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A simple theory is described for the transmission of low frequency sound through the 
walls of rectangular ducts, particularly those in air conditioning systems. The model is 
based on a coupled acoustic/structural wave system, and it is assumed that the duct radiates 
in the same way as a finite-length line source incorporating a single travelling wave. 
Measurements of wall transmission loss on two types of duct system are compared to 
theoretical predictions, and good agreement is obtained within the frequency range of 
validity of the theory. It is concluded that the present approach should give reliable 
estimates of noise transmission in practical situations. 

1. INTRODUCTION 

The engineer who is involved in carrying out acoustical design work on buildings is 
usually faced, sooner or later, with the problem of estimating the extent of noise trans- 
mission from the interior to the exterior of air-moving ductwork in a ventilating system. 
This is sometimes necessary where, for example, a duct passes through a space which is 
not actually served by the duct system; since noise from an air-handling fan would normally 
be transmitted along the duct, one would expect the duct walls to vibrate, thus radiating 
noise into the intermediate space. Now if a silencer were placed adjacent to the fan but 
designed solely on the basis of duct-borne fan noise transmitted via air outlets to the spaces 
which they serve, the intermediate duct-wall radiation would be ignored, and acoustic 
problems could arise in the intermediate space, despite the presence of the attenuating 
device. So one should, perhaps, account for duct-wall radiation as part of a noise trans- 
mission path. In practice, this effect can be troublesome and the phenomenon of acoustic 
transmission through duct walls is known colloquially, in the air conditioning fraternity, 
as “breakout” (although one feels that this term has a somewhat inappropriate flavour). 
A good account of breakout is given by Webb [l]. 

It is clear then, that one stock-in-trade of the engineer concerned with building acoustics 
must be a reliable means of estimating noise breakout from ductwork. 

Breakout, it would seem, is predominantly a low frequency problem, since fans produce 
most of their sound power at low frequencies, and it is also in this region where the almost 
universallv used dissipative type of attenuator is at its least effective, Hence one’s breakout 
calculations should be valid at low frequencies; high frequency accuracy is less important. 

At this point, it must be mentioned that duct-wall vibration may be excited by flow 
turbulence as well as by acoustic pressure waves. Webb discusses this phenomenon in 

t A version of this paper was given at the Spring meeting of the Institute of Acoustics, at the University of 
Cambridge, 5-7 April, 1978. 
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reference [I]; it appears that it is most likely to be important in high velocity ductwork, 
or where there are obstacles in the flow such as dampers or internal reinforcing members. 
Additionally, there is the possibility of instability caused by the interaction between wall 
vibration and a “clean” air flow (although clean air flows are unlikely to occur in any 
practical ventilating system). It is not the purpose of this article, however. to discuss aero- 
dynamic excitation of duct walls: here, only acoustic forcing will be considered. This mode 
of transmission is probably of at least equal importance to that associated with turbulence, 
and in any case, the latter could prove diflicult to estimate numerically since the necessary 
detailed information on the wall pressure field, caused bv turbulence only, would not 
normally be available. 

Air-moving ductwork has three principal cross-sectional shapes: circular, oval (with 
flat sides) and rectangular. The extent of acoustic radiation from the walls, and also even 
its mechanism, may vary from one shape to another. 

Consider first circular ducts. High frequency transmission through circular section duct 
walls has been studied by Cremer [2] and Heck1 [3], with some degree of success. But, 
since it is not the high frequency region (where many acoustic modes propagate in the 
duct) which is of concern here, this work has little relevance in the present context. Morfey 
[ill, Brown and Rennison [5], and Kuhn and Morfey [6] have all examined low frequency 
transmission through the walls of circular pipes. The overall conclusions to be drawn from 
these three pieces of work are (i) that it is possible to calculate low frequency transmission 
bv axisymmetric pipe vibrations only-fairly easily and accurately, and (ii) (from reference 
[6]) that in practical situations axisymmetric duct-wall radiation is not likely to be the 
major transmission mechanism in circular metal ducts. but that bending wave radiation 
from the duct as a whole (excited by non-axisymmetric pressures at some point(s) inside 
the pipe) would probably dominate! Since the chances of one’s knowing the magnitudes 
and distributions of the exciting forces are extremely remote, this means that there is 
little hope of calculating the low frequency radiation from circular ductwork. One happy 
feature of the situation is, however, that low frequency breakout from circular ducts is not 
normally too much of a problem, since the low frequency transmission loss (a definition of 
which will be given later) of the duct walls tends to be high, even when the bending mode 
mechanism predominates. 

Oval ducts could not vibrate axisymmetrically. and the wall transmission loss would be 
considerably less than that of circular ducts (for reasons which are obvious from reading 
references [4-61). Quite possibly, noise transmission from “peristaltic” wall vibrations 
would dominate in this case. over whole-duct bending mode radiation. But oval ducts 
are, it would seem, less commonly occurring than either circular or rectangular ducts and 
attention will not, at present, be focus& upon them. 

So the subject of interest in this article is low frequency noise breakout from rectangular 
ducts. 

As far as can be ascertained, no method of estimating noise breakout from rectangular 
ducts at low frequencies is currently available. A very simple formula quoted by Allen [7] 
is frequently used for the purpose, but it is, unfortunately, only likely to have any degree 
of success at all at high frequencies (it is based on the idea of multi-mode duct transmission) 
and even then is probably not reliable: Allen, in reference [7], says, “. . the TL of the duct 
wall may be assumed to approach the field mass law . . although there may be wide 
departures from these values.” As is common with simplistic formulae, Allen’s is widely 
misused, and is certainly totally inapplicable at low frequencies where only single mode 
transmission occurs in the duct. (Incidentally. Webb [l] appears to be incorrect in des- 
cribing Allen’s formula as an “empirical equation”.) 

