
How to Solve Systems of Conservation Laws
Numerically Using the Graphics Processor as a

High-Performance Computational Engine

Trond Runar Hagen, Martin O. Henriksen, Jon M. Hjelmervik, and
Knut–Andreas Lie

Summary. The paper has two main themes: The first theme is to give the reader
an introduction to modern methods for systems of conservation laws. To this end,
we start by introducing two classical schemes, the Lax–Friedrichs scheme and the
Lax–Wendroff scheme. Using a simple example, we show how these two schemes
fail to give accurate approximations to solutions containing discontinuities. We then
introduce a general class of semi-discrete finite-volume schemes that are designed to
produce accurate resolution of both smooth and nonsmooth parts of the solution.
Using this special class we wish to introduce the reader to the basic principles used to
design modern high-resolution schemes. As examples of systems of conservation laws,
we consider the shallow-water equations for water waves and the Euler equations
for the dynamics of an ideal gas.

The second theme in the paper is how programmable graphics processor units
(GPUs or graphics cards) can be used to efficiently compute numerical solutions
of these systems. In contrast to instruction driven micro-processors (CPUs), GPUs
subscribe to the data-stream-based computing paradigm and have been optimised
for high throughput of large data streams. Most modern numerical methods for
hyperbolic conservation laws are explicit schemes defined over a grid, in which the
unknowns at each grid point or in each grid cell can be updated independently of
the others. Therefore such methods are particularly attractive for implementation
using data-stream-based processing.

1 Introduction

Evolution of conserved quantities such as mass, momentum and energy is one
of the fundamental physical principles used to build mathematical models in
the natural sciences. The resulting models often appear as systems of quasi-
linear hyperbolic partial differential equations (PDEs) in divergence form

Qt + ∇ · F (Q) = 0, (1)

where Q ∈ IRm is the set of conserved quantities and F is a (nonlinear)
flux function. This class of equations is commonly referred to as ’hyper-



212 Hagen, Henriksen, Hjelmervik, and Lie

bolic conservation laws’ and govern a broad spectrum of physical phenom-
ena in acoustics, astrophysics, cosmology, combustion theory, elastodynamics,
geophysics, multiphase flow, and nonlinear material science, to name a few
[9, 28, 54, 8, 33, 50, 15]. The simplest example is the linear transport equa-
tion,

qt + aqx = 0,

which describes the passive advection of a conserved scalar quantity q. How-
ever, the most studied case is the nonlinear Euler equations that describe the
dynamics of a compressible and inviscid fluid, typically an ideal gas.

In scientific and industrial applications, the evolution of conserved quanti-
ties is often not the only modelling principle. Real-life models therefore tend
to be more complex than the quasilinear equation (1). Chemical reactions, vis-
cous forces, spatial inhomogeneities, phase transitions, etc, give rise to other
terms and lead to more general evolution models of the form

A(Q)t + ∇ · F (x, t,Q) = S(x, t,Q) + ∇ ·
(
D(Q, x, t)∇Q

)
.

Similarly, the evolution equation (1) is often coupled with other models and
side conditions. As an example, we refer to the discussion of reservoir simula-
tion elsewhere in this book [1, 2], where injection of water into an oil reservoir
is described by a system consisting of an elliptic equation for the fluid pres-
sure and a hyperbolic equation for the transport of fluid phases. Here we will
mainly focus on simplified models of the form (1) and discuss some of the
difficulties involved in solving such models numerically.

The solutions of nonlinear hyperbolic conservation laws exhibit very singu-
lar behaviour and admit various kinds of discontinuous and nonlinear waves,
such as shocks, rarefactions, propagating phase boundaries, fluid and material
interfaces, detonation waves, etc. Understanding these nonlinear phenomena
has been a constant challenge to mathematicians, and research on the subject
has strongly influenced developments in modern applied mathematics. In a
similar way, computing numerically the nonlinear evolution of possibly dis-
continuous waves has proved to be notoriously difficult. Two seminal papers
are the papers by Lax [29] from 1954, Godunov [16] from 1959, and by Lax and
Wendroff [30] from 1960. Classical high-order discretisation schemes tend to
generate unphysical oscillations that corrupt the solution in the vicinity of dis-
continuities, while low-order schemes introduce excessive numerical diffusion.
To overcome these problems, Harten [19] introduced so-called high-resolution
methods in 1983. These methods are typically based upon a finite-volume for-
mation and have been developed and applied successfully in many disciplines
[33, 50, 15]. High-resolution methods are designed to capture discontinuous
waves accurately, while retaining high-order accuracy on smooth parts of the
solution. In this paper we present a particular class of high-resolution meth-
ods and thereby try to give the reader some insight into a fascinating research
field.

High-resolution methods can also be applied to more complex flows than
those described by (1), in which case they need to be combined with additional



Solving Systems of Conservation Laws on GPUs 213

numerical techniques. We will not go into this topic here, but rather refer the
interested reader to e.g., the proceedings from the conference series “Finite
Volumes for Complex Applications” [6, 53, 21].

High-resolution methods are generally computationally expensive; they
are often based on explicit temporal discretisation, and severe restrictions
on the time-steps are necessary to guarantee stability. On the other hand, the
methods have a natural parallelism since each cell in the grid can be processed
independently of its neighbours, due to the explicit time discretisation. High-
resolution methods are therefore ideal candidates for distributed and parallel
computing. The computational domain can be split into overlapping sub-
domains of even size. The overlaps produce the boundary-values needed by the
spatial discretisation stencils. Each processor can now update its sub-domain
independently; the only need for communication is at the end of the time-step,
where updated values must be transmitted to the neighbouring sub-domains.
To achieve optimal load-balancing (and linear speedup), special care must be
taken when splitting into sub-domains to reduce communication costs.

In this paper we will take a different and somewhat unorthodox approach
to parallel computing; we will move the computation from the CPU and ex-
ploit the computer’s graphics processor unit (GPU)—commonly referred to
as the ‘graphics card’ in everyday language—as a parallel computing device.
This can give us a speedup of more than one order of magnitude. Our mo-
tivation is that modern graphics cards have an unrivalled ability to process
floating-point data. Most of the transistors in CPUs are consumed by the
L2 cache, which is the fast computer memory residing between the CPU and
the main memory, aimed at providing faster CPU access to instructions and
data in memory. The majority of transistors in a GPU, on the other hand, is
devoted to processing floating points to render (or rasterize) graphical primi-
tives (points, lines, triangles, and quads) into frame buffers. The commodity
GPUs we will use in this study (NVIDIA GeForce 6800 and 7800) have 16
or 24 parallel pipelines for processing fragments of graphical primitives, and
each pipeline executes operations on vectors of length four with a clock fre-
quency up to 500MHz. This gives an observed peak performance of 54 and
165Gflops, respectively, on synthetic tests, which is one order of magnitude
larger than the theoretical 15Gflops performance of an Intel Pentium 4 CPU.
How we actually exploit this amazing processing capability for the numeri-
cal solution of partial differential equations is the second topic of the paper.
A more thorough introduction to using graphics cards for general purpose
computing is given elsewhere in this book [10] or in a paper by Rumpf and
Strzodka [46]. Currently, the best source for information about this thriving
field is the state-of-the-art survey paper by Owens et al. [42] and the GPGPU
website http://www.gpgpu.org/.

The aim of the paper is two-fold: we wish to give the reader a taste of
modern methods for hyperbolic conservation laws and an introduction to the
use of graphics cards as a high-performance computational engine for partial
differential equations. The paper is therefore organised as follows: Section 2



214 Hagen, Henriksen, Hjelmervik, and Lie

gives an introduction to hyperbolic conservation laws. In Section 3 we intro-
duce two classical schemes and discuss how to implement them on the GPU.
Then in Section 4 we introduce a class of high-resolution schemes based upon
a semi-discretisation of the conservation law (1), and show some examples of
implementations on GPUs. In Sections 3.5 and 5 we give numerical examples
and discuss the speedup observed when moving computations from the CPU
to the GPU. Finally, Section 6 contains a discussion of the applicability of
GPU-based computing for more challenging problems.

2 Hyperbolic Conservation Laws

Systems of hyperbolic conservation laws arise in many physical models describ-
ing the evolution of a set of conserved quantities Q ∈ IRm. A conservation law
states that the rate of change of a quantity within a given domainΩ equals the
flux over the boundaries ∂Ω. When advective transport or wave motion are
the most important phenomena, and dissipative, second-order effects can be
neglected, the fluxes only depend on time, space and the conserved quantities.
In the following we assume that Ω ∈ IR2 with outer normal n = (nx, ny) and
that the flux has two components (F,G), where each component is a function
of Q, x, y, and t. Thus, the conservation law in integral form reads

d

dt

∫∫
Ω

Qdxdy +
∫

∂Ω

(F,G) · (nx, ny) ds = 0. (2)

Using the divergence theorem and requiring the integrand to be identically
zero, the system of conservation laws can be written in differential form as

∂tQ + ∂xF (Q, x, y, t) + ∂yG(Q, x, y, t) = 0. (3)

In the following, we will for simplicity restrict our attention to cases where
the flux function only depends on the conserved quantity Q. When the Ja-
cobi matrix ∂Q(F,G) · n has only real eigenvalues and a complete set of real
eigenvectors for all unit vectors n, the system is said to be hyperbolic, and
thus belongs to the class of ‘hyperbolic conservation laws’. These equations
have several features that in general make them hard to analyse and solve nu-
merically. For instance, a hyperbolic system may form discontinuous solutions
even from smooth initial data and one therefore considers weak solutions of
(3) that satisfy the equation in the sense of distributions; that is, Q(x, y, t) is
a weak solution of (3) if∫∫∫

IR2×IR+

(
Q∂tφ+ F (Q)∂xφ+G(Q)∂yφ

)
dxdydt = 0. (4)

for any smooth test function φ(x, y, t) ∈ IRm with compact support on
IR2 × IR+. Weak solutions are not necessarily unique, which means that the



Solving Systems of Conservation Laws on GPUs 215

conservation law in general must be equipped with certain side-conditions to
pick the physically correct solution. These conditions may come in the form
of entropy inequalities, here in weak integral form∫∫∫

IR2×IR+

(
η(Q)φt + ψ(Q)φx + ϕ(Q)φy

)
dxdydt

+
∫∫
IR2

φ(x, y, 0)η(Q(x, y, 0)) dxdy ≥ 0,

where η(Q) denotes the entropy, (ψ, ϕ) the associated pair of entropy fluxes,
and φ is a positive test function. The concept of entropy inequalities comes
from the second law of thermodynamics, which requires that the entropy is
nondecreasing. Generally, entropy is conserved when the function Q is smooth
and increases over discontinuities. For scalar equations it is common to use a
special family of entropy functions and fluxes due to Kružkov [24],

ηk(q) = |q − k|,
{
ψk(q) = sign(q − k)[F (q) − F (k)],
ϕk(q) = sign(q − k)[G(q) −G(k)],

where k is any real number.
A particular feature of hyperbolic systems is that all disturbances have a

finite speed of propagation. For simplicity, let us consider a linear system in
one-dimension,

Ut +AUx = 0

with initial data U(x, 0) = U0(x). Hyperbolicity means that the constant
coefficient matrix A is diagonalisable with real eigenvalues λi, i.e., we can
write A as RΛR−1, where Λ = diag(λ1, . . . , λm), and each column ri of R
is a right eigenvector of A. Premultiplying the conservation law by R−1 and
defining V = R−1U , we end up with m independent scalar equations

∂tV + Λ∂xV = 0.

Here V is called the vector of characteristic variables, and the decomposition
RΛR−1 is called a characteristic decomposition.

Each component vi of V satisfies a linear transport equation (vi)t +
λi(vi)x = 0, with initial data v0

i (x) given from V 0 = R−1U0. Each linear
transport equation is solved by vi(x, t) = v0

i (x−λit), and hence we have that

U(x, t) =
m∑

i=0

v0
i (x− λit)ri.

This equation states that the solution consists of a superposition of m simple
waves that are advected independently of each other along so-called charac-
teristics. The propagation speed of each simple wave is given by the corre-
sponding eigenvalue. In the nonlinear case, we can write Qt + A(Q)Qx = 0,



216 Hagen, Henriksen, Hjelmervik, and Lie

where A(Q) denotes the Jacobi matrix dF/dQ. However, since the eigenvalues
and eigenvectors of A(Q) now will depend on the unknown vector Q, we can-
not repeat the analysis from the linear case and write the solution in a simple
closed form. Still, the eigenvalues (and eigenvectors) give valuable information
of the local behaviour of the solution, and we will return to them later.

Before we introduce numerical methods for conservation laws, we will
introduce two canonical models. The interested reader can find a lot more
background material in classical books like [9, 28, 54, 8] or in one of the re-
cent textbooks numerical methods for conservation laws[15, 22, 33, 50] that
introduce both theory and modern numerical methods. A large number of
recent papers on mathematical analysis and numerical methods for hyper-
bolic conservation laws can be found on the Conservation Laws Preprint
Server in Trondheim, http://www.math.ntnu.no/conservation/. Excellent
images of a large number of flow phenomena can be found in Van Dyke’s Al-
bum of Fluid Motion [11] or by visiting e.g., the Gallery of Fluid Mechanics,
http://www.galleryoffluidmechanics.com/.

2.1 The Shallow-Water Equations

In its simplest form, the shallow-water equations read

Qt + F (Q)x =
[
h
hu

]
t

+
[

hu
hu2 + 1

2gh
2

]
x

=
[

0
0

]
. (5)

The two equations describe conservation of mass and momentum. This system
of equations has applications to a wide range of phenomena, including water
waves in shallow waters, (granular) avalanches, dense gases, mixtures of mate-
rials, and atmospheric flow. If the application is water waves, h denotes water
depth, u the depth-averaged velocity, and g is the acceleration of gravity.

The shallow-water equations have the following eigenvalues

λ(Q) = u±
√
gh. (6)

and possess only nonlinear waves in two families corresponding to the slow
and the fast eigenvalue. These nonlinear waves may be continuous transitions
called rarefactions or propagating discontinuities called shocks. A rarefaction
wave satisfies a differential equation on the form

dF (Q)
dQ

Q′(ξ) = λ(Q)Q′(ξ), ξ = ξ(x, t) = (x− x0)/(t− t0),

whereas a shock between right and left values QL and QR satisfies an algebraic
equation of the form

(QL −QR)s = F (QL) − F (QR),

where s is the shock speed. (This algebraic equation is called the Rankine–
Hugoniot condition, see [31].)



Solving Systems of Conservation Laws on GPUs 217

h B

w

Fig. 1. The quantities involved in the shallow-water equations.

The shallow-water equations form a depth-integrated model for free sur-
face flow of a fluid under the influence of gravity, see Figure 1. In the model, it
is assumed that the height of the top surface above the bottom is sufficiently
small compared with some characteristic length of motion. Moreover, vertical
motion within the fluid is ignored, and we have hydrostatic balance in the
vertical direction. For water waves over a bottom topography (bathymetry)
B(x, y) in two spatial dimensions, this gives rise to the following inhomoge-
neous system⎡⎣ h

hu
hv

⎤⎦
t

+

⎡⎣ hu
hu2 + 1

2gh
2

huv

⎤⎦
x

+

⎡⎣ hv
huv

hv2 + 1
2gh

2

⎤⎦
y

=

⎡⎣ 0
−ghBx

−ghBy

⎤⎦ . (7)

The right-hand side of (7) models the influence of a variable bathymetry.
Figure 1 illustrates the situation and the quantities involved. The function
B = B(x, y) describes the bathymetry, while w = B(x, y, t) models the water
surface elevation, and we have that h = w − B. For brevity, we will refer to
this system as

Qt + F (Q)x +G(Q)y = H(Q,Z).

