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Huygens' principle in the transmission line matrix method
(TLM). Global theory
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SUMMARY

Huygens' principle (HP) is understood as a universal principle governing not only the propagation of light,
but also of acoustic waves, heat and matter di!usion, SchroK dinger's matter waves, random walks, and many
more. According to Hadamard's rigorous de"nition, HP comprehends the principle of action-by-proximity
(cf. Faraday's "eld theory, etc.) and the superposition of secondary wavelets (Huygens' construction). This
de"nition is reformulated for discrete spaces. The global aspect concerns the propagation of "elds (e.g.
wavefronts). Within TLM, the appropriate "eld propagator (Green's function) is the Johns matrix. The
compatibility with HP explains the success of TLM in computing propagation, transport, and other
evolution processes from a di!erent point of view. A possible practical application of these results for
computing eigenmodes is mentioned. Copyright � 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Huygens' ideas on how light propagates [1, 2] have become basic ingredients of our physical
picture of the world, and their mathematical formulation is related to fundamental methodologi-
cal problems of the physics of propagation. The notion &Huygens' principle' (HP), however, is not
uniquely used, cf. Reference [3], and there is some confusion in the literature, in particular, on the
role of sharp wave fronts and the range of applicability. We have shown earlier [4, 5], how these
di$culties can be resolved. Here, we will concentrate on discrete spaces and reformulate
Hadamard's de"nition of HP for them.

The relationship of TLM to HP has been addressed as early as 1974 [6]. Hoefer [7] examined
the scattering process in more detail, but a satisfying solution has been found for two-dimensional
(2D) TLM networks only (see also References [8, 9]). Recently, it has been demonstrated, how HP
is actually realized in the scattering process of isotropic TLM networks [10], i.e. its validity has
been shown independent of spatial dimension and coordination number, respectively. Here, we
wish to complement this local picture of HP by the global picture provided by "eld propagators



(Green's functions) and the Chapman}Kolmogorov equation [4], where the results of this paper
and of Reference [10] are independent of each other.

Thus, this paper is intended to provide the basics for further explorations of the role of HP in
TLM, where we are guided by the modelling philosophy of TLM itself [11]. Section 2 starts with
the reformulation of Hadamard's rigorous de"nition of HP for discrete spaces. In Section 3, the
superposition of secondary waves will be represented and illustrated by means of general "eld
propagators in the discrete space-time domain. Section 4 shows, how this role is ful"lled by the
Johns matrix. Section 5, "nally, concludes this paper.

2. HADAMARD'S SYLLOGISTIC DEFINITION OF HUYGENS' PRINCIPLE

A syllogism is a form of logical conclusion, which originally developed by Aristoteles. The
conclusion is derived from two premises, a major and a minor one. For discrete spaces,
Hadamard's beautiful formulation of HP [3, Section 33] reads:

(A) Major premise: The action of phenomena produced at time step k
�

on the state of matter at
the time k

�
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�
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�
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�
!1.

(B) Minor premise: &The propagation of light pulses proceeds without deformation (spreading,
tail building) of the pulse'.

(C) Conclusion: In order to calculate at time step k"k
�

the e!ect of an initial luminous
phenomenon produced at node �

�
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�
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�
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Proposition (A) is the principle of action-by-proximity known, e.g. from cellular automata and
random walks: each cell acts within one time step only on its neighbouring cells. Proposition (B)
postulates the propagation of sharp wave fronts (there is no back-re#ection of the incident
wavefront). Proposition (C) is essentially Huygens1 construction.

However, in conclusion (C), isotropy of re-irradiation along the lattice axes can be generalized
to re-irradiation according to the actual local propagation conditions. This means, that the
secondary sources will represent the propagation properties of the material under consideration
(or that of free space). For instance, in anisotropic media, the reaction of the secondary sources is
anisotropic, while in non-linear media, their excitation and re-irradiation is not proportional to
the amplitude of the exciting "eld.