The purpose of the present work is to attempt to evolve a reasonablv simple, but reliable, 
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means of estimating noise breakout from rectangular ducts. Mean fluid flow Mach numbers 
in air conditioning ducts are small enough to be negligible, and so flow will not be taken 
into account in the ensuing discussions. 

2. THEORY 

Consider an infinitely long duct of rectangular, uniform cross-section, with uniform 
flexible walls whose thicknesses are all equal (it is not worthwhile to account for the 
unusual situation where the walls have different thicknesses, although this would involve 
no additional difficulties), and which contains negligible mean fluid flow. The fluid proper- 
ties inside and outside the duct may differ, and are characterized by the density p and the 
adiabatic speed of sound c. The situation is illustrated in Figure 1, which also shows a set 

pi, ci inside duct 

p., ce outside duct 

Figure 1. Rectangular duct. 

of Cartesian co-ordinates; the subscripts i and e on p and c indicate properties of the 
internal and external fluids respectively (also a list of symbols is given in the Appendix), 

Such a duct contains most of the essential features of a typical air-moving duct. The 
problem now resolves itself into examining first, the internal sound propagation and 
resultant wall vibration, including the way in which the fluid wave and the structural wave 
couple together, and secondly the external acoustic radiation from the duct walls. Because 
the frequency is assumed to be low, certain convenient approximations may be made. The 
first of these is that the sound field inside the duct consists of a travelling wave with an 
approximately uniform acoustic pressure distribution. This would be exactly true for the 
fundamental mode in a rigid-walled duct, but is not a bad approximation for the funda- 
mental mode in ducts with yielding walls, provided the wall admittance is not too large. 
The second assumption is that the acoustic wavelength cJf (where f is the frequency) is 
fairly large compared to the larger transverse duct dimension (the ratio should be, say, 
greater than 2: 1). The latter requirement is virtually guaranteed to be satisfied by the 
former. An additional assumption will be that the external radiation load on the duct walls 
has little effect on the wall vibrations (one thus avoids the considerable complication of 
including the external pressure field in an analysis of the duct wall vibrations). This will 
be valid provided the duct walls are not too “transparent” to sound One should first 
derive an acoustic wave equation for the sound field inside the duct. 

2.1. ACOUSl’IC WAVE JZQUATION 

It is required to derive a wave equation for approximately one-dimensional sound 
propagation in a uniform duct with yielding wahs. The cross-sectional shape may be 
arbitrary: the cross-sectional area is denoted by S and the perimeter by L. Figure 2 illus- 
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trates such a duct; a co-ordinate around the perimeter is denoted bv s, and the axial co- 
ordinate by x. A thin, transverse fluid element, of thickness Ax, is shown. 

If the normal admittance of the duct walls (non-dimensional&d against p,~,) is b(s), and 
an average admittance p is defined 

fi = f 
s 
” b(s) ds. (1) 

d 0 
one may balance the total net mass flow into the element, -(y,S?uz/(:‘s + pLfi/c,) Ax, 

Normol odmlttonce p (5) 

Cross-sectional orea S, perimeter L 

Figure 2. Duct with yieldmg walls. 

against the rate of increase of mass of fluid in the element, SAx?p/?t (ux, p and p are axial 
acoustic particle velocity, pressure and density respectively), and allow Ax to tend to zero, 
to obtain a continuity equation 

@p/at) + p@u,/ax) + (pL$/c;S) = 0. (2) 

The momentum equation, expressing the force balance on the element, is 

pidux/dt = - i3pji:u. (3) 

and equations (2) and (3) may be combined to give a wave equation, 

(l/C$)(S’p/iit’)+ (L&S) (dp/at) - (?p/(7x2) = 0. (4) 

If one takes simple harmonic pressure fluctuations, with p(x, c) K eiwt+lx (co = radian 
frequency), equation (4) Gelds 

L = +ik,(l - (iZ$/klS))” (5) 

(where ki = w/c,), or, if a = -ikX, then the axial wavenumber k, is given by 

kx = fk,(l - (iLfl/k$))“‘. (6) 

The positive sign in equation (6) represents a wave travelling in the positive x-direction, 
and the negative sign denotes a negative-travelling wave. 

The foregoing expressions are valid provided the pressure distribution in the duct is 
nearlv uniform, which means that the wall admittance should be fairly small. 

2.2. STRUCTURAL WAVE EQUATION 

For a thin plate in the x-z plane (for example) of Figure 1, the wave equation for simple 
harmonic vibrations may be written as 

(V4 - r4)< = Kq, (7) 

where V4 = (ii2/?x2 + iJ’/ii~‘)~, 5 is the transverse plate displacement from equilibrium (in 
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the y-direction), K = 12(1 - az)/Eh3, E being the Young’s modulus of the plate, h the 
plate thickness and c Boisson’s ratio for the plate material, y4 = o’mK, m being the 
mass per unit area of the plate, and q is the forcing pressure (that is, the pressure difference 
between the two sides of the plate). Both < and q may be functions of x and z. 