The system has the following eigenvalues,

λ(Q,n) = (u, v) · n±
√
gh, (u, v) · n

where a linear shear wave with characteristic wave-speed v has been intro-
duced in addition to the two nonlinear waves described above. For simplicity,
we will henceforth assume a flat bathymetry, for which H(Q,Z) ≡ 0. Exam-
ple 6 contains a short discussion of variable bathymetry.

2.2 The Euler Equations

Our second example of a hyperbolic system is given by the Euler equations
for an ideal, polytropic gas. This system is probably the canonical example of



218 Hagen, Henriksen, Hjelmervik, and Lie

a hyperbolic system of conservation laws that describes conservation of mass,
momentum (in each spatial direction) and energy. In one spatial dimension
the equations read

Qt + F (Q)x =

⎡⎣ ρ
ρu
E

⎤⎦
t

+

⎡⎣ ρu
ρu2 + p
u(E + p)

⎤⎦
x

= 0. (8)

and similarly in two dimensions⎡⎢⎢⎣
ρ
ρu
ρv
E

⎤⎥⎥⎦
t

+

⎡⎢⎢⎣
ρu

ρu2 + p
ρuv

u(E + p)

⎤⎥⎥⎦
x

+

⎡⎢⎢⎣
ρv
ρuv

ρv2 + p
v(E + p)

⎤⎥⎥⎦
y

= 0. (9)

Here ρ denotes density, u and v velocity in x- and y- directions, p pressure,
and E is the total energy (kinetic plus internal energy) given by

E = 1
2ρu

2 + p/(γ − 1), or E = 1
2ρ(u

2 + v2) + p/(γ − 1).

The gas constant γ depends on the species of the gas, and is, for instance,
equal to 1.4 for air. The eigenvalues of (8) are

λ(Q,n) = (u, v) · n±
√
γp/ρ, (u, v) · n,

giving three waves: a slow nonlinear wave, a linear contact wave, and a fast
nonlinear wave. In two space dimensions λ(Q,n) = (u, v) ·n is a double eigen-
value corresponding both to a contact wave and a shear wave. A contact wave
is characterised by a jump in density together with no change in pressure and
velocity, i.e., ρ is discontinuous and p and (u, v) · n are constant, whereas a
shear wave means a discontinuity in the tangential velocity (u, v) · n⊥.

3 Two Classical Finite Volume Schemes

A standard approach to numerical schemes for PDEs is to look for a point-
wise approximation and replace temporal and spatial derivatives by finite
differences. Alternatively, we can divide the domain Ω into a set of finite
sub-domains Ωi and then use the integral form of the equation to compute
approximations to the cell average of Q over each grid cell Ωi. In one spatial
dimension, the cell-average is given by

Qi(t) =
1

∆xi

∫ xi+1/2

xi−1/2

Q(x, t) dx, (10)

and similarly in two dimensions



Solving Systems of Conservation Laws on GPUs 219

Qi(t) =
1

|Ωi|

∫∫
Ωi

Q(x, y, t) dxdy. (11)

The corresponding schemes are called finite-volume schemes.
To derive equations for the evolution of cell averages Qi(t) in one spatial

dimension, we impose the conservation law on integral form (2) on the grid
cell Ωi = [xi−1/2, xi+1/2], which then reads

d

dt

∫ xi+1/2

xi−1/2

Q(x, t) dx = F
(
Q(xi−1/2, t)

)
− F

(
Q(xi+1/2, t)

)
(12)

Using the integral form of the equation rather than the differential form is
quite natural, as it ensures that also the discrete approximations satisfy a
conservation property.

From (12) we readily obtain a set of ordinary differential equations for the
cell averages Qi(t),

d

dt
Qi(t) = − 1

∆xi

[
Fi+1/2(t) − Fi−1/2(t)

]
, (13)

where the fluxes across the cell-boundaries are given by

Fi±1/2(t) = F
(
Q(xi±1/2, t)

)
. (14)

To derive schemes for the two-dimensional shallow-water and Euler equa-
tions we will follow a similar approach. We will assume for simplicity that the
finite volumes are given by the grid cells in a uniform Cartesian grid, such
that

Ωij =
{

(x, y) ∈
[
(i− 1/2)∆x, (i+ 1/2)∆x

]
×
[
(j − 1/2)∆y, (j + 1/2)∆y

] }
.

To simplify the presentation, we henceforth assume that ∆x = ∆y. Then the
semi-discrete approximation to (2) reads

d

dt
Qij(t) = Lij(Q(t)) = − 1

∆x

[
Fi+1/2,j(t) − Fi−1/2,j(t)

]
− 1
∆y

[
Gi,j+1/2(t) −Gi,j−1/2(t)

]
,

(15)

where Fi±1/2,j and Gi,j±1/2 are numerical approximations to the fluxes over
the cell edges

Fi±1/2,j(t) ≈
1
∆y

∫ yj+1/2

yj−1/2

F
(
Q(xi±1/2, y, t)

)
dy,

Gi,j±1/2(t) ≈
1
∆x

∫ xi+1/2

xi−1/2

G
(
Q(x, yj±1/2, t)

)
dx.

(16)

Equation (15) is a set of ordinary differential equations (ODEs) for the time-
evolution of the cell-average values Qij .



220 Hagen, Henriksen, Hjelmervik, and Lie

Modern high-resolution schemes are often derived using a finite-volume
framework, as we will see in Section 4. To give the reader a gentle introduc-
tion to the concepts behind high-resolution schemes we start by deriving two
classical schemes, the Lax–Friedrichs [29] and the Lax–Wendroff schemes [30],
using the semi-discrete finite-volume framework. The exact same schemes can
be derived using a finite-difference framework, but then the interpretation of
the unknown discrete quantities would be different. The distinction between
finite-difference and finite-volume schemes is not always clear in the literature,
and many authors tend to use the term ‘finite-volume scheme’ to denote con-
servative schemes derived using finite differences. By conservative we mean a
scheme that can be written on conservative form (in one spatial dimension):

Qn+1
i = Qn

i − r(Fi+1/2 − Fi−1/2), (17)

where Qn
i = Qi(n∆t) and r = ∆t/∆x. The importance of the conservative

form was established through the famous Lax–Wendroff theorem [30], which
states that if a sequence of approximations computed by a consistent and
conservative numerical method converges to some limit, then this limit is a
weak solution of the conservation law.

To further motivate this form, we can integrate (12) from t to t+∆t giving

Qi(t +∆t) = Qi(t)

− 1
∆xi

[∫ t+1∆t

t

F (Q(xi+1/2, t)) dt−
∫ t+1∆t

t

F (Q(xi−1/2, t)) dt
]
.

By summing (17) over all cells (for i = −M : N) we find that the cell averages
satisfy a discrete conservation principle

N∑
i=−M

Qn+1
i ∆x =

N∑
i=−M

Qn
i ∆x−∆t(FN+1/2 − F−M−1/2)

In other words, our discrete approximations mimic the conservation principle
of the unknown function Q since the sum

∑
i Qi∆x approximates the integral

of Q.

3.1 The Lax–Friedrichs Scheme

We will now derive our first numerical scheme. For simplicity, let us first con-
sider one spatial dimension only. We start by introducing a time-step ∆t and
discretise the ODE (13) by the forward Euler method. Next, we must evaluate
the flux-integrals (14) along the cell edges. We now make the assumption that
Q(x, n∆t) is piecewise constant and equals the cell average Qn

i = Qi(n∆t) in-
side each grid cell. Then, since all perturbations in a hyperbolic system travel
with a finite wave-speed, the problem of estimating the solution at the cell



Solving Systems of Conservation Laws on GPUs 221

interfaces can be recast as a set of locally defined initial-value problems on
the form

Qt + F (Q)x = 0, Q(x, 0) =

{
QL, x < 0,
QR, x > 0.

(18)

This is called a Riemann problem and is a fundamental building block in
many high-resolution schemes. We will come back to the Riemann problem
in Section 4.1. For now, we take a more simple approach to avoid solving
the Riemann problem. For the Lax–Friedrichs scheme we approximate the
flux function at each cell-boundary by the average of the fluxes evaluated
immediately to the left and right of the boundary. Since we have assumed the
function to be piecewise constant, this means that we will evaluate the flux
using the cell averages in the adjacent cells,

F (Q(xi+1/2, n∆t)) =
1
2

(
F (Qn

i ) + F (Qn
i+1)

)
, etc.

This approximation is commonly referred to as a centred approximation.
Summing up, our first scheme reads

Qn+1
i = Qn

i − 1
2
r
[
F
(
Qn

i+1

)
− F

(
Qn

i−1

)]
.

Unfortunately, this scheme is notoriously unstable. To obtain a stable scheme,
we can add the artificial diffusion term (∆x2/∆t)∂2

xQ. Notice, however, that
by doing this, it is no longer possible to go back to the semi-discrete form,
since the artificial diffusion terms blow up in the limit ∆t → 0. If we discretise
the artificial diffusion term by a standard central difference, the new scheme
reads

Qn+1
i =

1
2

(
Qn

i+1 +Qn
i−1

)
− 1

2
r
[
F
(
Qn

i+1

)
− F

(
Qn

i−1

)]
. (19)

This is the classical first-order Lax–Friedrichs scheme. The scheme is stable
provided the following condition is fulfilled

rmax
i,k

|λF
k (Qi)| ≤ 1, (20)

where λF
k are the eigenvalues of the Jacobian matrix of the flux function F .

The condition is called the CFL condition and simply states that the domain
of dependence for the exact solution, which is bounded by the characteristics
of the smallest and largest eigenvalues, should be contained in the domain of
dependence for the discrete equation.

A two-dimensional scheme can be derived analogously. To approximate
the integrals in (16) one can generally use any numerical quadrature rule.
However, the midpoint rule is sufficient for the first-order Lax–Friedrichs
scheme. Thus we need to know the point values Q(xi±1/2, yj , n∆t) and
Q(xi, yj±1/2, n∆t). We assume that Q(x, y, n∆t) is piecewise constant and
equal to the cell average within each grid cell. The values of Q(x, y, n∆t) at



222 Hagen, Henriksen, Hjelmervik, and Lie

the midpoints of the edges can then be estimated by simple averaging of the
one-sided values, like in the one dimensional case. Altogether this gives the
following scheme

Qn+1
ij =

1
4

(
Qn

i+1,j +Qn
i−1,j +Qn

i,j+1 +Qn
i,j−1

)
− 1

2
r
[
F
(
Qn

i+1,j

)
− F

(
Qn

i−1,j

)]
− 1

2
r
[
G
(
Qn

i,j+1

)
−G

(
Qn

i,j−1

)]
,

(21)

which is stable under a CFL restriction of 1/2.
The Lax–Friedrichs scheme is also commonly derived using finite differ-

ences as the spatial discretisation, in which case Qn
ij denotes the point values

at (i∆x, j∆y, n∆t). The scheme is very robust. This is largely due to the
added numerical dissipation, which tends to smear out discontinuities. A for-
mal Taylor analysis of a single time step shows that the truncation error of the
scheme is of order two in the discretisation parameters. Rather than trunca-
tion errors, we are interested in the error at a fixed time (using an increasing
number of time steps), and must divide with ∆t, giving an error of order one.
For smooth solutions the error measured in, e.g., the L∞ or L1-norm therefore
decreases linearly as the discretisation parameters are refined, and hence we
call the scheme first-order.

A more fundamental derivation of the Lax–Friedrichs scheme (21) is pos-
sible if one introduces a staggered grid (see Figure 9). To this end, let Qn

i+1

be the cell average over [xi, xi+2], and Qn+1
i be the cell average over the

staggered cell [xi−1, xi+1]. Then (19) is the exact evolution of the piecewise
constant data from time tn to tn+1 followed by an averaging onto the stag-
gered grid. This averaging introduces the additional diffusion discussed above.
The two-dimensional scheme (21) can be derived analogously.

3.2 The Lax–Wendroff Scheme

To achieve formal second-order accuracy, we replace the forward Euler method
used for the integration of (13) by the midpoint method, that is,

Qn+1
i = Qn

i − r
[
F

n+1/2
i+1/2 − F

n+1/2
i−1/2

]
. (22)

To complete the scheme, we must specify the fluxes F
n+1/2
i±1/2 , which again

depend on the values at the midpoints at time tn+1/2 = (n + 1
2 )∆t. One can

show that these values can be predicted with acceptable accuracy using the
Lax–Friedrichs scheme on a grid with grid-spacing 1

2∆x,

Q
n+1/2
i+1/2 =

1
2

(
Qn

i+1 +Qn
i

)
− 1

2
r
[
Fn

i+1 − Fn
i

]
. (23)

Altogether this gives a second-order, predictor-corrector scheme called the
Lax–Wendroff scheme [30]. Like the Lax–Friedrichs scheme, the scheme in



Solving Systems of Conservation Laws on GPUs 223

(22)–(23) can be interpreted both as a finite difference and as a finite volume
scheme, and the scheme is stable under a CFL condition of 1. For exten-
sions of the Lax–Wendroff method to two spatial dimensions, see [44, 15, 33].
To get second-order accuracy, one must include cross-terms, meaning that
the scheme uses nine points. A recent version of the two-dimensional Lax–
Wendroff scheme is presented in [37].

We have now introduced two classical schemes, a first-order and a second-
order scheme. Before we describe how to implement these schemes on the
GPU, we will illustrate their approximation qualities.

Example 1. Consider a linear advection equation on the unit interval with
periodic boundary data

ut + ux = 0, u(x, 0) = u0(x), u(0, t) = u(1, t).

As initial data u0(x) we choose a combination of a smooth squared sine wave
and a double step function,

u(x, 0) = sin2
(x− 0.1

0.3
π
)
χ[0.1,0.4](x) + χ[0.6,0.9](x).

Figure 2 shows approximate solutions after ten periods (t = 10) computed by
Lax–Friedrichs and Lax–Wendroff on a grid with 100 cells for ∆t = 0.95∆x.
Both schemes clearly give unacceptable resolution of the solution profile. The
first-order Lax–Friedrichs scheme smears both the smooth and the discon-
tinuous part of the advected profile. The second-order Lax–Wendroff scheme
preserves the smooth profile quite accurately, but introduces spurious oscilla-
tions at the two discontinuities.

Consider next the nonlinear Burgers’ equation,

ut +
(

1
2u

2
)

x
= 0, u(x, 0) = u0(x), u(0, t) = u(1.5, t),

with the same initial data as above. Burgers’ equation can serve as a sim-
ple model for the nonlinear momentum equation in the shallow-water and
the Euler equations. Figure 3 shows approximate solutions at time t = 1.0
computed by Lax–Friedrichs and Lax–Wendroff on a grid with 150 cells for
∆t = 0.95∆x. As in Figure 2, Lax–Friedrichs smooths the nonsmooth parts of
the solution (the two shocks and the kink at x = 0.1), whereas Lax–Wendroff
creates spurious oscillations at the two shocks. On the other hand, the overall
approximation qualities of the schemes are now better due to self-sharpening
mechanisms inherent in the nonlinear equation.