Proposition (B) is rather special. It is necessary (and useful) for geometrically constructing
the wavefront, but not for, (i), the most fundamental principle of action-by-proximity and, (ii), the
cycle of excitation and re-irradiation of secondary wavelets. Although having important practical
implications (quality of speech over long transmission lines, e.g.), it is of only minor importance
for the general theory of HP which concerns the points (i) and (ii) just mentioned. Moreover,
on discrete lattices, Hadamard's conjecture is violated, that there are sharp wavefronts in
homogeneous isotropic spaces of odd dimension greater than one. This means, that an initial
Kronecker excitation, �

�� ��
, should lead after k time steps a pattern, where only cells at a distance

of k mesh sizes exhibit "nite "eld values. For instance, on a 3D Cartesian lattice (coordinates
i
�
,2, i

�
), the initial Kronecker excitation �

����
�
����
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should lead after k times steps to a "eld
distribution proportional to ��

�����
�
�����

�
�����
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�
�"k�. However, on a 3D lossless
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scalar TLM lattice, there is a "nite back-re#ection at each node, and the solution to the TLM
di!erence equations is not of this &sharp' form. For this, we will relax Premise B (cf. also
References [6, 12]). Note, however, that Johns' [13] symmetric condensed node for solving
Maxwell's equations in free 3D space seems to obey Premise B [14], since there is no back-
scattering.

Thus, we will call Huygens's principle (HP) the combination of action-by-proximity (&elastic
waves in ether' in Huygens' pictural imagination) and superposition of secondary wavelets (i.e. in
case of sharp wavefronts, Huygens' construction). The shape of the wave front may vary from case
to case, without in#uence on these basic ingredients of propagation, while the essentials of
Huygens' (and Faraday's) imagination of propagation are conserved. The advantage of this
notion of HP consists in that its applicability becomes rather universal; in fact, in this form, HP
quali"es to be a clue for unifying the physical and mathematical description of many di!erent
transport and propagation processes.

3. DISCRETE PROPAGATORS FOR REPRESENTING HUYGENS' PRINCIPLE

Feynman [15] emphasized, that HP applies to SchroK dinger wave mechanics, since the quantum
mechanical transition probability amplitudes from state a to state c, P

��
, obey the

Chapman}Kolmogorov equation in state space,

P
��

"�
�
P
��
P
��

(1)

where the sum runs over all possible intermediate states b. Obviously, this equation provides
a rather general mathematical formulation of HP. The set of intermediate states b represents the
intermediate wavefront and the amplitudes P

��
the secondary wavelets. Since the states a, b and

c may be adjacent to each other, action-by-proximity is also included.
Now the Chapman}Kolmogorov equation is the equation of motion of Markov processes, and

each TLM algorithm realizes a discrete Markov process [16]. Thus, the question arises, what is
the TLM analogue to P

��
.

For simplicity, consider "rst a link-line TLM chain with R"Z. The node voltage, �, obeys the
equation of motion of a simple random walk.

�
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), k"0, 1, 2,2, !R(i(#R (2)

This is the well-known Euler forward scheme for the di!usion equation �¹/�t"��¹/�x�. For the
Kronecker initial distribution �

�� �
"�

���
, the node voltage distribution after k steps is equal to

the &fundamental' solution to Equation (2),
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n� , n,
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2
being integer

0 n,
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2
being half-integer � (3)

where (�
�
),k !/n!(k!n)! and � i � being the modulus of i. This &discrete Gaussian' is the analogue of

the fundamental solution of the di!usion equation. The corresponding Green's function (GF;
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called &Green probability' in Reference [17]),

G
����; �� ��

"��
����� ����

(4)

possesses the so-called &Markov property, (1):

G
����; �� ��

"�
���

G
�����; �� ���

G
������; ���� ��

for any k�U[k, k	] (5)

The term discrete Huygens propagator has been proposed for such GF [4]. In one time step,
they connect no states, except next-neighbouring ones, and possess the Markov property (5).
Eventually, there are appropriate boundary conditions to be ful"lled, as in the continuum
case.

Another example is Pascal's triangle being a simple, but instructive example of Markovean
&number di!usion' obeying Huygens' recipe of construction [18].

4. THE JOHNS MATRIX AS A HUYGENS' PROPAGATOR

For ,rst-order processes, such as simple random walk, the Huygens propagator proves to be
identical with the GF of the di!erence equation. This perfectly parallels the continuum case,
where the Chapman}Kolmogorov equation is ful"lled by GF of equations of ,rst order in the
time variable. In contrast, the GF of a multi-step equation of motion for the node voltage as
obtained in the case ROZ [cf. Equation (6) below] is, in general, not a (discrete) Huygens
propagator. To get such, one has &to return' to a system of one-step equations of motion for the
travelling (incident or re#ected) voltage (or current) pulses (the far-reaching consequences of this
observation have been treated in Reference [4]).