Now since it has been assumed that the acoustic pressure inside the duct is uniform, and 
also that the radiation load on the outside of the duct is negligible (that is, the plate behaves 
as if one side is in uacuo), q is now only a function of x and may be replaced by Q(x)e’“‘. 
Also the operator (V4 - y4) in equation (7) may be factorized, and if <(x, z, t) is replaced by 
D(x, z) eico’, then the equation becomes 

(V2 + r2)(V2 - y2)D = KQ. (8) 

This equation governs the wave motion of the duct wall in the x-z plane, and also in the 
wall opposite this; if z is replaced by y in the above lines, then it would apply to the x-y 
walls, where D(x, y) would be the displacement amplitude in the z-direction. 

If internal damping in the wall material is to be accounted for, then the Young’s modulus 
E may be replaced by a “dynamic modulus”, E(l + iv), where rl is the “loss factor” of the 
material. 

2.3. COUPLING BETWEEN ACOUSTIC AND STRUCTURAL WAVES 

It is clear from equation (6) that the axial wavenumber of the acoustic wave is dependent 
upon the wall impedance 8; this means that the wall vibrations influence the acoustic 
propagation. That the reverse is also true may be inferred from equation (8) since Q, the 
forcing function, is nothing other than the acoustic pressure in the duct. So the fluid-borne 
and structure-borne waves are interdependent, coupled, waves, both with the same axial 
wavenumber. The next step now is to solve the structural wave equation, with use of this 
knowledge; the average wall admittance, 8, can then be determined as a function of kx, 
and the resultant equation, with equation (6), form together a set of two coupled equations 
from which k, may be determined. The values of k, which will be sought are those not too 
far removed from f ki; this arises from equation (6), since the wall admittance is assumed 
to be fairly small. 

2.4. SOLUTION OF THE STRUCTURAL WAVE EQUATION 

In the last section, it has been mentioned that the structural- and fluid-borne waves have 
the same axial wavenumber, and that the forcing function Q(x) in equation (8) is the 
acoustic pressure inside the duct. Now Q is equal to P,e-ikxX, where PO is the internal 
pressure amplitude, and so D in equation (8) must have the form Z(Z)~-‘~~ for the x-z 
walls of the duct, and Y(y)emikxx for the x-y walls. 

Equation (8) may be solved exactlp for a single travelling mode: the particular integral 
(PI) is equal to KP,e-*xX/(k~ - y’), and the complementary function (CF) is given, for the 
x-y walls, by 

CF = [A, cos(a,y) + A, sin&y) + A, cosh(a,y) + A, sinh(a,y)] eeikXx 

and for the x-z walls, by 

(9) 

CF = [B, cos(a,z) + B, sin(a,z) + B, cosh(a,z) -f B4 sinh(a,z)] evikxX, (10) 
where 

a,=Jv kx, a2 = ,/y2 + k: (lla, b) 
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and the constants A, to A, and B, to B, are determined by boundary conditions. The 
general solution is equal to (PI + CF) for the x-y and the x-z walls. The first two terms 
in each of the brackets in equations (9) and (10) represent solutions to the equation 
(V2 - y2)D = 0, and the second two terms represent solutions to (V2 + y2)D = 0. 

The general solutions to equation (8). for the x-y and .X-Z walls. respectively. are now 

D(x, Y) = [A, COS(CX,Y) + A, sin(a,y) + A, cosh(a,y) + A, sinh(cx2y)]e-ikx” 

+ [KP,/(kz - y4)]eeik-“, 

D(x, z) = [B, COS(CI~Z) + B, sin(a,z) + B, cosh(a,z) + B, sinh(a2z)]eeikxx 

+ [KP,/(k4 - y4)]e-ikxx. (12a, b) 

2.5. APPLICATION OF BOUNDARY CONDITIONS 

Provided one can determine the values of the coefficients in equations (12), then the 
average wall admittance, 8, .may be found by using equation (1). 

It will be assumed here that (i) the normal wall displacement at a corner of the duct is 
zero, (ii) the duct corners remain right-angled (meaning that the transverse slopes of adjacent 
sides, at the corners, differ by 90”) during a vibration cycle, but may rotate in a plane normal 
to the duct’s axis, and (iii) the duct’s walls vibrate symmetrically about two planes, each 
parallel to one set of walls and bisecting the other set. Assumption (i) is valid, since the 
walls will not undergo significant extensional vibrations. Assumption (ii) is quite reasonable, 
and is usual in structural vibration problems. Assumption (iii) is justifiable on the basis that, 
because of the (assumed) uniform pressure fluctuations inside the duct, there should be no 
asymmetry in the wall vibrations. If the duct were square in cross-sectional shape, then the 
walls would all vibrate in phase, and with equal amplitude at equivalent points. Since the 
duct is not necessarily assumed to be square, one must allow for rotation of the corners, and 
require that only opposite walls vibrate equally. 

On the basis of the three above assumptions, a set of boundary conditions may be drawn 
up, from which the constants in equations (12) may be found. These only need be applied 
(in view of the foregoing comments) to two adjacent walls, which are chosen as those in the 
x-y and x-z planes. The boundary conditions are as follows (the Roman numerals denote 
which of the above assumptions leads to the particular boundary condition, and a and b 
are the transverse dimensions of the duct in the y and z directions respectively): 

(i) Y(0) = 0, Z(0) = 0, Y(a) = 0,2(b) = 0, 

(ii) Y’(0) = -z’(O), Y’(u) = -Z’(b), 

(iii) Y’(a/2) = 0, Z’(b/2) = 0, 

(13ad) 
(13e, fl 

(13g, h) 

where the primes denote differentiation with respect to argument. The last two conditions 
are not strictiy boundary conditions but arise from the symmetry of the wall vibrations. 