To improve the resolution one can use a so-called composite scheme, as
introduced by Liska and Wendroff [37]. This scheme is probably the sim-
plest possible high-resolution scheme and consists of e.g., three steps of Lax–
Wendroff followed by a smoothing Lax–Friedrichs step. The idea behind this
scheme is that the numerical dissipation in the first-order Lax–Friedrichs
scheme should dampen the spurious oscillations created by the second-order
Lax–Wendroff scheme. In Figure 4 we have recomputed the results from Fig-
ures 2 and 3 using the composite scheme.



224 Hagen, Henriksen, Hjelmervik, and Lie

Lax–Friedrichs’ method Lax–Wendroff’s method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Approximate solutions at time t = 10.0 for the linear advection equation
computed by the Lax–Friedrichs and the Lax–Wendroff schemes.

Lax–Friedrichs’ method Lax–Wendroff’s method

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Approximate solutions at time t = 1.0 for Burgers’ equation computed by
the Lax–Friedrichs and the Lax–Wendroff schemes.

composite method composite method

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 4. Approximate solution at time t = 10.0 for the linear advection equation
(left) and at time t = 1.0 for Burgers’ equation (right) computed by a composite
scheme.



Solving Systems of Conservation Laws on GPUs 225

The previous example demonstrated the potential shortcomings of classical
schemes, and such schemes are seldom used in practice. On the other hand,
they have a fairly simple structure and are therefore ideal starting points
for discussing how to implement numerical methods on the GPU. In the next
subsection, we therefore describe how to implement the Lax–Friedrichs scheme
on the GPU.

3.3 Implementation on the GPU

Before we start discussing the actual implementation the Lax–Friedrichs
scheme, let us look briefly into the design of a graphics card and its asso-
ciated programming model.

GPUs operate in a way that is similar to a shared-memory parallel com-
puter of the single-instruction-multiple-data (SIMD) type. In a SIMD com-
puter, a single control unit dispatches instructions to a large number of pro-
cessing nodes, and each node executes the same instruction on its own local
data. SIMD computers are obviously particularly efficient when the same set
of operations can be applied to all data items. If the execution involves con-
ditional branches, there may be a performance loss since processing nodes
in the worst case (depending on the underlying hardware) must execute both
branches and thereafter pick the correct result. In a certain sense, explicit high-
resolution schemes are good candidates for a SIMD implementation, since the
update of each grid-cell involves a fixed set of given arithmetic operations and
seldom introduces conditional branches in the instruction stream.

Let us now look at how computations are dispatched in a GPU. The main
objective of the GPU is to render geometrical primitives (points, lines, trian-
gles, quads), possibly combined with one or more textures (image data), as
discrete pixels in a frame buffer (screen or off-screen buffer). When a primitive
is rendered, the rasterizer samples the primitive at points corresponding to
the pixels in the frame buffer. Per vertex attributes such as texture coordi-
nates are set by the application for each vertex and the rasterizer calculates
an interpolated value of these attributes for each point. These bundles of val-
ues then contain all the information necessary for calculating the colour of
each point, and are called fragments. The processing pipeline is illustrated in
Figure 5. We see that whereas a CPU is instruction-driven, the programming
model of a GPU is data-driven. This means that individual data elements of
the data-stream can be pre-fetched from memory before they are processed,
thus avoiding the memory latency that tends to hamper CPUs.

Graphics pipelines contain two programmable parts, the vertex processor
and the fragment processor. The vertex processor operates on each vertex
without knowledge of surrounding vertices or the primitive to which it be-
longs. The fragment processor works in the same manner, it operates on each
fragment in isolation. Both processors use several parallel pipelines, and thus
work on several vertices/fragments simultaneously. To implement our numer-
ical schemes (or a graphical algorithm) we must specify the operations in the



226 Hagen, Henriksen, Hjelmervik, and Lie

geometric
primitives
(lines,triangles,..)

Vertex processor
(programmable) Rasterizer

Texture (rgba image)

Fragment processor
(programmable)

Frame buffer
(2D set of pixels)

Texture (rgba image)

rgba values

vertex
 data
(xyzw)

fragments

fragments

Fig. 5. A schematic of the graphics pipeline.

vertex and fragment processors. To this end, we make one or more shaders;
these are codes written in a high-level, often C-like, language like Cg or Open
GL Shading Language (GLSL), and are read and compiled by our graphical
application into programs that are run by the vertex and fragment processors.
Consult the references [14] and [45] for descriptions of these languages. The
compiled shaders are executed for each vertex/fragment in parallel.

Our data model will be as follows: The computational domain is repre-
sented as an off-screen buffer. A geometric primitive is rendered such that a
set of Nx ×Ny fragments is generated which covers the entire domain. In this
model, we never explicitly loop over all cells in the grid. Instead, processing of
each single grid-cell is invoked implicitly by the rasterizer, which interpolates
between the vertices and generates individual data for each fragment. Input
field-values are realised in terms of 2D textures of size Nx ×Ny. Between iter-
ations, the off-screen buffer is converted into a texture, and another off-screen
buffer is used as computational domain. To solve the conservation law (3), the
fragment processor loads the necessary data and performs the update of cell
averages, according to (21) for the Lax–Friedrichs scheme. In this setting, the
vertex processor is only used to set texture coordinates that are subsequently
passed to the fragment processor. The fragment processor is then able to load
the data associated with the current cell and its neighbours from the texture
memory.

In the following subsection we will discuss the implementation of fragment
shaders in detail for the Lax–Friedrichs scheme. However, to start the com-
putations, it is necessary to set up the data stream to be processed and to
configure the graphics pipeline. This is done in a program running on the
CPU. Writing such a program requires a certain familiarity with the graphics
processing jargon, and we do not go into this issue—the interested reader is
referred to [46, 13, 43].

Shaders for Lax–Friedrichs

Listing 1 shows the vertex and fragment shader needed to run the Lax–
Friedrichs scheme (21) for the two-dimensional shallow-water equations (7)
with constant bottom topography B ≡ 0. In the listing, all entities given in
boldface are keywords and all entities starting with gl_ are built-in variables,
constants, or attributes.



Solving Systems of Conservation Laws on GPUs 227

Listing 1. Fragment and vertex shader for the Lax–Friedrichs scheme written in
GLSL.

[Vertex shader]

varying vec4 texXcoord;
varying vec4 texYcoord;
uniform vec2 dXY;

void main(void)
{

texXcoord=gl MultiTexCoord0.yxxx+vec4(0.0,0.0,−1.0,1.0)∗dXY.x; // j, i, i−1, j+1
texYcoord=gl MultiTexCoord0.xyyy+vec4(0.0,0.0,−1.0,1.0)∗dXY.y; // i, j, j−1, j+1

gl Position = gl ModelViewProjectionMatrix ∗ gl Vertex;
}

[Fragment shader]

varying vec4 texXcoord;
varying vec4 texYcoord;

uniform sampler2D QTex;

uniform float r;
uniform float halfG;

vec4 fflux(in vec4 Q)
{

float u=Q.y/Q.x;
return vec4( Q.y, (Q.y∗u + halfG∗Q.x∗Q.x), Q.z∗u, 0.0 );

}

vec4 gflux(in vec4 Q)
{

float v=Q.z/Q.x;
return vec4( Q.z, Q.y∗v, (Q.z∗v + halfG∗Q.x∗Q.x), 0.0 );

}

void main(void)
{

vec4 QE = texture2D(QTex, texXcoord.wx);
vec4 QW = texture2D(QTex, texXcoord.zx);
vec4 QN = texture2D(QTex, texYcoord.xw);
vec4 QS = texture2D(QTex, texYcoord.xz);

gl FragColor = 0.25∗(QE + QW + QN + QS)
− 0.5∗r∗(fflux(QE) − fflux(QW))
− 0.5∗r∗(gflux(QN) − gflux(QS));

}

The vertex shader is executed once for all vertices in the geometry. Origi-
nally, the geometry is defined in a local coordinate system called object-space
or model coordinates. The last line of the vertex shader transforms the vertices
from object-space to the coordinate system of the camera (view coordinates,
or eye-space). The two coordinate systems will generally be different. Dur-
ing the rendering phase only points inside the camera view (i.e., inside our
computational domain) are rendered. In the shader, the model coordinates



228 Hagen, Henriksen, Hjelmervik, and Lie

are given by gl_Vertex and the projected view coordinates are returned by
gl_Position. The coordinate transformation is an affine transformation given
by a global matrix called gl_ModelViewProjectionMatrix. (Since the cam-
era does not move, this transformation is strictly speaking not necessary to
perform for every time step and could have been done once and for all on the
CPU).

The first two lines of the vertex shader compute the texture coordinates.
These coordinates will be used by the fragment shader to fetch values in the
current cell and its four nearest neighbours from one or more texture. The
keywords vec2 and vec4 declare vector variables with 2 or 4 elements re-
spectively. The construction varying vec4 texXcoord means that the four-
component vector texXcoord will be passed from the vertex shader to the
fragment shader. This happens as follows: The vertex shader defines one
vector-value V at each vertex (the four corners of our computational rect-
angle), and the rasterizer then interpolates bilinearly between these values
to define corresponding values for all fragments within the camera view. In
contrast, uniform vec2 dXY means that dXY is constant for each primitive;
its value must be set by the application program running on the CPU. No-
tice how we can access individual members of a vector as V.x, V.y, V.z and
V.w, or several elements e.g., V.xy or V.wzyx. The last example demonstrates
‘swizzling’; permuting the components of the vector.

We now move on to the fragment shader. Here we see the definitions of the
texture coordinates texXcoord and texYcoord, used to pass coordinates from
the vertex processor. QTex is a texture handle; think of it as a pointer to an
array. The constants r and halfG represent r = ∆t/∆x and 1

2g, respectively.
To fetch the cell-averages from positions in the texture corresponding to the
neighbouring cells, we use the function texture2D. The new cell-average is
returned as the final fragment colour by writing to the variable gl_FragColor.

To ensure a stable scheme, we must ensure that the time step satisfies a
CFL condition of the form (20). This means that we have to gather the eigen-
values from all points in the grid to determine the maximum absolute value.
In parallel computing, such a gather operation is usually quite expensive and
represents a bottleneck in the processing. By rethinking the gather problem
as a graphics problem, we can actually use hardware supported operations
on the GPU to determine the maximal characteristic speed. Recall that the
characteristic speed of each wave is given by the corresponding eigenvalue. To
this end we pick a suitably sized array, say 16×16, and decompose the compu-
tational domain Nx ×Ny into rectangular sub-domains (quads) so that each
sub-domain is associated with a 16 × 16 patch of the texture containing the
Q-values. All quads are moved so that they coincide in world-coordinates, and
hence we get NxNy/162 overlapping quads. By running the fragment shader
in Listing 2 they are rendered to the depth buffer. The purpose of the depth
buffer is to determine whether a pixel is behind or in front of another. When a
fragment is rendered to the depth buffer, its depth value is therefore compared
with the depth value that has already been stored for the current position,



Solving Systems of Conservation Laws on GPUs 229

Listing 2. Fragment shader written in GLSL for determining the maximum char-
acteristic speed using the depth buffer.

uniform sampler2D QnTex;
uniform float scale;
uniform float G;

void main(void)
{

vec4 Q = texture2D(QnTex, gl TexCoord[0].xy);
Q.yz /= Q.x;
float c = sqrt( G∗Q.x );
float r = max(abs(Q.y) + c, abs(texQ.z) + c);
r ∗= scale;

gl FragDepth = r;
}

and the maximum value is stored. This process is called depth test. In our
setting this means that when all quads have been rendered, we have a 16×16
depth buffer, where each value represents the maximum over NxNy/162 val-
ues. The content of the 16×16 depth buffer is read back to the CPU, and the
global maximum is determined. Since the depth test only accepts values in
the interval [0, 1], we include an appropriate scaling parameter scale passed
in from the CPU.

3.4 Boundary Conditions

In our discussions above we have tacitly assumed that every grid cell is sur-
rounded by neighbouring cells. In practice, however, all computations are per-
formed on some bounded domain and one therefore needs to specify boundary
conditions. On a CPU, an easy way to impose boundary conditions is to use
ghost cells ; that is, to extend the domain by extra grid cells along the bound-
aries, whose values are set at the beginning of each time step (in the ODE
solver). See [33] for a thorough discussion of different boundary conditions
and their implementation in terms of ghost cells.

There are many types of boundary conditions:

Outflow (or absorbing) boundary conditions simply let waves pass out of the
domain without creating any reflections. The simplest approach is to ex-
trapolate grid values from inside the domain in each spatial direction.

Reflective boundary conditions are used to model walls or to reduce compu-
tational domains by symmetry. They are realised by extrapolating grid
values from inside the domain in each spatial direction and reversing the
sign of the velocity component normal to the boundary.

Periodic boundary conditions are realised by copying values from grid cells
inside the domain at the opposite boundary.



230 Hagen, Henriksen, Hjelmervik, and Lie

Inflow boundary conditions are used to model a given flow into the domain
through certain parts of the boundary. These conditions are generally more
difficult to implement. However, there are many cases for which inflow can
be modelled by assigning fixed values to the ghost cells.

In this paper we will only work with outflow boundary conditions on rect-
angular domains. The simplest approach is to use a zeroth order extrapolation,
which means that all ghost cells are assigned the value of the closest point
inside the domain. Then outflow boundaries can be realised on the GPU sim-
ply by specifying that our textures are clamped, which means that whenever
we try to access a value outside the domain, a value from the boundary is
used. For higher-order extrapolation, we generally need to introduce an extra
rendering pass using special shaders that render the correct ghost-cell values
to extended textures.

3.5 Comparison of GPU versus CPU

We will now present a few numerical examples that compare the efficiency of
our GPU implementation with a straightforward single-threaded CPU imple-
mentation of the Lax–Friedrichs scheme. The CPU simulations were run on
a Dell Precision 670 which is a EM64T architecture with a dual Intel Xeon
2.8GHz processor with 2.0GB memory running Linux (Fedora Core 2). The
programs were written in C and compiled using icc -O3 -ipo -xP (version
8.1). The GPU simulations were performed on two graphics cards from con-
secutive generations of the NVIDIA GeForce series: (i) the GeForce 6800 Ultra
card released in April 2004 with the NVIDIA Forceware version 71.80 beta
drivers, and (ii) the GeForce 7800 GTX card released in June 2005 with the
NVIDIA Forceware version 77.72 drivers. The GeForce 6800 Ultra has 16 par-
allel pipelines, each capable of processing vectors of length 4 simultaneously.
On the GeForce 7800 GTX, the number of pipelines is increased to 24.

In the following we will for simplicity make comparisons on N ×N grids,
but this is no prerequisite for the GPU implementation. Rectangular N ×M
grids work equally well. Although the current capabilities of our GPUs allow
for problems with sizes up to 4096 × 4096, we have limited the size of our
problems to 1024 × 1024 (due to high computational times on the CPU).

Example 2 (Circular dambreak). Let us first consider a simple dambreak prob-
lem with rotational symmetry for the shallow-water equations; that is, we
consider two constant states separated by a circle

h(x, y, 0) =

{
1.0,

√
x2 + y2 ≤ 0.3,

0.1, otherwise,

u(x, y, 0) = v(x, y, 0) = 0.

