende studied a number of different liquid 
combinations. In Fig. 5{a) we have water over CC14o 
The sound source is below and an upward fountain re- 
suits. In Fig 5(b) we have water over anihne. Be- 
cause of density differences here, the energy density m 
the upper medium {water ) is greater than in the lower, 
and an inverse fountain is produced. 

F•gure 6 shows a different experimental arrangementß 
We are viewing the same two liquid combinations as be- 
fore, but this time, the source of sound is in the upper 
medium, and is hired, so that the me•dent beam pene- 
trates •nto the second liquid, is reflected from the plate 
therein, and returns to the original liquid, with a separ- 

FIG. 4. Example of acoustic fountain. Sound source is located 
underwater and sound is directed upward (from L. Berg'marantZ). 
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FIG. 5. Effect of radiation pressure at liquid-liquid haterface. 
Source of sound is located at bottom of cylinder and sound is 
directed upward. (a) water over CC14; (b) water over aniline 
(from G. Hertz and H. MendelS). 

FIG. 7. Results with apparatus of Fig. 6. (a) water over 
aniline; (b) water over CC14 (from G. Hertz and H. MendelS). 

ation of the beams at the interface. Figure 7 shows con- 
clusively that the direction of the peak or fountain is in- 
dependent of the direction of the beam, depending as it 
does only on the relative sound energy densities in the 
two media. 

Still another complicatmn is the existence of a differ- 
ent shape for the detector. TheCanadianphysicistLouis 
King worked out a solution for the case of a solid sphere 
in 1934, and arrived at a value of the radiation pressure 
that approached the value of E as ka became larger than 
3 (k is the wave number of the sound in the fluid, a is 
the radius of sphere). 2ø 

More recently, Yosioka and co-workers at Osaka Uni- 
versity have studied the effect of the elasticity of the 
sphere in more detail, and found some resonance de- 
partures from the King curve, but substantial agree- 
men•, overall, between theory and experiment. An ex- 
ample is shown in Fig. 8. 

The ideas of Yosioka have been picked up by Eller, • 
Gould, 2s Crum, • and, finally, Apfel. as If we are deal- 
ing with a standing wave, then the time-averaged force 
exerted on small bubbles in a host liquid by a beam in 
which the local pressure amplitude is p(z) is given by 

(F> = bp(dp/dz) , (19) 
where b is a constant characteristic of the medium. In 

an ideal standing wave, p is given by 

FIG. 6. Experimental arrange- 
merit for viewhag two separated 
sound beams at liquid-hquid inter- 
face. The sound source is located 

in cylhader M and the sound beam 
is reflected from the plate R (from 
G. Hertz and H. MendelS). 

p = pa sinkz 

and hence 

(F) , 2 = •p•kb sin2kz . (20) 

This force can be positive or negative, depending on 
where we are in the standing wave. If the standing wave 
is in the vertical direction, then the radiation can force 
the bubble either up or down, depending on position. 

Now, if the density of the bubble is greater than that 
of the host medium, the bubble wilt fall until it reaches 
a point in the standing wave where the upward force 
counterbalances the net gravitational-buoyancy force. 
The bubble can therefore be held at this position or 
raised by the simple expedient of increasing p•. Apfel 
calls this acoustic levitation. However, most of his 
work has been on hubbies of density less than that of the 
host medium. Since these bubbles would normatry rise, 
he is therefore working in a region where the radiation 
force pushes the bubble down. I suppose one might call 
this acoustic gravitation or aeoustm depression. But 
levitation sounds much more cheerful, and the name has 
s•uck. 

At equilbrium, Apfel showed that the relation of pres- 

1.0 

0.8 

0.4 

(12 

o 
0 2 4 6 8 I0 12 14 16 18 20 22 24 

ko 

FIG. 8. Plot of Y•= <F)/•ra2(E) vs/•a, where <F) is the average 
force on a sphere of radius a from a sound beam with wave num- 
ber k and average energ• density <E). Circles denote experi- 
mental values (from T. Hasegawa and K. Yosioka (1975)21). 
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sure to the various compressibilities and densities is 
given by 

P(•-•z ) _ 2_• G( •*/ t3 •, p*/p) (21) 
where the asterisk refers to the bubble parameters and 
G is given by 

II-•l 

C=•_(5•_2)/(2•+1), /=p*/p, •=•'/•,. (22) 
With his flair for name coini•, •fel calls G the 

comp•essadensity function. Working with a bubble wi• 
known densi• and compressibili• and using •o differ- 
ent host liquids, it is possible in principle to determine 
•th •e densi• and •e compressibiliW on the u•nown 
bubble. 

In this historical-•torial r•iew of the development 
of the concept of acoustic radiation pressure, it is, per- 
haps, not inappropriate to conclude with a quota•on 
from Brillouin's 1936 pa•r: 

"Lord Rayleigh devoted sever• memoirs to 
research on the radiation pressure of sound 
waves but his c•culations are in. curate be- 

cause of various errors of detail; the det•led 
•ysis of various mecha•sms which t•e 
p•t in the creation of r•afion pressure is 
very delicate; one must t•e into •count a 
whole series of second order effects which si- 

mult•eously deform the wave during its propa- 
gation; a direct reasoning, b•ed on the formula 
of Bol•ma•-Ehre•est, is much more sure." 

It •es ne•e as well as abili W to cffiticize Lord •y- 
leigh successfully, •d Brillouin h• bo•. But as we 
have see• even a Brillouin c• m•e af•x •as. On 
the other han• so can I, •d so c• any of you. I've al- 
ready made plenW on my pa• now iffs som•ne else's 
•Yn. 

IV. CONCLUSION 

The work on this paper was supported in part by the 
United States Navy Ocean Research and Development 
Activity. Recently, Professor J. Bosquet of the Univer- 

sity of Brussels read a paper on the same subject and 
with very similar conclusions at the International Con- 
gress on Acoustics in Madrid, Spain, 4-9 July 1977. 
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