Equations (13) give rise to a set of linear equations which may be solved simultaneously 
to give the coefficients in equations (12) in terms of P,. 

2.6. TRANSMISSION LOSS OF DUCT WALLS 

The term transmission loss (TL), in this context, departs slightly from its usual meaning 
(which is the decibel ratio between incident and transmitted sound power through equal 
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areas of a “transmission system” (as, for example, in the case of an infinite partition)-- 
or between total incident and transmitted power-as in the case of a duct silencer), since 
(for a $nite duct) the total external radiating area of the duct depends upon its length, 
and hence a TL defined as incorporating duct length is not a unique function of the duct 
geometry and material. But, as will be seen, the duct length affects the acoustic radiation 
eficiency, and so if the TL were defined in terms of radiation from a unit length of duct, one 
would still not have a unique function of duct geometry and wall material. On the other 
hand it turns out that, over much of the frequency range, the TL, defined in terms of radiated 
sound power per unit length, is only weakly dependent upon the duct’s radiating length, and 
so it is probably more useful to use this type of definition in this case, since the inclusion of 
a term 10 log(duct length) is sufficient to enable one to calculate the total sound power 
radiated from any length of duct. 

Accordingly, the TL will be defined as 

TL = 10 log(Wi”JW,ad), (14) 

where W,, is the total sound power being transmitted inside the duct (this is assumed to be 
independent of distance along the duct; in reality, Win, would slowly decrease in the direction 
of propagation, because of external radiation losses) and W, is the radiated sound power 
per unit length of duct. The above definition contrasts with the more usual one (see, for 
instance, reference [6]), where Wr, is the total sound power radiated from the duct. 

To calculate the TL, one must first estimate the wall response to the internal sound 
pressure field. This may be done by using equations (12) and (13). The next aspect of the 
problem is to calculate the radiated sound power from the duct walls. 

To carry out a thorough analysis of acoustic radiation from the duct’s walls would be 
unduly complicated, but since the acoustic wavelength has been assumed to be reasonably 
long compared to the transverse dimensions of the duct, one may, as a first approximation 
simply integrate the surface velocity amplitude around the duct walls, and use the resulting 
volume velocity per unit length to estimate radiation based on a line source model. This 
approach would, of course, only really be valid at low frequencies where scattering effects 
are small and phase differences between the contributions-to the direct external acoustic 
field at a particular point-from different regions around the duct’s perimeter may be 
negiected. 

Brown and Rennison [SJ use an extremely simple model in their work on circular pipes. 
The model consists of a finite length of straight pipe down which axisymmetric, peristaltic 
waveS travel in one direction only. The total sound power radiated from this pipe, into a 
free field, is readily calculated in terms of the pipe’s radius, the axial wavenumber, the 
surface velocity amplitude and the length of the pipe. No “end effects” are assumed to 
affect the wave propagation, which is taken as that which would occur for a travelling 
mode in an infinite pipe. 

What is gratifying about Brown and Rennison’s model is that they find that it gives good 
predictions of radiation efficiency, not only for an anechoically-terminated duct (the term 
referring to both acoustic and structural waves), but also for a duct in which waves pro- 
pagate in both directions. Because of its successful application in reference [S], this approach 
will be used here, although the radiated sound power will be expressed in terms of volume 
velocity instead of pipe-wall velocity. 

One may easily show that the sound power per unit length, radiated from an infinitely 
long line source down which waves travel with supersonic phase speed (referred to cJ, is 

w**, = W, I40 12h (15) 

where q. is the volume velocity amplitude per unit length of duct. 
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t-‘or a finite length of duct. M rl,,, mav be expressed m terms of equation ( 15). incorporating 
a “radiation efficiency” factor C,-: 

In/rXJ = CrW~lq”12i~. (16) 

Brown and Rennison’s paper contains a graph (their Figure 3) from which Cr may readilv 
be calculated in terms of the parameter IkX(l - k,/k,). where 1 is the length of the duct and 
kc = (!~~lc,~. (If kx has a small imaginary part---which it will if q f &then the ~ul part 
would be used here.) If kx = kg, (that is, the duct waves travel at the external acoustic speed), 
then C‘V = 0.5, and is independent of 1. Provided kl is not too different from kc, Cr would be 
fairly close to 0.5 if ky/ is not too great. A curve of CTr. derived from Brown and Rennison’s 
paper, is given in Figure 3 

1 

Lk, (I-k,/k,; 

The volume velocity q,, in equation (16), may be expressed in terms of the wall admittance 
as 

Y(J = (2P&J(4, + MJ ( 17) 

where fl,, and 8, are the average admittances over the x-y walls and the x-z walls respectively. 
The Internal sound power, Win,, is equal to ab\P,l 2/2p,cI, where cx is the (real) axial phase 

speed of the wave, and so the TL may be expressed (by using equations (16) and (17)) as 

TL = 10 log(abyici,‘C,.kipecx 1 up, + b& 12). (18) 

The average admittances fl, and fl, may be obtained by integrating equations (12) over 
the appropriate intervals. The result for the x-y walls is 

BY = !FL 
0 

2 sin(cz,a) - $ COS(M~U) + ;‘: sinh(a,a) + ? cosh(ol,a) + 2 - 2 
1 

iopiciK 
+ kz _ ?,4' 