We assume absorbing boundary conditions. The solution consists of an ex-
panding circular shock wave. Within the shock there is a rarefaction wave



Solving Systems of Conservation Laws on GPUs 231

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Fig. 6. Scatter plot of the circular dambreak problem at t = 0.5 computed by
Lax–Friedrichs scheme on a 128 × 128 grid. The dashed line is a fine-grid reference
solution.

transporting water from the original deep region out to the shock. In the
numerical computations the domain is [−1.0, 1.0] × [−1.0, 1.0] with absorb-
ing boundary conditions. A reference solution can be obtained by solving the
reduced inhomogeneous system[

h
hur

]
t

+
[

hu
hu2

r + 1
2gh

2

]
r

= −1
r

[
hur

hu2
r

]
,

in which ur =
√
u2 + v2 denotes the radial velocity. This system is nothing

but the one-dimensional shallow-water equations (5) with a geometric source
term.

Figure 6 shows a scatter plot of the water height at time t = 0.5 computed
by the Lax–Friedrichs. In the scatter plot, the cell averages of a given quantity
in all cells are plotted against the radial distance from the origin to the cell
centre. Scatter plots are especially suited for illustrating grid-orientation ef-
fects for radially symmetric problems. If the approximate solution has perfect
symmetry, the scatter plot will appear as a single line, whereas any symme-
try deviations will show up as point clouds. The first-order Lax–Friedrichs
scheme clearly smears both the leading shock and the tail of the imploding
rarefaction wave. This behaviour is similar to what we observed previously
in Figures 2 and 3 in Example 1 for the linear advection equation and the
nonlinear Burgers’ equation.

Table 1 reports a comparison of average runtime per time step for GPU
versus CPU implementations of the Lax–Friedrichs scheme. Here, however, we
see a that the 7800 GTX card with 24 pipelines is about two to three times
faster than the 6800 Ultra card with 16 pipelines. The reason is as follows:
For the simple Lax–Friedrichs scheme, the number of (arithmetic) operations



232 Hagen, Henriksen, Hjelmervik, and Lie

Table 1. Runtime per time step in seconds and speedup factor for the CPU versus
the GPU implementation of Lax–Friedrichs scheme for the circular dambreak prob-
lem run on a grid with N × N grid cells, for the NVIDIA GeForce 6800 Ultra and
GeForce 7800 GTX graphics cards.

N CPU 6800 speedup 7800 speedup

128 2.22e-3 7.68e-4 2.9 2.33e-4 9.5
256 9.09e-3 1.24e-3 7.3 4.59e-4 19.8
512 3.71e-2 3.82e-3 9.7 1.47e-3 25.2

1024 1.48e-1 1.55e-2 9.5 5.54e-3 26.7

performed per fragment in each rendering pass (i.e., the number of operations
per grid point) is quite low compared with the number of texture fetches.
We therefore cannot expect to fully utilise the computational potential of the
GPU. In particular for the 128 × 128 grid, the total number of fragments
processed per rendering pass on the GPU is low compared with the costs of
switching between different rendering buffers and establishing each pipeline.
The cost of these context switches will therefore dominate the runtime on the
6800 Ultra card, resulting in a very modest speedup of about 3–4. For the 7800
GTX, the cost of context switches is greatly reduced due to improvements in
hardware and/or drivers, thereby giving a much higher speedup factor.

Example 3 (Shock-bubble interaction). In this example we consider the inter-
action of a planar shock in air with a circular region of low density.

The setup is as follows (see Figure 7): A circle with radius 0.2 is centred
at (0.4, 0.5). The gas is initially at rest and has unit density and pressure.
Inside the circle the density is 0.1. The incoming shock wave starts at x = 0
and propagates in the positive x-direction. The pressure behind the shock is
10, giving a 2.95 Mach shock. The domain is [0, 1.6] × [0, 1] with symmetry
about the x axis. Figure 7 shows the development of the shock-bubble inter-
action in terms of (emulated) Schlieren images. Schlieren imaging is a photo-
optical technique for studying the distribution of density gradients within
a transparent medium. Here we have imitated this technique by depicting
(1 − |∇ρ|/max |∇ρ|)p for p = 15 as a greymap.

Figure 8 shows the result of a grid refinement study for Lax–Friedrichs.
Whereas the scheme captures the leading shock on all grids, the weaker waves
in the deformed bubble are only resolved satisfactorily on the two finest grids.

To study the efficiency of a GPU implementation versus a CPU implemen-
tation of the Lax–Friedrichs scheme, we reduced the computational domain
to [0, 1] × [0, 1] and the final simulation time to t = 0.2. Runtime per time
step and speedup factors are reported in Table 2. Comparing with the circular
dambreak case in Table 1, we now observe that whereas the runtime per time
step on the CPU increases by a factor between 1.3–1.4, the runtime on the
GPU increases at most by a factor 1.1. The resulting increase in speedup fac-
tor is thus slightly less than 4/3. This can be explained as follows: Since the



Solving Systems of Conservation Laws on GPUs 233

t=0.0 t=0.1

t=0.2 t=0.3

Fig. 7. Emulated Schlieren images of a shock-bubble interaction. The approximate
solution is computed by the composite scheme [37] on a 1280 × 800 grid.

Fig. 8. Grid refinement study of the shock-bubble case at time t = 0.3 computed
with the Lax–Friedrichs scheme for ∆x = ∆y = 1/100, 1/200, 1/400, and 1/800.



234 Hagen, Henriksen, Hjelmervik, and Lie

Table 2. Runtime per time step in seconds and speedup factor for the CPU versus
the GPU implementation of Lax–Friedrichs for the shock-bubble problem run on a
grid with N × N grid cells, for the NVIDIA GeForce 6800 Ultra and GeForce 7800
GTX graphics cards.

N CPU 6800 speedup 7800 speedup

128 3.11e-3 7.46e-4 4.2 2.50e-4 12.4
256 1.23e-2 1.33e-3 9.3 5.56e-4 22.1
512 4.93e-2 4.19e-3 11.8 1.81e-3 27.2

1024 2.02e-1 1.69e-2 12.0 6.77e-3 29.8

shallow-water equations have only three components, the GPU only exploits
3/4 of its processing capabilities in each vector operation, whereas the Eu-
ler equations have four component and can exploit the full vector processing
capability. However, since the flux evaluation for the Euler equations is a bit
more costly in terms of vector operations, and since not all operations in the
shaders are vector operations of length four, the increase in speedup factor is
expected to be slightly less than 4/3.

3.6 Floating Point Precision

When implementing PDE solvers on the CPU it is customary to use double
precision. The current generations of GPUs, however, are only able to perform
floating point operations in single precision (32 bits), but double precision
has been announced by NVIDIA to appear in late 2007. The single precision
numbers of the GPU have the format ‘s23e8’, i.e., there are 6 decimals in the
mantissa. As a result, the positive range of representable numbers is [1.175 ·
10−38, 3.403 · 1038], and the smallest number εs, such that 1 + εs − 1 > 0,
is 1.192 · 10−7. The double precision numbers of our CPU have the format
‘s52e11’, i.e., mantissa of 15 decimals, range of [2.225 · 10−308, 1.798 · 10308],
and εd = 2.220 · 10−16.

Ideally, the comparison between the CPU and the GPUs should have been
performed using the same precision. Since CPUs offer single precision, this
may seem to be an obvious choice. However, on current CPUs, double precision
is supported in hardware, whereas single precision is emulated. This means
that computations in single precision may be slower than the computations
in double precision on a CPU. We therefore decided not to use single precision
on the CPU.

The question is now if using single precision will effect the quality of the
computed result. For the cases considered herein, we have computed all results
on the CPU using both double and single precision. In all cases, the maximum
difference of any cell average is of the same order as εs. Our conclusion based on
these quantitative studies is that the GPU’s lack of double precision does not
deteriorate the computations for the examples considered in Sections 3.5 and



Solving Systems of Conservation Laws on GPUs 235

5. Please note that the methods considered in this paper are stable, meaning
they cannot break down due to rounding errors.

4 High-Resolution Schemes

Classical finite difference schemes rely on the computation of point values. In
the previous section we saw how discontinuities lead to problems like oscilla-
tions or excessive smearing for two basic schemes of this type. For pedagogi-
cal reasons we presented the derivation of the two schemes in a semi-discrete,
finite-volume setting, but this does not affect (in)abilities of the schemes in the
presence of discontinuities. Modern high-resolution schemes of the Godunov
type aim at delivering high-order resolution of all parts of the solution, and
in particular avoiding the creation of spurious oscillations at discontinuities.
There are several approaches to high-resolution schemes. Composite schemes
form one such approach, see [37]. In the next sections we will present another
approach based on geometric considerations.

4.1 The REA Algorithm

Let us now recapitulate how we constructed our approximate schemes in Sec-
tion 3. Abstracted, our approach can be seen to consist of three basic parts:

1. Starting from the known cell-averages Qn
ij in each grid cell, we reconstruct

a piecewise polynomial function Q̂(x, y, tn) defined for all (x, y). For a
first-order scheme, we let Q̂(x, y, tn) be constant over each cell, i.e.,

Q̂(x, y, tn) = Qn
ij , (x, y) ∈ [xi−1/2, xi+1/2] × [yj−1/2, yj+1/2].

In a second-order scheme we use a piecewise bilinear reconstruction, and
in a third order scheme a piecewise biquadratic reconstruction, and so on.
The purpose of this reconstruction is to go from the discrete set of cell-
averages we use to represent the unknown solution and back to a globally
defined function that is to be evolved in time. In these reconstructions
special care must be taken to avoid introducing spurious oscillations into
the approximation, as is done by classical higher-order schemes like e.g.,
Lax–Wendroff.

2. In the next step we evolve the differential equation, exactly or approxi-
mately, using the reconstructed function Q̂(x, y, tn) as initial data.

3. Finally, we average the evolved solution Q̂(x, y, tn+1) onto the grid again
to give a new representation of the solution at time tn+1 in terms of cell
averages Qn+1

ij .

This three-step algorithm is often referred to as the REA algorithm, from the
words reconstruct-evolve-average.



236 Hagen, Henriksen, Hjelmervik, and Lie

The Riemann Problem

To evolve and average the solution in Steps 2 and 3 of the REA algorithm,
we generally use a semi-discrete evolution equation like (15). We thus need
to know the fluxes out of each finite-volume cell. In Section 3.1 we saw how
the problem of evaluating the flux over the cell boundaries in one spatial
dimension could be recast to solve a set of local Riemann problems of the
form

Qt + F (Q)x = 0, Q(x, 0) =

{
QL, x < 0,
QR, x > 0.

The Riemann problem has a similarity solution of the form Q(x, t) = V (x/t).
The similarity solution consists of constant states separated by simple waves
that are either continuous (rarefactions) or discontinuous (shocks, contacts,
shear waves, etc) and is therefore often referred to as the Riemann fan. Thus,
to compute the flux over the cell edge, all we need to know is V (0). However,
obtaining either the value V (0) or a good approximation generally requires
detailed knowledge of the underlying hyperbolic system. The algorithm used
to compute V (0) is called a Riemann solver. Riemann solvers come in a lot
of flavours. Complete solvers, whether they are exact or approximate, use
detailed knowledge of the wave structure and are able to resolve all features
in the Riemann fan. Exact Riemann solvers are available for many systems,
including the Euler and the shallow-water equations, but are seldom used
in practice since they tend to be relatively complicated and expensive to
compute. Incomplete solvers, like the central-upwind or HLL solver presented
in Section 4.5, lump all intermediate waves and only resolve the leading waves
in the Riemann fan, thereby giving only a rough estimate of the centre state.
A significant amount of the research on high-resolution schemes has therefore
been devoted to developing (approximate) numerical Riemann solvers that
are fast and accurate. The Riemann problem is thoroughly discussed in the
literature, the interested reader might start with [31] and then move on to
[50, 51] for a thorough discussion of different Riemann solvers for the Euler
and the shallow-water equations.

4.2 Upwind and Centred Godunov Schemes

The REA algorithm above is a general approach for constructing the so-called
Godunov schemes that have ruled the ground in conservation laws during the
last decades.

Godunov schemes generally come in two flavors: upwind or centred schemes.
To illustrate their difference, we will make a slight detour into fully discrete
schemes. For simplicity, we consider only the one-dimensional scalar case. In-
stead of the cell average (10) we introduce a sliding average

Q̄(x, t) =
1
∆
x

∫ x+∆x/2

x−∆x/2

Q(ξ, t) dξ.



Solving Systems of Conservation Laws on GPUs 237

x
i 1/2

x
i+1/2

x
i+3/2

x
i 1/2

x
i

x
i+1/2

x
i+1

x
i+3/2

Fig. 9. Sliding average for upwind schemes (top) and centred schemes (bottom). The
dashed boxes show the integration volume in the (x, t) plane. The shaded triangles
and solid lines emanating from xi−1/2, xi+1/2 and xi+3/2 illustrate the self-similar
Riemann fans, whereas the dashed lines indicate the cell edges at time tn.

Analogously to (13), we can derive an evolution equation for the sliding aver-
age

Q̄(x, t +∆t) = Q̄(x, t)

− 1
∆
x

∫ t+∆t

t

[
F
(
Q(x+ ∆x

2 , τ)
)
− F

(
Q(x− ∆x

2 , τ)
)]
dτ. (24)

Within this setting, we obtain an upwind scheme if we choose x = xi in (24)
and a centred scheme for x = xi+1/2. Figure 9 illustrates the fundamental
difference between these two approaches. In the upwind scheme, the flux is
integrated over the points xi±1/2, where the reconstruction is generally discon-
tinuous. To integrate along the cell interface in time we will therefore generally
have to find the self-similar solution of the corresponding Riemann problem
(18) along the space-time ray (x− xi±1/2)/t = 0. To this end, one uses either
exact or approximate Riemann solvers, as discussed above.

Centred schemes, on the other hand, use a sliding average defined over a
staggered grid cell [xi, xi+1], cf. the dashed box in the lower half of Figure 9.
Thus the flux is integrated at the points xi and xi+1, where the solution
is continuous if ∆t satisfies a CFL condition of 1/2. This means that no
explicit wave propagation information for the Riemann fans is required to
integrate the flux, since in this case the Riemann fan is inside confinement
of the associated staggered cells. Since they use less information about the
specific conservation law being solved, centred schemes tend to be less accurate



238 Hagen, Henriksen, Hjelmervik, and Lie

than upwind schemes. On the other hand, they are much simpler to implement
and work pretty well as black-box solvers.

The first staggered high-resolution scheme based upon central differences
was introduced by Nessyahu and Tadmor [40], who extended the staggered
Lax–Friedrichs scheme (19) discussed in Section 3.1 to second order. Similarly,
the scheme has later been extended to higher order and higher dimensions by
e.g., Arminjon et al. [3], Russo et al. [7, 34], and Tadmor et al. [38, 23].
Joint with S. Noelle, the fourth author (Lie) has contributed to the research
on staggered schemes, see [35, 36]. A complete overview of staggered high-
resolution methods is outside the scope of the current presentation, instead
we refer the reader to Tadmor’s Central Station

http://www.cscamm.umd.edu/∼tadmor/centralstation/

which has links to virtually all papers written on high-resolution central
schemes, and in particular, on staggered schemes.

Non-staggered centred schemes can be obtained if the new solution at time
t + ∆t is first reconstructed over the staggered cell and then averaged over
the original cell to define a new cell-average at time t + ∆t. In certain cases,
semi-discrete schemes can then be obtained in the limit ∆t → 0. We do not
present derivations here; the interested reader is referred to e.g., [26, 25].