As an example, consider a 1D lossy TLM chain with ROZ as presented by Johns [19]. The
node voltage obeys the second-order equation
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The corresponding GF [16] is not a Huygens propagator, since Equation (5) is not ful"lled.
However, the incident voltage pulses obey a system of two coupled partial di!erence equations of
,rst order,

�
���
<	

�
"� ) �

�
< 


���
#
 ) �

�
< 	

���

�
���
<


�
"� ) �

�
< 	

���
#
 ) �

�
< 


���
(7)

In matrix form, Equations (7) read
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It is an easy excercise to prove, that G
�� �;��� ��

"(D���� )
�� ��

is the corresponding Huygens propaga-
tor.

It is interesting to note, that, by virtue of the Caley}Hamilton theorem, the eigenvalue equation
of the transition matrix D reads

D�"
 (�
�

#�
�

)D#(��!
�)1 (9)
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Equation (9) diagonalizes systems (7) and (8), respectively, into the form of Equation (6) for both
�
�
<	
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and �
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, and, consequently, for �
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�
. The corresponding Huygens propagator,

G
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, may be called proper or irreducible, since its elements obey the two-step
equation of motion (9), too. This is an quite important property, because in this case, the
eigenvalue equation of the transition matrix diagonalizes the "rst-order equations of motion to
a physically relevant equation. A counter-example is given by the di!erence equations relating
(�

���
, �

�
) to (�

���
, �

���
).

Hoefer [20] has proposed to call the GF of TLM di!erence equations the Johns matrix. Thus,
the Johns matrix is the proper Huygens propagator within TLM. Its properties realize HP in the
sense of action-by-proximity and re-irradiation of secondary wavelets on TLM meshes.

Going over to the Fourier space, (t, r)P(�, q), Equation (9) suggests the following hypothesis.

¹he eigenspectrum of the Johns matrix approximates the eigenspectrum of the object under
investigation.

This would be another example for the observation, that the discrete formulation of HP yields
construction principles for numerical algorithms for a wide variety of problems (cf. References
[7, 8, 21]). In particular, it would largely simplify the computation of eigenmodes by means of the
Caley}Hamilton theorem.

5. CONCLUSIONS

Huygens' principle (HP) exhibit a local and a global aspect, both being intimately related to each
other, of course. The former is the excitation of secondary sources and their irradiation of
secondary wavelets, i.e. the scattering process. Its correct description within TLM has been
presented in Reference [10]. The global aspect concerns the propagation of wavefronts and other
excitations. It is most naturally represented in terms of appropriated Green's functions, the
so-called Huygens propagators. Within TLM, the Johns matrix being a proper Huygens propa-
gator plays this role.

The mathematical representation of HP by means of propagators (Green's functions) and the
Chapman}Kolmogorov equation provides, perhaps, the most general way to connect HP with
concrete di!erential and di!erence equations. In this form, HP applies to all explicit "nite
di!erencing schemes, including TLM. At once, the di$culties discussed in References [6, 12] are
lifted.

Di!erence equations representing a discrete HP are directly suited for computing all propaga-
tion processes that can be modelled through explicit di!erential equations. This should enable the
simultaneous and self-consistent computation of interacting "elds of di!erent type, e.g. heat
di!usion and electromagnetic waves in lasers, in microwave ovens or in lenses and mirrors for
high-power beams. Within explicit schemes, self-consistency can be achieved at every (time) step,
whereby convergency is considerably accelerated.

The Johns matrix as the Green's function of the coupled one-step TLM equations for the
incident (or for the re#ected) travelling voltage pulses exhibits several computational advantages;
its application to computing eigenmodes deserves further investigations (cf. also References
[8, 21]).

In summary, the TLM description of travelling voltage pulses obeys Huygens' principle in the
same sense as many physical transport and propagation processes. This is an additional explana-
tion of its success in many areas of application and strengthens its theoretical foundations.
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