(19) 

and the expression for the x-z walls is identical if the A’s are replaced by the B’s, and a by b. 
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3. COMPUTATION OF RESULTS 

Some comments should be made concerning the computational methods used to obtain 
the numerical results derived from the theory. An obvious procedure would be initially to 
put k, equal to k, solve equations (13) for the A’s and B’s, calculate j from equation (19) 
and its x-z counterpart, obtain a new value of k, from equation (6) and repeat the procedure 
with this new value, performing as many iterations as necessary to obtain convergence of the 
solution for k,. This procedure cannot be guaranteed always to be successful and so an 
alternative would be to insert the expression for j? in terms of kx into equation (6) and obtain 
an equation of the form f(k,,) = 0; the Newton-Raphson iterative method could then be 
used to obtain a solution for k,. Neither of these procedures proved to be either practicable 
or necessary, however, for the following reasons. 

Equations (13), as they stand, lead to a set of eight ill-conditioned equations in the un- 
knowns A, to A, and B, to B,. Attempts were made to solve these by using the Gauss 
elimination method (including the use of error equations) and by the Gauss-Jordan method. 
The results were very unsatisfactory, and considerable scatter was encountered. Next, the 
slope of the duct walls at the corners was inserted as an unknown in equations (13), and a 
set of nine equations was obtained; this time, only one of equations (13g) and (13h) was 
required. The resultant set of equations proved to be much more amenable to solution, 
although a small amount of scatter still occurred, mainly at low frequencies. The accuracy 
of solution was not such as to enable either of the iterative procedures described above to 
be used successfully. 

If one examines the values of y and ki for typical air conditioning ductwork, it transpires 
that y is about an order of magnitude higher than k, so provided k, is not too much greater 
than k, then values of t~i, a2 and (kz - y4) would contain extremely small errors if ki 
wefe used to obtain values for 8, and also of course, fi would be quite accurate. The condition 
of k, being too much greater than y would only occur when the duct walls were too trans- 
parent to sound for the theory to be applicable in any case, and so no real problem ensues 
from the above approximation. Once j has been calculated, more accurate values of kx 
may of course be obtained from equation (6); these are necessary in order to calculate C, 
and the TL. 

The TL (and other quantities such as wall mode shapes and c3 were calculated as out- 
lined above, and reasonably satisfactory results were obtained. No doubt further work on 
re-arrangement of the equations and other means of solution would yield better results, 
but this was not felt to be merited in the present investigation. Incidentally, for square 
ducts, the problems over accuracy of solution did not arise, but this is almost irrelevant in 
the general context of rectangular duct shapes. 

The effects of internal damping were investigated initially for a square duct, but proved to 
be negligible even for relatively large values of r,t. Subsequently the computer program used 
was re-written, incorporating only real (as opposed to complex) variables, with an attendant 
improvement in accuracy. 

4. MEASUREMENTS 

In order to test the theory, two experimental rigs were constructed. These are shown in 
Figure 4. The first, in Figure 4(a), consisted of a square duct with a loudspeaker (as an 
acoustic source) at one end, and was anechoically terminated by a wedge of Rockwool, 
which not only acted as an effective acoustic absorber but also damped the wall vibrations 
progressively. This arrangement was designed to approximate to the idealized situation 
where waves travel, in one direction only, along a duct of finite length. In order to ameliorate 
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the effects of structural discontinuities, all seams in the duct wall were butt-welded and 
beaten flat. Near field effects close to the loudspeaker, and phenomena caused by the non- 
ideality of the termination would, it was hoped, be negligible. Provision was made to carry 
out axial traverses of the sound field with a probe microphone. 

The second duct, shown in Figure 4(b), was rectangular (not square) in section, again 
having the loudspeaker as a source, but with a termination consisting of a metal flange 
bearing a rigid plate (of aluminium. heavily weighted and damped with putty). This was 

Enclosure 

Pos~hon for flxed microphone I” duct 
, (TL measurements only) \ Metal plate 

Mwophone 

Microphone 
I” 
reverberant 
field 

Enclosure Alumlnlum plate 

putty 

Microphone !n 
reverberant field 

(b) 

Figure 4. Experimental arrangements. (a) Square duct with anechoic termination; (b) rectangular duct with 
reflecting termination. 

intended to act as an extreme test of the theory, because of the presence of reflected structural 
and acoustic waves, and also because the ratio between the length of the duct and its greater 
transverse dimension was relatively small compared to most practical ducts (so “end effects” 
would perhaps be more noticeable). Additionally, the duct had a lapped, riveted seam on 
one side along the whole of its length. 

Extraneous transmission of sound from the back of the loudspeaker was reduced to 
negligible proportions by means of a massive double-walled enclosure with sand in the 
cavity; acoustic resonances between this and the spaeker were damped by using acoustic 
absorbent. This arrangement proved to be quite satisfactory. The anechoic termination in 
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the square duct was also effective; Figure 5 shows some typical axial sound pressure patterns 
measured inside the duct. Even at 124 Hz, the standing-tive ratio is only 7 dB (representing 
an energy reflection coefficient of approximately O-15), and this falls to 1 dB or less at higher 
frequencies. As far as the effectiveness of the anechoic termination in terms of structural 
waves is concerned, the situation appears complicated. Axial, structural, “standing-wave” 
patterns were detected, but interpretation proved difficult. The separation of the displace- 
ment nodes was generally considerably smaller than that in the coupled wave system, and 

0.2 o-3 0.4 0*5 0.6 0.1 

Distance olonq duct bn) 

Figure 5. Axial sound pressure patterns in the square duct. 

was not very regular. Whether these displacement patterns can be attributed to structural 
reflection from the anechoic termination or to effects caused by reflections at the welded 
joints in the duct is a moot point, but at all events, the reflections were of small magnitude. 
At 245 Hz, for example, the standing wave ratio was about 5 dB, and the separation of 
displacement minima was of the order of 0.2 m. 