4.3 Semi-Discrete High-Resolution Schemes

Let us now return to the semi-discretised equation (15). Before we can use this
equation for computing, we must answer two questions: how do we solve the
ODEs evolving the cell-average values Qij , and how do we compute the edge
fluxes (16)? The ODEs are usually solved by an explicit predictor-corrector
scheme of Runge–Kutta type. In each stage of the Runge–Kutta method the
right-hand side of (15) is computed by evaluating the flux integrals according
to some standard quadrature rule. To apply a quadrature rule, two more points
need to be clarified: how to compute point-values of Q from the cell-averages,
and how to evaluate the integrand of the edge fluxes at the integration points.
Listing 3 shows a general algorithm based on (15).

Different schemes are distinguished by the three following points: the re-
construction used to compute point-values, the discretisation and evaluation
of flux integrals, and the ODE-solver for (15). In the following we will describe
all these parts in more detail. We start with the ODE-solver, move on to the
flux evaluation, and in the next section consider the reconstruction. We return
to the flux evaluation in Section 4.5.

Runge–Kutta ODE Solver

To retain high-order accuracy in time without creating spurious oscillations,
it is customary to use so-called TVD Runge–Kutta methods [47] as the ODE-
solver. These methods employ a convex combination of forward Euler steps



Solving Systems of Conservation Laws on GPUs 239

Listing 3. General algorithmic form of a semi-discrete, high-resolution scheme,
written in quasi-C code

Q[N RK]=make initial data();

// Main loop
for (t=0; t<T; t+=dt) {

Q[0] = Q[N RK];
dt = compute Dt from CFL(Q[0]);

// Runge−Kutta steps
for (n=1; n<=N RK; n++) {

Q[n−1] = set boundary conditions(Q[n−1]);
Qp = reconstruct point values(Q[n−1]);
[F,G] = evaluate edge fluxes(Qp);
Q[n] = compute RK step(n, dt, Q, F, G);

}
}

to advance the solution in time. They are especially designed to maintain the
TVD property (30), i.e., ensure that the solution is total variation diminishing,
see [31]. The second-order method (RK2) reads:

Q
(1)
ij = Qn

ij +∆tLij(Qn),

Qn+1
ij =

1
2
Qn

ij +
1
2
[
Q

(1)
ij +∆tLij(Q(1))

]
,

and similarly for the third-order method (RK3)

Q
(1)
ij = Qn

ij +∆tLij(Qn),

Q
(2)
ij =

3
4
Qn

ij +
1
4
[
Q

(1)
ij +∆tLij(Q(1))

]
,

Qn+1
ij =

1
3
Qn

ij +
2
3
[
Q

(2)
ij +∆tLij(Q(2))

]
.

Listing 4 shows the fragment shader implementing one step of the Runge–
Kutta solver. The different steps are realised by choosing different values for
the parameter c; c = (0, 1) for the first, and c = (1

2 ,
1
2 ) for the second step of

RK2. As in the previous shaders, we use handles of type uniform sampler2D
to sample texture data, and return the computed values in gl_FragColor.

Quadrature Rules

To evaluate the edge fluxes (16), we use a standard quadrature rule. For a
second-order scheme the midpoint rule suffices, i.e.,



240 Hagen, Henriksen, Hjelmervik, and Lie

Listing 4. Fragment shader for the Runge–Kutta solver

varying vec4 texXcoord;
varying vec4 texYcoord;

uniform sampler2D QnTex;
uniform sampler2D FnHalfTex;
uniform sampler2D GnHalfTex;

uniform vec2 c;
uniform vec2 dXYf;
uniform float dT;

void main(void)
{

vec4 FE = texture2D(FnHalfTex, texXcoord.yx); // F {i+1/2,j}
vec4 FW = texture2D(FnHalfTex, texXcoord.zx); // F {i−1/2,j}
vec4 GN = texture2D(GnHalfTex, texYcoord.xy); // G {i,j+1/2}
vec4 GS = texture2D(GnHalfTex, texYcoord.xz); // G {i,j−1/2}

vec4 Lij = −((FE−FW)/dXYf.x + (GN−GS)/dXYf.y); // Right−hand side

vec4 Q = texture2D(QnTex, texXcoord.yx); // Q {ij}ˆ{(k)}
vec4 QFirst = texture2D(QnFirstTex, texXcoord.yx); // Q {ij}ˆ{n}

gl FragColor = c.x∗QFirst + c.y∗(Q + dT∗Lij); // Q {ij}ˆ{(k+1)}
}

∫ 1/2

−1/2

f(x) dx = f(0). (25)

For a third-order scheme, we can use Simpson’s rule∫ 1/2

−1/2

f(x) dx =
1
6

[
f(− 1

2 ) + 4f(0) + f(1
2 )
]
, (26)

or, as we will do in the following, use the fourth order Gauss quadrature rule∫ 1/2

−1/2

f(x) dx =
1
2

[
f( −1

2
√

3
) + f( 1

2
√

3
)
]
. (27)

Hence, the edge fluxes (16) become

Fi±1/2,j(t) =
1
2

[
F
(
Q(xi±1/2, yj+α, t)

)
+ F

(
Q(xi±1/2, yj−α, t)

)]
,

Gi,j±1/2(t) =
1
2

[
G
(
Q(xi+α, yj±1/2, t)

)
+G

(
Q(xi−α, yj±1/2, t)

)]
,

(28)

where xi±α and yj±α denote the integration points of the Gauss quadrature
rule.

At this point it is probably clear to the reader why we need the reconstruc-
tion from Step 1 in Section 4.1. Namely, whereas our semi-discrete scheme (15)
evolves cell averages, the flux quadrature requires point values at the Gaus-
sian integration points (xi±1/2, yj±α) and (xi±α, yj±1/2) . The second step in



Solving Systems of Conservation Laws on GPUs 241

the computation of fluxes therefore amounts to obtaining these point values
through a piecewise polynomial reconstruction.

4.4 Piecewise Polynomial Reconstruction

The major challenge in developing high-order reconstructions is to cope with
nonsmooth and discontinuous data. We cannot expect to maintain high-order
accuracy at a discontinuity. Instead, the aim is to minimise the creation of
spurious oscillations. In this section we introduce a simple piecewise linear
reconstruction that prevents spurious oscillations, but retains second-order
spatial accuracy away from discontinuities. This will be achieved by intro-
ducing a so-called limiter function that compares left and right-hand slopes
and picks a nonlinear average in such a way that the total variation of the
reconstructed function is no greater than that of the underlying cell averages.

The reconstruction will be introduced for a scalar equation, and we tacitly
assume that it can be extended in a component-wise manner to nonlinear
systems of equations.

Bilinear Reconstruction

For a second-order scheme we can use a bilinear reconstruction Q̂(x, y, tn)
given by

Q̂ij(x, y, tn) = Qn
ij + sx

ij(x− xi) + sy
ij(y − yj). (29)

Here the slopes sx
ij and sy

ij can be estimated from the-cell average values of
the neighbouring cells. For simplicity, let us consider the one-dimensional case.
Here there are three obvious candidate stencils for estimating the slope:

s−i =
Qn

i −Qn
i−1

∆x
, s+i =

Qn
i+1 −Qn

i

∆x
, sc

i =
Qn

i+1 −Qn
i−1

2∆x
.

Which stencil we should choose will depend on the local behaviour of the
underlying function, or in our case, on the three cell averages. As an example,
assume that Qn

k = 1 for k ≤ i and Qn
k = 0 for k > i. In this case, s−i = 0,

s+i = −1/∆x, and sc
i = −1/2∆x. Hence, Q̂(x) will remain monotonic if we

choose sx
i = s−i , whereas a new maximum will be introduced for s+i and sc

i .
Solutions of scalar conservation laws are bounded by their initial data in the
sup-norm, preserve monotonicity and have diminishing total variation. The
last point may be expressed as

TV(Q(·, τ)) ≤ TV(Q(·, t)), for t ≤ τ, (30)

where the total variation functional is defined by

TV(v) = lim sup
h→0

1
h

∫
|v(x) − v(x − h)| dx.



242 Hagen, Henriksen, Hjelmervik, and Lie

We want our discrete solution to mimic this behaviour. Therefore we need to
put some “intelligence” into the stencil computing the linear slopes. The key
to obtaining this intelligence lies in the introduction of a nonlinear averaging
function Φ capable of choosing the slope. Given Φ, we simply let

∆xsx
ij = Φ

(
Qn

ij −Qn
i−1,j , Q

n
i+1,j −Qn

ij

)
.

This function is called a limiter, and is applied independently in each spatial
direction. By limiting the size of the slopes in the reconstruction, this func-
tion introduces a nonlinearity in the scheme that ensures that solutions are
nonoscillatory and total variation diminishing (TVD). An example of a robust
limiter is the minmod limiter

MM(a, b) = 1
2

(
sgn(a) + sgn(b)

)
min(|a|, |b|) (31)

=

⎧⎪⎨⎪⎩
0, if ab ≤ 0,
a, if |a| < |b| and ab > 0,
b, if |b| < |a| and ab > 0,

(32)

which picks the least slope and reduces to zero at extrema in the data. For
systems of conservation laws, solution are not necessarily bounded in sup-
norm or have diminishing total variation. Still, it is customary to apply the
same design principle as for scalar equations. In our experiments, we have also
used the modified minmod limiter and the superbee limiter

MMθ(a, b) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if ab ≤ 0,
θa, if (2θ − 1)ab < b2,
1
2 (a+ b), if ab < (2θ − 1)b2,
θb, otherwise,

SBθ(a, b) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if ab ≤ 0,
θa, if θab < b2,

b, if ab < b2,

a, if ab < θb2

θb, otherwise.

Away from extrema, the minmod always chooses the one-sided slope with
least magnitude, whereas the other two limiters tend to choose steeper re-
construction, thus adding less numerical viscosity into the scheme. For other
families of limiter, see e.g., [36, 50].

Listing 5 shows the fragment shader implementing the bilinear reconstruc-
tion. This shader needs to return two vectors corresponding to ∆x∂xQ and
∆y∂yQ. At the time of implementation, GLSL was not capable of simultane-
ously writing to two textures due to problems with our drivers, we therefore
chose to implemented the shader in Cg using so-called multiple render tar-
gets. In our implementation, we write to two textures using the new structure



Solving Systems of Conservation Laws on GPUs 243

Listing 5. Fragment shader in Cg for the bilinear reconstruction

float4 minmod(in float4 a, in float4 b) // minmod function
{

float4 res = min(abs(a), abs(b));
return res∗(sign(a)+sign(b))∗0.5;

}

struct f2b { // Return two fragment buffers
float4 color0 : COLOR; // d x Q
float4 color1 : COLOR1; // d y Q

};

struct v2f input { // Current stencil
float4 pos : POSITION; // Position
float4 texXcoord; // Offsets in x
float4 texYcoord; // Offsets in y

};

f2b main(v2f input IN, uniform sampler2D QnTex, uniform float2 dXYf)
{

f2b OUT;

float4 Q = tex2D(QnTex, IN.texXcoord.yx); // Q {ij}
float4 QE = tex2D(QnTex, IN.texXcoord.wx); // Q {i+1,j}
float4 QW = tex2D(QnTex, IN.texXcoord.zx); // Q {i−1,j}
OUT.color0 = minmod(Q−QW, QE−Q); // d x Q {ij}

float4 QN = tex2D(QnTex, IN.texYcoord.xw); // Q {i,j+1}
float4 QS = tex2D(QnTex, IN.texYcoord.xz); // Q {i,j−1}
OUT.color1 = minmod(Q−QS, QN−Q); // d y Q {ij}

return OUT;
}

f2b. Moreover, to avoid introducing conditional branches that can reduce the
computational efficiency, we have used the non-conditional version (31) rather
than the conditional version (32) of the minmod-limiter.

Higher-order accuracy can be obtained by choosing a higher-order recon-
struction. Two higher-order reconstructions are presented in Appendix A;
the CWENO reconstruction in Appendix A.1 is a truly multidimensional re-
construction giving third order spatial accuracy, whereas the dimension-by-
dimension WENO reconstruction in Appendix A.2 is designed to give fifth
order accuracy at Gaussian integration points.

4.5 Numerical Flux

In the previous section we presented a reconstruction approach for obtaining
one-sided point values at the integration points of the flux quadrature (28).
All that now remains to define a fully discrete scheme is to describe how to
use these point-values to evaluate the integrand itself. In the following we
will introduce a few fluxes that can be used in combination with our high-
resolution semi-discrete schemes.



244 Hagen, Henriksen, Hjelmervik, and Lie

Centred Fluxes

In Sections 3.1 and 3.2 we introduced two classical centred fluxes, the Lax–
Friedrichs flux:

FLF =
1
2
[
F
(
QL

)
+ F

(
QR

)]
− 1

2
∆

x
∆t
[
QR −QL

]
,

and the Lax–Wendroff flux

FLW = F
(
Q∗),

Q∗ =
1
2
[
QL +QR

]
− 1

2
∆

t
∆x

[
F
(
QR

)
− F

(
QL

)]
.

By taking the arithmetic average of these two fluxes, one obtains the FORCE
flux introduced by Toro [50]

FFORCE =
1
4
[
F
(
QL

)
+ 2F

(
Q∗)+ F

(
QR

)]
− 1

4
∆

x
∆t
[
QR −QL

]
, (33)

In the above formulae QL and QR denote the point values extrapolated from
left and right at the Gaussian integration points. If used directly with the cell
averaged values (and with forward Euler as time integrator), the FORCE flux
gives an oscillatory second-order method.

A Central-Upwind Flux

So far, wave propagation information has only been used to ensure stabil-
ity through a CFL condition. Let us now incorporate information about the
largest and smallest eigenvalues into the flux evaluation, while retaining the
centred approach. This will lead to so-called central-upwind fluxes, as intro-
duced by Kurganov, Noelle, and Petrova [25]. To this end, we define

a+ = max
Q∈{QL,QR}

(
λm

(
Q
)
, 0
)
,

a− = min
Q∈{QL,QR}

(
λ1

(
Q
)
, 0
)
,

where λ1 is the smallest and λm the largest eigenvalues of the Jacobian matrix
of the flux F . If the system is not genuinely nonlinear or linearly degenerate,
the minimum and maximum is taken over the curve in phase space that con-
nects QL and QR. The values (a−, a+) are estimates of how far the Riemann
fan resulting from the discontinuity (QL, QR) extends in the negative and pos-
itive direction. Using this information, the evolving solution can be divided
into two unions of local domains: one covering the local Riemann fans, where
the solution is possibly discontinuous and one covering the area in-between,
where the solution is smooth, see Figure 10. By evolving and averaging sepa-
rately in the two sets, the following flux function can be derived [25]



Solving Systems of Conservation Laws on GPUs 245

x
i 1

x
i 1/2

x
i

x
i+1/2

x
i+1

x
i+3/2

x
i+2

Fig. 10. Spatial averaging in the REA algorithm for the central-upwind scheme.

FCUW =
a+F

(
QL

)
− a−F

(
QR

)
a+ − a−

+
a+a−

a+ − a−

(
QR −QL

)
. (34)

The name “central-upwind” comes from the fact that for monotone flux func-
tions, the flux reduces to the standard upwind method. For example, for scalar
equations with F ′(Q) ≥ 0, a− is zero and FCUW = F (QL). Moreover, the
first-order version of the scheme (i.e., for which QL = Qi and QR = Qi+1)
is the semi-discrete version of the famous HLL upwind flux [20]. Finally, if
a+ = −a− = ∆x/∆t, then FCUW reduces to the Lax–Friedrichs flux FLF .

Listing 6 shows the fragment shader implementing the computation of the
edge-flux (16) using a fourth-order Gauss quadrature (27), bilinear reconstruc-
tion, and central-upwind flux. In the implementation, we compute estimates
of the wave-speeds a+ and a− at the midpoint of each edge and use them to
evaluate the flux function at the two Gaussian integration points. Notice also
the use of the built-in inner-product dot and the weighted average mix.

A Black-Box Upwind Flux

For completeness, we also include a ’black-box’ upwind flux, which is based
upon resolving the local Riemann problems numerically. In the Multi-Stage
(MUSTA) approach introduced by Toro [52], local Riemann problems are
solved numerically a few time steps using a predictor-corrector scheme with
a centred flux. This ’opens’ the Riemann fan, and the centre state V (ξ = 0)
can be picked out and used to evaluate the true flux over the interface. The
MUSTA algorithm starts by setting Q

(1)
L = QL and Q

(1)
R = QR, and then

iterates the following steps 3–4 times:

1. Flux evaluation: set F (�)
L = F (Q(�)

L ) and F
(�)
R = F (Q(�)

R ) and compute F (�)
M

as the FORCE flux (33).
2. Open Riemann fan

Q
(�+1)
L = Q

(�)
L − ∆

t
∆x

(
F

(�)
M − F

(�)
L

)
, Q

(�+1)
R = Q

(�)
R − ∆

t
∆x

(
F

(�)
R − F

(�)
M

)
,

This approach has the advantage that it is general and requires no knowledge
of the wave structure of a specific system.



246 Hagen, Henriksen, Hjelmervik, and Lie

Listing 6. Fragment shader for computing the edge-flux in the x-direction using
central-upwind flux for the two-dimensional Euler equations.

varying vec4 texXcoord;
uniform sampler2D QnTex;
uniform sampler2D SxTex;
uniform sampler2D SyTex;
uniform float gamma;

float pressure(in vec4 Q)
{

return (gamma−1.0)∗(Q.w − 0.5∗dot(Q.yz,Q.yz)/Q.x);
}

vec4 fflux(in vec4 Q)
{

float u = Q.y/Q.x;
float p = (gamma−1.0)∗(Q.w − 0.5∗dot(Q.yz,Q.yz)/Q.x);
return vec4(Q.y, (Q.y∗u)+p, Q.z∗u, u∗(Q.w+p) );

}

void main(void)
{

// Reconstruction in (i,j)
vec4 Q = texture2D(QnTex, texXcoord.yx);
vec4 Sx = texture2D(SxTex, texXcoord.yx);
vec4 Sy = texture2D(SyTex, texXcoord.yx);
vec4 QL = Q + Sx∗0.5;
vec4 QLp = Q + Sx∗0.5 + Sy∗0.2886751346;
vec4 QLm = Q + Sx∗0.5 − Sy∗0.2886751346;

// Reconstruction in (i+1,j)
vec4 Q1 = texture2D(QnTex, texXcoord.wx);
vec4 Sxp = texture2D(SxTex, texXcoord.wx);
vec4 Syp = texture2D(SyTex, texXcoord.wx);
vec4 QR = Q1 − Sxp∗0.5;
vec4 QRp = Q1 − Sxp∗0.5 + Syp∗0.2886751346;
vec4 QRm = Q1 − Sxp∗0.5 − Syp∗0.2886751346;

// Calculate ap and am
float c, ap, am;
c = sqrt(gamma∗QL.x∗pressure(QL));
ap = max((QL.y + c)/QL.x, 0.0);
am = min((QL.y − c)/QL.x, 0.0);
c = sqrt(gamma∗QR.x∗pressure(QR));
ap = max((QR.y + c)/QR.x, ap);
am = min((QR.y − c)/QR.x, am);

// Central−upwind flux
vec4 Fp = ((ap∗fflux(QLp) − am∗fflux(QRp)) + (ap∗am)∗(QRp − QLp))/(ap − am);
vec4 Fm = ((ap∗fflux(QLm) − am∗fflux(QRm)) + (ap∗am)∗(QRm − QLm))/(ap − am);

gl FragColor = mix(Fp, Fm, 0.5);
}



Solving Systems of Conservation Laws on GPUs 247

Fig. 11. Flow-chart for the GPU implementation of a semi-discrete, high-resolution
scheme. White boxes refer to operations on the CPU and shaded boxes to operations
on the GPU.

4.6 Putting It All Together

In the above sections we have presented the components needed to implement
a high-resolution scheme on the GPU. Let us now see how they can be put
together to form a full solver. Figure 11 shows a flow-chart for the implemen-
tation. In the flow-chart, all the logic and setup is performed on the CPU,
whereas all time-consuming operations are performed in parallel on the GPU.
The only exception is the determination of the time step, which is performed
by postprocessing results from the depth buffer (see Listing 2). The three
essential shaders are the reconstruction given in Listing 5, the evaluation of
edge fluxes in Listing 6, and the Runge–Kutta steps in Listing 4. To make a
complete scheme, we also need two shaders to set initial and boundary data,
respectively. These shaders are problem specific and must be provided for each
individual test case.

5 Numerical Examples

We now present a few numerical examples to highlight a few features of the
high-resolution schemes and assess the efficiency of a GPU versus a CPU
implementation. As in Section 3.5, all CPU simulations were run on a Dell
Precision 670 with a dual Intel Xeon 2.8GHz processor and the GPU simu-
lation were performed on two NVIDIA GeForce graphics card, a 6800 Ultra



248 Hagen, Henriksen, Hjelmervik, and Lie

Fig. 12. Scatter plot of the circular dambreak problem at t = 0.5 computed on a
128 × 128 grid with reconstructions: bilinear with minmod limiter, CWENO, and
WENO. The dashed line is a fine-grid reference solution.

Fig. 13. Scatter plot of the circular dambreak problem at t = 0.5 computed on a
128 × 128 with bilinear reconstruction and FORCE, central-upwind, and MUSTA
fluxes. The dashed line is a fine-grid reference solution.

and a 7800 GTX. (See also our two journal papers on shallow-water waves
[17] and the 3D Euler equations [18] for supplementary numerical results.)

Example 4 (Circular dambreak). In the first example, we revisit the circular
dambreak problem from Example 2. Figure 12 shows approximate solutions
computed using three different reconstructions. (To isolate the effects of the
reconstruction, all three computations used third-order Runge–Kutta, central-
upwind flux, and fourth order Gauss quadrature). Starting with the bilinear
reconstruction, we see that this scheme gives superior resolution of both the
leading shock and the rarefaction wave compared with the Lax–Friedrichs
scheme in Figure 6. By increasing the order of the reconstruction from bilin-
ear to the third-order CWENO, we improve the local minimum at r ≈ 0.5.
Finally, by introducing the fifth-order WENO reconstruction, we also obtain
a satisfactory resolution of the constant state near the origin (and a slight
improvement near the shock).

Figure 13 shows a comparison of the three different fluxes for the bilinear
scheme. The FORCE flux is a centred flux that does not incorporate any
information of the local wave propagation. As a result, the corresponding
scheme smears the leading shock and both ends of the rarefaction wave (at



Solving Systems of Conservation Laws on GPUs 249

Table 3. Runtime per time step in seconds and speedup factor for the CPU versus
the GPU implementation of bilinear interpolation with modified minmod limiter
for the dambreak problem run on a grid with N × N grid cells, for the NVIDIA
GeForce 6800 Ultra and GeForce 7800 GTX graphics cards. The upper part uses
second-order and the bottom part third-order Runge–Kutta time stepping.

N CPU 6800 speedup 7800 speedup

128 3.06e-2 3.78e-3 8.1 1.27e-3 24.2
256 1.22e-1 8.43e-2 14.5 4.19e-3 29.1
512 4.86e-1 3.18e-2 15.3 1.68e-2 28.9

1024 2.05e-0 1.43e-1 14.3 6.83e-2 30.0

128 4.56e-2 5.58e-3 8.2 1.90e-3 23.9
256 1.83e-1 1.24e-2 14.8 6.23e-3 29.4
512 7.33e-1 4.69e-2 15.6 2.51e-2 29.2

1024 3.09e-0 2.15e-1 14.3 1.04e-1 29.7

r ≈ 0.5 and r ≈ 0.15, respectively). The central-upwind flux incorporates local
wave propagation information in the form of two-sided estimates of the local
wave speeds and therefore gives sharper resolution of both the shock and the
rarefaction ends. Finally, the MUSTA flux is an iterative solver for the local
Riemann problem that gives very accurate approximation of the Godunov
edge-flux. The corresponding scheme therefore gives good resolution of both
the leading shock and the rarefaction ends.

In Table 3 we have rerun the experiments from Table 1 in Example 2, now
using the high-resolution scheme with central-upwind flux and bilinear recon-
struction (and modified minmod limiter with θ = 1.3). Compared with the
simple Lax–Friedrichs scheme, the bilinear scheme involves a larger number
of arithmetic operations per grid cell. This means that the costs of data fetch
and data processing perfectly balance, giving a considerably higher speedup
then for Lax–Friedrichs.

Example 5 (Shock-bubble). In the second example, we revisit the shock-bubble
interaction from Example 3. We will now consider two different simula-
tion methods using the second-order bilinear reconstruction from Section 4.4
and the third-order CWENO reconstruction from Appendix A.1. Apart from
this, both methods use the second Runge–Kutta method, fourth-order Gauss
quadrature, and central-upwind flux.

Figure 14 illustrates the effect of choosing different reconstructions. In the
bilinear reconstruction, we have used the minmod limiter (31), the modified
minmod-θ limiter (with θ = 1.3) and the superbee limiter (with θ = 1.5). The
two latter limiters tend to choose steeper slopes in the local reconstructions,
thereby introducing less numerical viscosity in the approximate solution. The
interface making up the walls of the collapsing bubble is instable and tends to
break up for the least dissipative superbee limiter, whereas the minmod limiter
has sufficient numerical dissipation to suppress the instability. We notice in



250 Hagen, Henriksen, Hjelmervik, and Lie

Fig. 14. Approximate solution for ∆x = 1/800 of the shock-bubble problem at
time t = 0.2 computed with the bilinear scheme for using three different limiters:
minmod (top-left), modified minmod (top-right), and superbee (bottom-left) and
by the CWENO scheme (bottom-right).

particular that although the CWENO reconstruction has higher order, it also
contains more numerical dissipation than the bilinear reconstruction with the
superbee limiter and therefore suppresses the breaking of the bubble interface.

In Table 4 we have rerun the experiments from Table 2 in Example 3, now
using the high-resolution scheme with bilinear reconstruction (and modified
minmod limiter with θ = 1.3). Comparing Tables 3 and 4, we observe that
the runtime for the GPU simulations only increases a few percent when going
from the shallow-water to the Euler equations, indicating that for the bilinear
scheme the runtime is strongly dominated by vector operations that are per-
fectly parallel. The resulting speedup factors of order 20 and 40 for GeForce
6800 and 7800, respectively, are in fact amazing, since the GPU implementa-
tions have not involved any low-level optimisation apart from the obvious use
of vector operations whenever appropriate. (Using the widespread gcc com-
piler with full optimisation rather than icc to compile the CPU code gave
approximately 50% higher runtime on the CPU, and hence speedup factors of
magnitude up to 70 for the GeForce 7800 card!)

Table 5 shows corresponding runtimes and speedup factors for the third-
order CWENO reconstruction. As seen from the discussion in Appendix A.1,
we cannot expect to retain the good speedup observed for the bilinear scheme.
Still, a speedup of 8–9 for GeForce 6800 and 23–24 for GeForce 7800 is indeed
impressive.



Solving Systems of Conservation Laws on GPUs 251

Table 4. Runtime per time step in seconds and speedup factor for the CPU versus
the GPU implementation of bilinear interpolation with modified minmod limiter for
the shock-bubble problem run on a grid with N × N grid cells, for the NVIDIA
GeForce 6800 Ultra and GeForce 7800 GTX graphics cards. The upper part uses
second-order and the bottom part third-order Runge–Kutta time stepping.

N CPU 6800 speedup 7800 speedup

128 4.37e-2 3.70e-3 11.8 1.38e-3 31.7
256 1.74e-1 8.69e-3 20.0 4.37e-3 39.8
512 6.90e-1 3.32e-2 20.8 1.72e-2 40.1

1024 2.95e-0 1.48e-1 19.9 7.62e-2 38.7

128 6.27e-2 5.22e-3 12.0 1.97e-3 31.9
256 2.49e-1 1.28e-2 19.5 6.44e-3 38.6
512 9.89e-1 4.94e-2 20.0 2.56e-2 38.6

1024 4.24e-0 2.20e-1 19.3 1.13e-1 37.5

Table 5. Runtime per time step in seconds and speedup factor for the CPU versus
the GPU implementation of CWENO reconstruction for the shock-bubble problem
run on a grid with N×N grid cells, for the NVIDIA GeForce 6800 Ultra and GeForce
7800 GTX graphics cards. The upper part uses second-order and the bottom part
third-order Runge–Kutta time stepping.

N CPU 6800 speedup 7800 speedup

128 1.05e-1 1.22e-2 8.6 4.60e-3 22.8
256 4.20e-1 4.99e-2 8.4 1.74e-2 24.2
512 1.67e-0 1.78e-1 9.4 6.86e-2 24.3

1024 6.67e-0 7.14e-1 9.3 2.99e-1 22.3

128 1.58e-1 1.77e-2 8.9 6.80e-3 23.2
256 6.26e-1 6.78e-2 9.2 2.59e-2 24.2
512 2.49e-0 2.66e-1 9.4 1.02e-1 24.3

1024 9.98e-0 1.06e-0 9.4 4.45e-1 22.4

Example 6. In the last example, we will consider the full shallow-water equa-
tions (7) with a variable bathymetry. A particular difficulty with this system
of balance laws (conservation laws with source terms are often called balance
laws) is that it admits steady-state or solutions in which the (topographical)
source terms are exactly balanced by nonzero flux gradients,[

hu2 + 1
2gh

2
]
x

+
[
huv

]
y

= −ghBx,

and similarly in the y-direction. Capturing this delicate balance without intro-
ducing spurious waves of small amplitude is a real challenge for any numerical
scheme. Of particular interest is the so-called lake-at-rest problem, in which
hu = hv = 0 and w = h+B = constant.