Measurements of the wall TL were made on these ducts in 3 octave frequency bands: 
wide band noise was fed to the loudspeaker, and passed from the detecting microphones 
to a 5 octave band audio-frequency spectrometer. The sound pressure level (L,,) inside 
the duct was measured with a fixed microphone; with the duct in Figure 4(b), fhis was 
placed close to the end-plate so as to measure the maximum axial sound pressure level at 
all frequencies. This would give a measurement about 3 dB higher than the L, based upon 
the sum of the incident and reflected mean square acoustic pressures (this quantity was 
taken to be the appropriate L, to be used in TL calculations, since it is related to the sum 
of the absolute values of incident and reflected sound power), and accordingly 3 dB was 
subtracted from the internal L, in this case. The internal sound power was determined by 
adding 10 log(abcJcJ to the internal L, (calculated values of cX were used). The radiated 
sound power level was measured by the source substitution method, with a standard source 
of known sound power output, and by utilizing the laboratory as a “reverwt room”. 

Acoustic phase velocity (equal to radian frequency divided by phase change per unit 
distance) and axial sound pressure level distribution measurements were made in the square 
duct with the probe microphone. Wall vibration amplitude measurements, which yielded 
transverse displacement patterns. were ma& on both the square and rectangular ducts, by 
using an extremely small Endevw accelerometer (model no. 22) in conjunction with an 
Endevco charge amplifier (type 2730), whose output was fed to the audio-frequency spectro- 
meter. The accelerometer was so light that it did not cause significant “mass-loading” 
of the vibrating duct wall. 

The results of the various measurements are described in the next section. 
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5. COMPARISON BETWEEN EXPERIMENT AND THEORY 

It is convenient to subdivide this discussion into two parts, the first appertaining to the 
square duct and the second to the rectangular duct. 

5.1. SQUARE DUCT 

The square duct was constructed of mild steel with h = 1.219 mm, E = 2,119 x IO’ ’ Pa, 
m = 9.63 kg/m’. CI = 0.291, a = 0.203 m and b = 0.203 m, and had an effective radiating 
length of 2.1 m. 

Figure 6 shows typical calculated and measured displacement profiles on one of the walls, 

Figure 6. Displacement profile on a wall of the square duct. 0, Measurements; -. theory; f = 277.3 Hz. 

at 277.3 Hz; only relative, not absolute values were compared. The general shapes of the 
curves are similar, although the peak in the measured values is displaced from the centre, 
presumably because of slight (inevitable) asymmetry in the duct’s construction. The cal- 
culated curve shows zero slope at the duct’s corners. This is because the duct’s walls are 
all of equal width, vibrate similarly, and thus the boundary conditions at the edges of each 
wall are effectively ‘built-in”, since the corners are assumed to remain right-angled; this 
argument obviously applies only to square section ducts. 

The calculated and measured axial phase speed, cX, of the wave is shown as a function of 
frequency in Figure 7 (the calculated values were obtained by using equation (19). One sees 
that the phase speed is subsonic below about 170 Hz and supersonic between that fre- 
quency and 850 Hz (the upper limit of the calculated curve); at frequencies near to, but less 
than 170 Hz, cX drops sharply as the frequency rises, while just above 170 Hz, cX rises rapidly 
as the frequency falls. This behaviour indicates that a wall resonance is occurring at around 
170 Hz. At frequencies above about 300 Hz, cX approaches c, (= ci, since the duct con- 
tained air). There is good agreement between predictions and measurements of cX, even 
close to the resonance, where the theory might have been expected to give poor results 
because of neglect of the external radiation load on the duct walls. 

The calculated average wall admittance, 8, is shown in Figure 8. A loss factor of 04IO2 
was taken for the duct wall material, resulting in a (small) real, as well as an imaginary, 
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part to the admittance. (In reality though, radiation losses would probably swamp the 
conductance caused by internal damping, but these losses, of course, were not taken into 
account.) One sees evidence again, of a resonance at around 170 Hz. 

It is also of interest to note how the radiation efllciency, C,, varies with frequency. Figure 
9 shows theoretical results based on the calculated phase speed and Brown and Rennison’s 
line source model. One sees that in regions where c, x c,, the radiation efficiency is, as 
expected, 3 dB less than that for an infinite line source with supersonic phase speed, but that 
for large values of cX (at frequencies just above resonance), this difference tends to zero. 
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Figure 7. Axial phase speed in the square duct. 0, Measurements; -, theory. 
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Figure 8. Calculated average wall admittance in the square duct. 
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On the other hand, for small values of cX, the radiation efficiency can fall significantly, and 
this occurs at frequencies just below resonance. 