252 Hagen, Henriksen, Hjelmervik, and Lie

For high-resolution schemes a lot of research has been devoted to develop
so-called well-balanced schemes, which are capable of accurately resolving
steady-state and near-steady-state solutions; see e.g., [32, 5, 27, 4, 41] and
references therein. In [17] we discussed a GPU-implementation of the well-
balanced approach from [27]. The key points in this approach is: (i) to recon-
struct the surface elevation w = h + B rather than the water depth h as a
piecewise polynomial function, and (ii) to use a special quadrature rule for the
source term S. For the second component of the source term, the quadrature
rule reads

S
(2)
ij = − 1

|Ωij |

∫ yj+1/2

yj−1/2

∫ xi+1/2

xi−1/2

g(w −B)x dxdy

≈− g

2∆x
(
hL

i+1/2,j−α + hR
i−1/2,j−α

)(
Bi+1/2,j−α −Bi−1/2,j−α

)
− g

2∆x
(
hL

i+1/2,j+α + hR
i−1/2,j+α

)(
Bi+1/2,j+α −Bi−1/2,j+α

)
,

(35)

This source term is then included in the semi-discrete evolution equation for
the cell-averages

d

dt
Qij = −

Fi+1/2,j − Fi−1/2,j

∆x
−
Gi,j+1/2 −Gi,j−1/2

∆y
+ Sij , (36)

where the flux-terms and the ODE are discretised as discussed above.
We will now use this scheme to simulate a dambreak in a mountainous

terrain. Figure 15 shows four snapshots from the GPU simulation. Initially,
the water in the lake is at rest in the upper lake (steady state). At time zero,
the dam breaks and water starts to flood down into the neighbouring valley,
where it creates strong flood waves that wash up on the hillsides. As time
increases, the simulation slowly approaches a new steady state with equal
water height in the two valleys.

The presence of dry-bed zones (i.e., areas with h = 0) poses extra chal-
lenges for the simulation, since these areas must be given special treatment
to avoid (nonphysical) negative water heights; see [17].

6 Concluding Remarks

In this paper we have tried to give the reader an introduction to two exciting
research fields: numerical solution of hyperbolic conservation laws and general
purpose computation using graphics hardware. Research on high-resolution
methods for hyperbolic conservation laws is a mature field, evolved during
the last three decades, and both its mathematical and numerical aspects are
supported by a large body of publications. When it comes to the use of graph-
ics hardware as a computational resource, the situation is the opposite. Al-
though there exist some early papers on the use of fixed-pipeline graphics



Solving Systems of Conservation Laws on GPUs 253

Fig. 15. Snapshots of a dambreak simulation in an artificially constructed terrain.

cards for non-graphical purposes, the interest in this field has exploded since
the first GPUs with fully programmable fragment processors were introduced
in 2003. Since then, the use of graphics cards for general purpose computing
has attracted the interest of researchers in many different fields.

To demonstrate the computing capabilities of the GPU, we chose two
common physical models, the Euler equations and the somewhat simpler
shallow-water equations. We have attacked these equations with an assem-
bly of finite-volume methods ranging from the basic Lax–Friedrichs scheme to
the sophisticated third-order CWENO scheme, which represents state-of-the-
art in high-resolution methods. Using standard numerical test cases in square
domains, we observe that moving the computations from the CPU to a GPU
gives a speedup of at least one order of magnitude. This amazing speedup is
possible because the methods we have considered are explicit. Therefore, each
cell can be updated independently of its neighbours, using only local points
in a texture representing the previous time-step. This makes the methods
“brilliantly parallel” and ripe for the data-based stream processing of graph-
ics hardware. On the other hand, we have seen that in order to exploit this
potential speedup, the computational algorithms must be recast to graphics
terms. In our experience this requires familiarity with both computer graphics
and the underlying hardware. However, once the algorithm has been recast to



254 Hagen, Henriksen, Hjelmervik, and Lie

computer graphics, any programmer with a background from scientific com-
puting should be able to write the actual shaders.

In the following subsections we give a short discussion of how GPU compu-
tations can be applied to more complex problems. Moreover, we also present
a current outlook for GPUs for solving PDEs in scientific and industrial prob-
lems.

More Complex Physics

Having seen the success of using GPUs for the shallow water and the Euler
equations, one can easily envisage that GPU computations can be used to
speed up the computation of other (and more complex) hyperbolic models.
As an example, magneto-hydrodynamics in two spatial dimensions is described
by a set of seven equations and therefore do not map directly into a single
four-component texture. A simple solution would be to split the vector of
unknowns between two textures, and similarly for the fluxes, reconstructed
slopes, etc. The flux computations would then typically involve a single shader
reading from both textures, whereas a componentwise reconstruction could
be performed by running the same shader consecutively on the two textures.
Similarly, the Euler equations in three spatial dimensions is a 5 × 5 system
and thus could be represented as e.g., a one-component texture for density
and a four-component texture for momentum and energy or into two three-
component textures as done in [18]. Three-dimensional grids can either be
represented directly using the recent feature of 3D textures or by mapping
each it to a regular 2D texture [39, 18].

Real-life problems often involve complex internal and external boundaries.
A efficient method for representing complex boundaries in fluid flow simula-
tions was presented by Wu et al. [39, 55]. Their idea is to preprocess the
computational domain and define texture coordinate offsets to identify the
nodes that determine the values of nodes close to the boundaries. Although
this approach is introduced for the incompressible Navier–Stokes equations,
we believe that it can be adopted for conservation laws as well.

To Whom Will GPU-Computing Be Useful?

From one point of view, the GPU can be considered as a parallel computer of
the SIMD (single-instruction, multiple data) type, except that for the GPU
there are no expressed communication between the nodes/pipelines anywhere
in the code. From a user’s point of view, the main attraction with the GPUs is
the price-performance ratio (or the ratio of price versus power consumption).
Assuming that the memory available on a graphics card is not a limitation,
a simple back-of-an-envelope comparison of speedup versus dollar favour the
GPU over a cluster of PCs, viz.



Solving Systems of Conservation Laws on GPUs 255

Price of graphics card: $ 500
Price of 24 computers ($ 1000 each): $ 24 000
Speedup of graphics card: 20 times
Speedup of cluster: 24 times
Dollar/speedup for graphics card: $ 25
Dollar/speedup for cluster: $ 1000

With these figures, purchasing a 24-pipeline programmable graphics card gives
40 times more speedup per dollar than a 24-node cluster.

Having seen the performance of one single GPU it is tempting to ask
what can be gained by exploiting a cluster of GPUs. Today, there are several
research groups (including us) that try to use clusters equipped with GPUs
or even clusters consisting of PlayStations to perform large-scale computing,
see e.g., [12]. Although early performance reports are very good, the fact that
GPUs are based upon a different programming model may in the end prevent
wide-spread use of GPUs for high-performance computing.

On the other hand, the use of graphics cards may be a key factor in
bringing PDE simulations from batch mode to interactive mode for desktop-
sized applications, thereby opening up for their use in real-time systems (for
monitoring and control), computer games and entertainment industry.

Current Technology Trends (Afterword March 2007)

The study reported herein was performed in the period 2004 to early 2006.
During that period, the most recent generations of GPUs from NVIDIA (6800
Ultra from 2004/2005 and 7800 GTX from 2005/2006) demonstrated amazing
floating-point performance of about 54Gflops and 165Gflops, respectively,
compared with the typical commodity CPUs; contemporary Intel Pentium 4
CPUs, for instance, had a theoretical performance of at most 15Gflops.

As the book goes into press (March 2007), the performance of GPUs has
increased even further to about 0.5 Tflops for the NVIDIA GeForce 8800
GTX, which has 128 pipelines and 768 MB memory. A bit simplified, the rea-
son behind this tremendous increase in computing power is as follows: Due
to the parallel nature of a GPU, it is possible to increase the performance
simply by adding more computational units, thereby increasing the number
of computations that are made in parallel. Moreover, the architecture of com-
modity CPUs has changed significantly in the sense that dual-core CPUs have
become common. Currently quad-core CPUs are beginning to hit the market.
As for the future, Intel has recently showed “Polaris”, a prototype processor
with 80 cores, each with its own programmer-managed memory. Last year,
AMD bought ATI, the other main manufacturer of GPUs. Recently, AMD
announced the development of a hybrid CPU-GPU processor (Fusion) and
the Torrenza initiative aimed at easy integration of various hardware acceler-
ator units (like graphics cards). This development points in the direction of
heterogeneous computers consisting of traditional CPU type units in combi-
nation with specialised accelerator units.



256 Hagen, Henriksen, Hjelmervik, and Lie

Another important point is the appearance in the mass-marked of other
data-parallel processors, in particular the Cell BE processor designed for
PlayStation 3 and used in blade servers. The Cell BE processor consists of one
general processor connected to eight specialised computational cores, which
may remind of stream processors. With this tile architecture, the Cell proces-
sor should be quite well-suited for general-purpose computing.

The development in hardware is expected to be followed by a similar devel-
opment in software tools. NVIDIA recently released CUDA (Compute Unified
Device Architecture – http://developer.nvidia.com/object/cuda.html),
which allows the programmer to treat graphics cards in the GeForce 8000
series as general data-parallel processors without using the graphical API.
Similarly, companies like RapidMind and PeakStream are developing soft-
ware tools for taking advantage of multi-core processors and data-parallel
processors like GPUs and Cell.

Altogether, it therefore seems that data-parallel processors from the mass
market may offer computing capabilities in the next few years that are hard
to ignore, and that utilising these capabilities for scientific computing will be
a very exciting field to work in for a scientist.

Acknowledgement. This research was funded in part by the Research Council of
Norway under grant no. 158911/I30.

References

1. J. E. Aarnes, T. Gimse, and K.-A. Lie. An introduction to the numerics of flow
in porous media using Matlab. In this book.

2. J. E. Aarnes, V. Kippe, K.-A. Lie, and A. B. Rustad. Modelling of multiscale
structures in flow simulations for petroleum reservoirs. In this book.

3. P. Arminjon, D. Stanescu, and M.-C. Viallon. A two-dimensional finite volume
extension of the Lax–Friedrichs and Nessyahu–Tadmor schemes for compressible
flows. In M. Hafez and K. Oshima, editors, Proceedings of the 6th International
Symposium on CFD, Lake Tahoe, volume IV, pages 7–14, 1995.

4. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame. A fast and
stable well-balanced scheme with hydrostatic reconstruction for shallow water
flows. SIAM J. Sci. Comp., 25:2050–2065, 2004.

5. Derek S. Bale, Randall J. Leveque, Sorin Mitran, and James A. Rossmanith. A
wave propagation method for conservation laws and balance laws with spatially
varying flux functions. SIAM J. Sci. Comput., 24(3):955–978 (electronic), 2002.

6. F. Benkhaldoun and R. Vilsmeier, editors. Finite volumes for complex applica-
tions. Hermes Science Publications, Paris, 1996. Problems and perspectives.

7. F. Bianco, G. Puppo, and G. Russo. High-order central schemes for hyperbolic
systems of conservation laws. SIAM J. Sci. Comput., 21(1):294–322 (electronic),
1999.

8. A. J. Chorin and J. E. Marsden. A mathematical introduction to fluid mechanics,
volume 4 of Texts in Applied Mathematics. Springer-Verlag, New York, third
edition, 1993.



Solving Systems of Conservation Laws on GPUs 257

9. R. Courant and K. O. Friedrichs. Supersonic Flow and Shock Waves. Inter-
science Publishers, Inc., New York, N. Y., 1948.

10. T. Dokken, T. R. Hagen, and J. M. Hjelmervik. An introduction to general-
purpose computing on programmable graphics cards. In this book.

11. M. Van Dyke. An Album of Fluid Motion. Parabolic Press, 1982.
12. Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover. GPU cluster for high per-

formance computing. In SC ’04: Proceedings of the 2004 ACM/IEEE conference
on Supercomputing, page 47, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

13. R. Fernando, editor. GPU Gems: Programming Techniques, Tips and Tricks for
Real-Time Graphics. Addison Wesley, 2004.

14. R. Fernando and M.J. Kilgard. The Cg Tutorial: The Definitive Guide to Pro-
grammable Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc.,
2003.

15. E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems
of conservation laws, volume 118 of Applied Mathematical Sciences. Springer-
Verlag, New York, 1996.

16. S. K. Godunov. A difference method for numerical calculation of discontinuous
solutions of the equations of hydrodynamics. Mat. Sb. (N.S.), 47 (89):271–306,
1959.

17. T. R. Hagen, J. M. Hjelmervik, K.-A. Lie, J. R. Natvig, and M. Ofstad Hen-
riksen. Visual simulation of shallow-water waves. Simul. Model. Pract. Theory,
13(8):716–726, 2005.

18. T. R. Hagen, K.-A. Lie, and J. R. Natvig. Solving the Euler equations on
graphical processing units. In V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot,
and J. Dongarra, editors, Computational Science – ICCS 2006: 6th International
Conference, Reading, UK, May 28-31, 2006, Proceedings, Part IV, volume 3994
of Lecture Notes in Computer Science (LNCS), pages 220–227. Springer Verlag,
2006.

19. A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput.
Phys., 49(3):357–393, 1983.

20. A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-
type schemes for hyperbolic conservation laws. SIAM Rev., 25(1):35–61, 1983.

21. R. Herbin and D. Kröner, editors. Finite volumes for complex applications III.
Laboratoire d’Analyse, Topologie et Probabilités CNRS, Marseille, 2002. Prob-
lems and perspectives, Papers from the 3rd Symposium held in Porquerolles,
June 24–28, 2002.

22. H. Holden and N. H. Risebro. Front tracking for hyperbolic conservation laws,
volume 152 of Applied Mathematical Sciences. Springer-Verlag, New York, 2002.

23. G.-S. Jiang and E. Tadmor. Nonoscillatory central schemes for multidimensional
hyperbolic conservation laws. SIAM J. Sci. Comput., 19(6):1892–1917, 1998.

24. S. N. Kružkov. First order quasilinear equations with several independent vari-
ables. Mat. Sb. (N.S.), 81 (123):228–255, 1970.

25. A. Kurganov, S. Noelle, and G. Petrova. Semidiscrete central-upwind schemes
for hyperbolic conservation laws and Hamilton–Jacobi equations. SIAM J. Sci.
Comput., 23(3):707–740 (electronic), 2001.

26. A. Kurganov and E. Tadmor. New high-resolution semi-discrete central schemes
for Hamilton–Jacobi equations. J. Comp. Phys., 160:720–742, 2000.

27. Alexander Kurganov and Doron Levy. Central-upwind schemes for the Saint-
Venant system. M2AN Math. Model. Numer. Anal., 36(3):397–425, 2002.



258 Hagen, Henriksen, Hjelmervik, and Lie

28. L. D. Landau and E. M. Lifshitz. Fluid mechanics. Translated from the Russian
by J. B. Sykes and W. H. Reid. Course of Theoretical Physics, Vol. 6. Pergamon
Press, London, 1959.

29. P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their numerical
computation. Comm. Pure Appl. Math., 7:159–193, 1954.

30. P.D. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure Appl.
Math., 13:217–237, 1960.

31. R. J. LeVeque. Numerical Methods for Conservation Laws. Lectures in Mathe-
matics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 1994.

32. R. J. LeVeque. Balancing source terms and flux gradients in high-resolution
Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput.
Phys, 146:346–365, 1998.

33. R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge Texts
in Applied Mathematics. Cambridge University Press, Cambridge, 2002.

34. D. Levy, G. Puppo, and G. Russo. Compact central WENO schemes for multi-
dimensional conservation laws. SIAM J. Sci. Comput., 22(2):656–672, 2000.

35. K.-A. Lie and S. Noelle. An improved quadrature rule for the flux-computation
in staggered central difference schemes in multidimensions. J. Sci. Comput.,
18(1):69–81, 2003.

36. K.-A. Lie and S. Noelle. On the artificial compression method for second-order
nonoscillatory central difference schemes for systems of conservation laws. SIAM
J. Sci. Comput., 24(4):1157–1174, 2003.