The most important comparison between prediction and measurement is, of course, in 
the transmission loss. and Figure 10 shows the third-octave measurements of TL, compared 
to a theoretical curve from equation (18). The “cut-on” frequency for the (0, 1) and (1,0) 
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Figure 9. Radiation efficiency of the square duct 

acoustic modes in the equivalent rigid-walled duct is also indicated. Agreement between the 
measurements and theory is very good up to a frequency of about two-thirds the cut-on 
frequency for the lowest order cross-modes. The most obvious feature of the TL curve is 
that it falls to a sharp minimum at about 170-180 Hz. This corresponds to the duct wall 
resonance mentioned previously. Because of the fact that, in the special case of a square duct, 
the corners are effectively built-in, a comparison may be made with the equivalent “trans- 
verse beam” duct wall resonances. That is, one may imagine a transverse strip of the duct 
wall acting as a beam with built-in ends, and consider its natural frequencies of vibration. 
The fundamental frequency of such a beam is shown in Figure 10, and this was calculated by 
using results of Warburton [S]. The frequency is quite close to the measured and predicted 
duct wall resonant frequency, and this seems to show that the resonance is essentially of a 
transverse type. That the axial wavenumber is non-zero does, of course, make this view 
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Figure 10. Wall transmission loss of the square duct. 0, Measurements; -, theory 
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simplistic to an extent, although only inasmuch as the “twisting” motion imposed upon the 
(imaginary) beam by the longitudinal wave motion in the duct is neglected. 

The deterioration in agreement between theory and measurements at higher frequencies 
is almost certainly caused by two factors: first, the increasing non-uniformity (with rising 
frequency) of transverse acoustic pressure in the duct, and secondly the breakdown of the 
simple line source model when a transverse duct dimension approaches an acoustic wave- 
length. On the basis of these ideas, one may state, tentatively, that the present model would 
normally be satisfactory up to about two-thirds of the cut-on frequency of the lowest higher- 
order mode in the equivalent rigid-walled duct; the upper frequency limit for validity of the 
theory should therefore “scale” with the duct cross-section. It is clear too, though, that the 
effects of non-uniformities in transverse pressure distribution caused by wall resonances, 
if superimposed upon impending higher-order mode transmission phenomena, could cause 
a lowering of this upper frequency limit. 

5.2. RECTANGULAR DUCT 

The rectangular duct was constructed of “18 gauge”galvanized steel, typical of that used 
in air conditioning ductwork. Its transverse dimensions were a = 0,206 m and b = 0,258 m. 
Because of the zinc coating on either side of the inner mild steel sheet, an effective value of 
E had to be calculated as E,, = [E,h: + 6E,(h, + h,)%,]/(h, + 2hJ3, where h, is the 
thickness of the steel sheet (l-219 mm), h, is the thickness of galvanizing on either side 
(O-076 mm), E, is the Young’s modulus of mild steel (2.119 x 10” Pa) and E, is the Young’s 
modulus of zinc (l-084 x 10” Pa). The value of E, in this case was l-816 x 10” Pa. 
The mass per unit area was calculated by adding the mass per unit area of the steel sheet 
to those of the zinc coatings and was equal to 1072 kg/m2. 

Figure 11 shows calculated and measured displacement amplitude patterns, and also the 
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Figure 11. Wall displaamcn t and phase profiles on the rectangular duct R Measurements of displacement; 
0, measurements of phase; -, theoretical displacement profile;! = 246 Hz. 

measured phase, on two of the duct’s walls at 246 Hz Again, no attempt is made to predict 
absolute values of displacement, although in both the measurements and the theoretical 
curve the correct relative displacement amplitude is maintained between the two duct walls. 
One sees that the agreement between experiment and theory is fair, especially in view of the 
non-ideality of the duct engendered by the seam along one of its walls. The small regions 
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(appearing in the theoretical curve) along the edges ofthe .X-I wails, with opposite phase to the 
X-J> wall vibrations, are not evident in the amplitude measurements, although the measured 
phase does show a tendency to change near to the corners. An additional reason for dis- 
crepancies between prediction and measurement may be that the ducts on which the experi- 
ments were carried out did not, by virtue of their means of construction. have sharply 
right-angled corners, but had slightly rounded ones. whereas it was assumed in the theory 
that the corners were sharp. 

To illustrate more clearly the effects of rotation of the corners on the displacement pattern 
of the duct walls, a theoretical curve is included here for a frequency where the rotation is 
quite pronounced, and this is shown in Figure 12; the frequency is 560 Hz. The corners may 

Figure 12. Calculated wall displacement profile on the rectangular duct. f = 560 Hz 

be seen to remain right-angled and the displacement pattern is symmetrical, as stated in 
section 2.5. Although some volume velocity “cancellation” on each wall occurs, this is 
only partial, and the net volume velocity is actually in the same direction (that is, inward or 
outward) on all walls. 

As with the square duct, the feature of most interest with the rectangular configuration 
is the transmission loss, and Figure 13 compares theoretical and measured values. Once 
again, these agree quite well up to about 3 of the cut-on frequency for the (0, 1) mode, 
although at the lowest frequency of measurement---l25 Hz-some discrepancy is evident. 
It seems likely that here, where the wavelength of the structural/acoustic wave is somewhat 
greater than the length of the duct, “end effects” at the (reflecting) duct termination would 
prevent the predicted wall resonances, characteristic of an infinite duct, from realising their 
full effect in lowering the wall TL. 