37. R. Liska and B. Wendroff. Composite schemes for conservation laws. SIAM J.
Numer. Anal., 35(6):2250–2271, 1998.

38. X.-D. Liu and E. Tadmor. Third order nonoscillatory central scheme for hyper-
bolic conservation laws. Numer. Math., 79(3):397–425, 1998.

39. Y. Liu, X. Liu, and E. Wu. Real-time 3d fluid simulation on GPU with com-
plex obstacles. In Proceedings of Pacific Graphics 2004, pages 247–256. IEEE
Computer Society, 2004.

40. H. Nessyahu and E. Tadmor. Nonoscillatory central differencing for hyperbolic
conservation laws. J. Comput. Phys., 87(2):408–463, 1990.

41. S. Noelle, N. Pankratz, G. Puppo, and J. R. Natvig. Well-balanced finite volume
schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys.,
213(2):474–499, 2006.

42. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn, and
T. J. Purcell. A survey of general-purpose computation on graphics hardware.
In Eurographics 2005, State of the Art Reports, pages 21–51, August 2005.

43. M. Pharr, editor. GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Addison-Wesley Professional,
2005.

44. R. D. Richtmyer and K. W. Morton. Difference methods for initial-value prob-
lems. Second edition. Interscience Tracts in Pure and Applied Mathematics, No.
4. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney,
1967.

45. R. J. Rost. OpenGLR Shading Language. Addison Wesley Longman Publishing
Co., Inc., 2004.

46. M. Rumpf and R. Strzodka. Graphics processor units: new prospects for parallel
computing. In A.M. Bruaset and A. Tveito, editors, Numerical Solution of Par-
tial Differential Equations on Parallel Computers, volume 51 of Lecture Notes in
Computational Science and Engineering, pages 89–134. Springer Verlag, 2006.



Solving Systems of Conservation Laws on GPUs 259

47. C.-W. Shu. Total-variation-diminishing time discretisations. SIAM J. Sci. Stat.
Comput., 9:1073–1084, 1988.

48. C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory
schemes for hyperbolic conservation laws. In Advanced numerical approximation
of nonlinear hyperbolic equations (Cetraro, 1997), volume 1697 of Lecture Notes
in Math., pages 325–432. Springer, Berlin, 1998.

49. V. A. Titarev and E. F. Toro. Finite-volume WENO schemes for three-
dimensional conservation laws. J. Comput. Phys., 201(1):238–260, 2004.

50. E. F. Toro. Riemann solvers and numerical methods for fluid dynamics.
Springer-Verlag, Berlin, second edition, 1999.

51. E. F. Toro. Shock-capturing methods for free-sufrace shallow flows. Wiley and
Sons Ltd., 2001.

52. E. F. Toro. Multi-stage predictor-corrector fluxes for hyperbolic equations. Tech-
nical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences,
2003.

53. R. Vilsmeier, F. Benkhaldoun, and D. Hänel, editors. Finite volumes for com-
plex applications II. Hermes Science Publications, Paris, 1999. Problems and
perspectives, Papers from the 2nd International Conference held in Duisburg,
July 19–22, 1999.

54. G. B. Whitham. Linear and nonlinear waves. Wiley-Interscience [John Wiley
& Sons], New York, 1974. Pure and Applied Mathematics.

55. E. Wu, Y. Liu, and X. Liu. An improved study of real-time fluid simulation on
GPU. J. of Computer Animation and Virtual World, 15(3–4):139–146, 2004.

A Higher-Order WENO Reconstructions

A popular approach for making higher-order reconstructions is the essentially
nonoscillatory (ENO) approach. In Section 4.4 we saw how we could avoid the
creation of spurious oscillations for a piecewise linear reconstruction by com-
paring one-sided slopes and picking the slope that gave the least oscillation.
(This was done by the nonlinear limiter function).

The ENO approach is basically the same idea extended to higher-order
polynomials constructed using divided differences. Assume for the moment
that we have one-dimensional data {Qi}. The original ENO idea starts by
making a piecewise linear polynomial P 1

i (x) based upon Qi and Qi−1. Next,
we consider the two candidate stencils made out of either {Qi+1, Qi, Qi−1} or
{Qi, Qi−1, Qi−2}. The piecewise quadratic ENO polynomial P 2

i (x) can be con-
structed using the three points that will create the least oscillatory polynomial.
The correct stencil is picked by comparing the magnitude of the corresponding
divided differences. This way, one can continue to recursively construct higher
and higher order polynomials by adding points to the left or right, depending
on the magnitude of the divided differences.

In the more recent weighted ENO (WENO) approach, the polynomials
are constructed by weighting all possible stencils rather than choosing the
least oscillatory. The idea of WENO is that stencils from smooth parts of the
solution are given high weight and stencils from nonsmooth parts are given



260 Hagen, Henriksen, Hjelmervik, and Lie

low weight. More details on (W)ENO reconstructions can be found in the
survey paper [48].

There are essentially two different ways to reconstruct multidimensional
data: genuinely multidimensional and dimension-by-dimension. Below we will
give an example of each type. First we will introduce a multidimensional
third-order centred WENO reconstruction. Then we present a dimension-by-
dimension, fifth-order WENO reconstruction that is specifically tailored to
give maximum resolution at the Gaussian integration points, as proposed by
Titarev and Toro [49].

A.1 Third Order CWENO Reconstruction

Third order accuracy is obtained by using a piecewise biquadratic reconstruc-
tion

Q̂ij(x, y, tn) = Qij(x, y)= Vij + sx
ij(x− xi) + sy

ij(y − yj)

+
1
2
sxx

ij (x− xi)2 +
1
2
syy

ij (y − yj)2 + sxy
ij (x− xi)(y − yj).

For smooth data, one can use an optimal polynomial Qopt(x, y) based upon
a centred nine-point stencil with

Vij = Qn
ij −

1
24
(
∆x2sxx

ij +∆y2syy
ij

)
,

sx
ij =

Qn
i+1,j −Qn

i−1,j

2∆x
, sxx

ij =
Qn

i+1,j − 2Qn
ij +Qn

i−1,j

∆x2
,

sy
ij =

Qn
i,j+1 −Qn

i,j−1

2∆y
, syy

ij =
Qn

i,j+1 − 2Qn
ij +Qn

i,j−1

∆y2
,

sxy
ij =

Qn
i+1,j+1 +Qn

i−1,j−1 −Qi+1,j−1 −Qn
i−1,j+1

4∆x∆y
.

(37)

For nonsmooth data, a direct application of this reconstruction will introduce
spurious oscillations. We therefore present another compact reconstruction
called CWENO (centred WENO) that was introduced by Levy, Puppo and
Russo [34]. The reconstruction employs a weighted combination of four one-
sided piecewise bilinear and a centred piecewise quadratic stencil

Pij(x, y) =
∑

k

wk
ijP

k
ij(x, y), k ∈ {ne,nw,sw,se,c}. (38)

By this weighting we seek to emphasize contributions from cell averages in
smooth regions and diminish contributions from cell averages in nonsmooth
regions.

The four bilinear stencils are



Solving Systems of Conservation Laws on GPUs 261

P ne
ij (x, y) = Qn

ij +
Qn

i+1,j −Qn
ij

∆x
(x− xi) +

Qn
i,j+1 −Qn

ij

∆y
(y − yj),

P nw
ij (x, y) = Qn

ij +
Qn

ij −Qn
i−1,j

∆x
(x− xi) +

Qn
i,j+1 −Qn

ij

∆y
(y − yj),

P sw
ij (x, y) = Qn

ij +
Qn

ij −Qn
i−1,j

∆x
(x− xi) +

Qn
ij −Qn

i,j−1

∆y
(y − yj),

P se
ij (x, y) = Qn

ij +
Qn

i+1,j −Qn
ij

∆x
(x− xi) +

Qn
ij −Qn

i,j−1

∆y
(y − yj),

(39)

and the centred stencil is taken to satisfy

P opt(x, y) =
∑

k

CkP k(x, y),
∑

k

Ck = 1, k ∈ {ne,nw,sw,se,c}.

On smooth data, a third-order reconstruction is obtained if we choose the
weights to be Ck = 1/8 for k ∈ {ne,nw,sw,se} and Cc = 1/2. In other
words, we choose the centred stencil to be

P c(x, y) = 2P opt(x, y) +
1
4

∑
k

P k(x, y), k ∈ {ne,nw,sw,se}.

To tackle discontinuous data, we will introduce a nonlinear weighting pro-
cedure, analogously to the limiter defined for the bilinear reconstruction in
Section 4.4. The nonlinear weights in (38) are designed so that they are as
close as possible to the optimal weights Ck for smooth data. For nonsmooth
data, the largest contribution in the reconstruction comes from the stencil(s)
that generates the least oscillatory reconstruction. The weights are given as

wk
ij =

αk
ij∑

� α
�
ij

, αk
ij =

Ck

(βk
ij + ε)2

, (40)

for k, � ∈ {ne,nw,sw,se,c}. Here ε is a small parameter (typically 10−6)
that prevents the denominator from vanishing for constant data, and the βk’s
are smoothness indicators that are responsible for detecting discontinuities or
large gradients

βk
ij =

∑
|α|=1,2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∆x2(|α|−1)
( d|α|

dxα1dyα2
P k(x, y)

)
dxdy.

For the bilinear stencils the smoothness indicators read

βk
ij = ∆x2

(
(sx,k

ij )2 + (sy,k
ij )2

)
, k ∈ {ne,nw,sw,se}

with slopes given by (39), and for the quadratic stencil the indicator reads

βc
ij = ∆x2

(
(sx

ij)
2 + (sy

ij)
2
)

+
∆x4

3

(
13(sxx

ij )2 + 14(sxy
ij )2 + 13(syy

ij )2
)



262 Hagen, Henriksen, Hjelmervik, and Lie

with slopes given by (37).
Compared with the bilinear reconstruction from Section 4.4, the construc-

tion of the CWENO polynomials involves a large number or arithmetic op-
erations. Moreover, a large number of variables are needed to represent the
reconstruction in each grid cell: 14 polynomial coefficients from (37) and (39)
and five weights (40). In the CPU implementation, we therefore chose to re-
compute the coefficients of the reconstructions rather than storing them. The
evaluation of each edge flux involves four one-sided point values taken from
the reconstructions in the two adjacent cells. Therefore, in order to compute
all edge fluxes, we make a single pass through all grid cells (including one layer
of ghost cells) and compute the edge flux between the current cell (i, j) and
its neighbour to the east (i+ 1, j) and to the north (i, j + 1). Altogether, this
means that in order to save computer memory we recompute the coefficients
and weights three times in each grid cell.

In the GPU implementation, we were not able to use the same approach
due to the lack of temporary registers. We therefore had to split the com-
putation of edge fluxes into two passes: one for the F -fluxes and one for the
G-fluxes, meaning that we recompute the coefficients and weights four times
in each grid cell. Moreover, by splitting the flux computation into two render
passes, we introduce one additional context switch and extra texture fetches.
Unfortunately, we therefore reduce the theoretical speedup by a factor be-
tween 1/2 and 3/4. We expect the number of temporary registers to increase
in future generations of GPUs and thus become less limiting.

A.2 A Fifth Order WENO Reconstruction

We seek the point values Q(xi±1/2, yj±α) and Q(xi±α, yj±1/2). The recon-
struction is performed in two steps: first by reconstructing averages over the
cell edges from the cell-averages, then by reconstructing the point-values from
the edge-averages. In each step we use a one-dimensional, piecewise WENO
reconstruction consisting of three quadratic stencils

V (ξ) =
2∑

k=0

wkQ
k(ξ).

In the first step, we start from the cell averages and reconstruct one-sided
averages over the cell edges in the x-direction

QL
ij =

1
∆
y

∫ yj+1/2

yj−1/2

Q(x−i+1/2, y) dy,

QR
ij =

1
∆
y

∫ yj+1/2

yj−1/2

Q(x+
i−1/2, y) dy.

To this end, we use linear combinations of three one-dimensional quadratic
stencils centred at (i+1, j), (i, j), and (i−1, j). The corresponding smoothness
indicators read



Solving Systems of Conservation Laws on GPUs 263

β0
ij =

13
12
(
Qn

ij − 2Qn
i+1,j +Qn

i+2,j

)2 +
1
4
(
3Qn

ij − 4Qn
i+1,j +Qn

i+2,j

)2
,

β1
ij =

13
12
(
Qn

i−1,j − 2Qn
ij + Qn

i+1,j

)2 +
1
4
(
Qn

i−1,j −Qn
i+1,j

)2
,

β2
ij =

13
12
(
Qn

i−2,j − 2Qn
i−1,j +Qn

ij

)2 +
1
4
(
Qn

i−2,j − 4Qn
i−1,j + 3Qn

ij

)2
.

The optimal linear weights for the left extrapolated value QL
ij are

C0 =
3
10
, C1 =

6
10
, C2 =

1
10
,

and QL
ij becomes

QL
ij =

w0
ij

6

(
2Qn

ij + 5Qn
i+1,j −Qn

i+2,j

)
+
w1

ij

6

(
−Qn

i−1,j + 5Qn
ij + 2Qn

i+1,j

)
+
w2

ij

6

(
2Qn

i−2,j − 7Qn
i−1,j + 11Qn

ij

)
.

By symmetry, the linear weights for QR
ij are

C0 =
1
10
, C1 =

6
10
, C2 =

3
10
,

and the edge average itself becomes

QR
ij =

w0
ij

6

(
11Qn

ij − 7Qn
i+1,j + 2Qn

i+2,j

)
+
w1

ij

6

(
2Qn

i−1,j + 5Qn
ij −Qn

i+1,j

)
+
w2

ij

6

(
−Qn

i−2,j + 5Qn
i−1,j + 2Qn

ij

)
.

In the second step, we start from the edge averages defined above and
reconstruct point values Q(x−i+1/2, yj+±α) at the Gaussian integration points.
For the first integration point (xi+1/2, yj −∆y/2

√
3), the optimal weights are

C0 =
210 −

√
3

1080
, C1 =

11
18
, C2 =

210 +
√

3
1080

,

and the reconstructed point value reads

Q(xi+1/2, yj−α) =w0
ij

(
QL

ij +
(
3QL

ij − 4QL
i+1,j +QL

i+2,j

)√3
12

)
+ w1

ij

(
QL

ij −
(
QL

i+1,j −QL
i−1,j

)√3
12

)
+ w2

ij

(
QL

ij −
(
3QL

ij − 4QL
i−1,j +QL

i−2,j

)√3
12

)
.



264 Hagen, Henriksen, Hjelmervik, and Lie

Similarly, for the second Gaussian point (xi+1/2, yj +∆y/2
√

3)

C0 =
210 +

√
3

1080
, C1 =

11
18
, C2 =

210 −
√

3
1080

,

and

Q(xi+1/2, yj+α) =w0
ij

(
QL

ij −
(
3QL

ij − 4QL
i+1,j +QL

i+2,j

)√3
12

)
+ w1

ij

(
QL

ij +
(
QL

i+1,j −QL
i−1,j

)√3
12

)
+ w2

ij

(
QL

ij +
(
3QL

ij − 4QL
i−1,j +QL

i−2,j

)√3
12

)
.

To reconstruct the point values Q(x+
i−1/2, yj±α), we start from QR

ij and repeat
the second step. A completely analogous procedure is then used in the y-
direction to construct the point values Q(xi±α, y

±
j+1/2).