This good agreement between prediction and measurement is rather surprising in view of 
the wide discrepancies between theoretical assumptions and experimental conditions, but 
it is consistent with the findings of Brown and Rennison for circular ducts, in that a theory 
which accounts for only a sing/e travelling wave also gives good predictions for a system 
where strong reflected waves are present. A thorough explanation of this could, one supposes, 
onlv be made on the basis of a more complete theory than that given here, but it may be 
speculated that the radiated sound power may be computed as the sum of the powers from 
incident and reflected waves, as is the case with an infinite duct along which waves travel 
faster than the external adiabatic speed of sound. 

Although the theoretical curve in Figure 13 shows evidence of wall resonances, it would 
be meaningless, in general, to try to explain these in terms of “classical” transverse beam 
resonances, since the boundary conditions are not built-in, simply supported, or free: 
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accordingly, no such attempt will be made, and it is sufficient to say that these resonances are, 
again, presumably transverse in nature, although less easily explicable than those in the 
square duct. 
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Figure 13. Wall transmission loss of the rectangular duct. 0, Measurements; -, theory. 

6. DISCUSSION AND CONCLUSIONS 

One of the problems associated with noise radiation from rectangular ducts-parti- 
cularly those in air-moving systems-has been isolated, namely that of low frequency 
acoustic “breakout”. A simple theory for predicting the sound transmission loss of duct 
walls at low frequencies has been described add shown to give good agreement with 
measurements on two different duct systems, one of which was deliberately designed as an 
extreme test of the theory. 

It seems reasonable to conclude, in view of the preceding arguments, that the theory 
described here should generally give reliable predictions of duct wall transmission loss up 
to about $ of the cut-on frequency for the lowest cross-mode in the equivalent rigid-walled 
duct. 

At present, there would seem to be some difficulty associated with producing design 
charts for duct wall sound transmission loss. The vibrational interaction between a duct’s 
walls governs the shape of the transmission loss curve and cannot be predicted, it appears, 
by any procedure easier than that of actually solving the equations of motion for the walls; 
it also depends upon the aspect ratio of the duct’s cross-section, and would vary in what is 
probably not a very simple manner between individual cases. Additionally; the transmission 
loss has what are apparently rather complicated “scaling laws” between its various con- 
trolling factors such as duct wall thickness and dimensions. So it does not look as if one 
would easily be able to produce the equivalent of the existing charts, for calculating the 
TL of a flat single panel, which are based upon infinite panel theory. It may well be, however, 
that this problem would merit further pursuit, although it is not the purpose of the present 
investigation to do this. 

Further work would also be useful on means of improving wall transmission loss, such as 
wall stiffening, the addition of damping material, and the application of external lagging. 
The present results should assist in creating a basis for such investigations, and it is intended 
that these will be carried out. Additionally, a knowledge of the effects of bends on duct wall 
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transmission loss, and also of the relative importance of turbulent, as opposed to acoustic 
excitation mechanisms, would be enlightening, although the associated theoretical anlyses 
and indeed, experimental measurement procedures. would probably be considerably more 
complicated than those described in this article. 
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APPENDIX: LIST OF SYMBOLS 

A, to A,, 
B, to B, 

a, b 

cr 

D 
E 

BIT E, 

E eff 

e 

f (4 
h 

coefficients in expressions for duct 
wall displacement 
transverse dimensions of duct wall 
in y and z directions respectively 
radiation efficiency of a line source 
or duct 
adiabatic speed of sound 
displacement amplitude 
Young’s modulus 
Young’s moduli of central and 
outer layers (respectively) of a gal- 
vanized metal sheet 
effective Young’s modulus of a 
galvanized metal sheet 
base of the natural logarithm 
frequency 
denotes a function of a single 
variable w 
thickness of duct wall 

hl, h2 

K 

L 

thicknesses of central and outer 
layers (respectively) of a galvanized 
metal sheet 
,‘--r 
a constant, dependent upon the 
duct wall material 
a wavenumber 
perimeter of duct cross-section 
radiating length of duct 
sound pressure level 
mass per unit area of duct wall 
acoustic pressure amplitude 
acoustic pressure 
a pressure amplitude 
a pressure 
cross-sectional area of duct 
circumferential co-ordinate on duct 
wall 
time 
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u acoustic particle velocity 
u;., sound power transmitted inside 

duct 
w,X, radiated sound power per unit 

length of duct 
x axial spatial co-ordinate in duct 
y transverse spatial co-ordinate in 

duct 
Y(y) y-dependent factor in an expression 

for duct wall displacement 
z transverse spatial co-ordinate in 

duct 
Z(z) z-dependent factor in an expression 

for duct wall displacement 

ar, a2 structural wavenumbers 
/I duct wall admittance 

p, p,, 9; duct wall admittance averaged over 
the whole duct perimeter, in the y 
direction, in the z direction, res- 
pectively 

y a quantity with the dimensions of, 
and resembling, a wavenumber 

Ax axial thickness of a fluid element in 
a duct 

rf internal damping factor, or “loss 
factor” of wall material 

1 propagation coefficient 
c transverse displacement of duct 

Wd 

p time-averaged density of a fluid, or 
else acoustic density fluctuation 

u Poisson’s ratio 
o radian frequency 

V* two-dimensional Laplacian opera- 
tor, either alfax + a*/&? or a*/&2 
+ a*faz* 

V4 operator, =(V*)* 
[WI denotes the modulus of a complex 

quantity w 

Subscripts 
e denotes a quantity outside the duct 
i denotes a quantity inside-.the duct 

0 denotes the amplitude of a time- 
varying quantity 

x denotes the component of a vector 
in the x direction 

Superscripts 
denotes differentiation of a function 
with respect to its argument 


