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ON UPSTREAM DIFFERENCING AND GODUNOV-TYPE SCHEMES FOR
HYPERBOLIC CONSERVATION LAWS*

AMIRAM HARTENT, PETER D. LAX}, AND BRAM VAN LEER$§

Abstract. This paper reviews some of the recent developments in upstream difference schemes through a
unified representation, in order to enable comparison between the various schemes. Special attention is given to
the Godunov-type schemes that result from using an approximate solution of the Riemann problem. For schemes

based on flux splitting, the approximate Riemann solution can be interpreted as a solution of the collisionless
Boltzmann equation.

Introduction. Upstream-differencing schemes attempt to discretize hyperbolic par-
tial differential equations by using differences biased in the direction determined by the
sign of the characteristic speed.

In recent years upstream differencing has become very popular, and a multitude of
new techniques of implementing directionally biased differencing have been suggested.
This popularity is primarily due to the robustness of upstream-differencing schemes, the
availability of an underlying physical model, and the possibility of achieving high
resolution of stationary discontinuities. Most of these schemes are an extension of the
Courant-Isaacson—Rees scheme [1] to nonlinear conservation laws, and therefore a
unified description may be given.

The present paper concentrates on reviewing basic concepts and deriving design
principles; numerical experimentation is not presented. The paper is built up as follows.
Section 1 reviews some properties of the equations essential to their proper numerical
approximation. In §2 we discuss a straightforward extension of linear upstream differenc-
ing to nonlinear systems. Section 3 introduces the physical picture due to Godunov, useful
to interpret certain schemes from §2 and to construct new schemes. Finally, in §4 we
comment on flux splitting, another form of upstream differencing, and relate it to a class
of schemes motivated by the Boltzmann equation.

1. Weak solutions and their numerical approximation. In this paper we consider
numerical solutions of the initial-value problem for hyperbolic systems of conservation
laws

(1.1a) u, + f(u), =0, u(x,0)=uy(x), —00 < X < oo,

Here u(x,t) is a column vector of m unknowns and f(u), the flux, is a vector-valued
function of m components. We can write (1.1a) in matrix form

(1.1b) u, + Au, =0, A(u) =f,.

(1.1) is called hyperbolic if all eigenvalues of the Jacobian matrix 4 are real. We assume
that the eigenvalues a,(u), - - -, a,,(u) are distinct and arranged in an increasing order.
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To allow for discontinuous solutions we admit weak solutions that satisfy (1.1) in the
sense of distribution theory, i.e.,

(1.2a) .[» j:m [w,u + w, f(u)] dxdt + j:w w(x,0)uy(x) dx =0,

for all C* test functions w(x, ¢) that vanish for | x| + # large.
Condition (1.2a) is equivalent to requiring that for all rectangles (a, b) x (¢,, t,) the
relation obtained by integrating (1.1a) over the rectangle should hold:

(1.2b) fbu(x,tz)dx—fbu(x,tl)dx+f'zf(u(b,t))dt-— “f(u(a, £)) dt = 0.

Clearly, a piecewise-smooth weak solution of (1.1) satisfies (1.1) pointwise in each
smooth region; across each curve of discontinuity the Rankine—~Hugoniot relation

(1.3) S(ug) — f(uy) = S(ug — uy)

holds, where S is the speed of propagation of the discontinuity, and u, and uj, are the
states on the left and the right, respectively.

Since weak solutions of (1.1) are not uniquely determined by their initial data, we
select physically relevant solutions, defined as those solutions that are limits as e — 0 of
solutions u(€) of the viscous equations

(1'4) U, +f(u)x = EUy,, e>0.

In this paper we consider systems of conservation laws (1.1) that possess an entropy
function U(u), defined as follows:

(i) Uis a convex function of u, i.e., U,, > 0.

(ii) Usatisfies

(1.5a) U, f.=F,

where F is some other function called entropy flux; it follows from (1.5a) that every
smooth solution of (1.1) also satisfies

(1.5b) U(u), + F(u), = 0.
Limit solutions of (1.4) satisfy, in the weak sense, the following inequality:
(1.6a) U(u), + F(u), = 0;

i.e., for all nonnegative smooth test functions w(x, ¢) of compact support
(1.6b) - fo - f © U + woF) dxdi - j: W, 0)Uuo(x)) dx = 0.

Condition (1.6b) is equivalent to requiring that for all rectangles (a, b) x (, ¢,) the
inequality obtained by integrating (1.6a) over the rectangle should hold:

S Uu(x, 1)) dx — f * Ulu(x, t,)) dx
(1.6¢) “ i
+ [ " Fub, 1) dr - [ Flu(a, 1)) dt s 0.

If u is piecewise smooth with discontinuities, then (1.5b) holds pointwise in the
smooth regions, while across a discontinuity

(1.6d) F(ug) — F(u) — S[U(ug) — U(u,)] =0.
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Relations (1.6) are called entropy conditions (see [12]).
In the following we shall describe numerical approximations to weak solutions of
(1.1) that are obtained by 3-point explicit schemes in conservation form:

(1.72) 1};“ =”1"'—>‘f;+1/2+7\f;~1/2, A=1/A,
where
(1.70) Ll =@ o))

Here v} = v(jA, n7), and f(u, v) is a numerical flux. We require the numerical flux to be
consistent with the physical flux in the following sense:

(1.7¢) S(u,u) = f(u).

We say that the difference scheme (1.7) is consistent with the entropy condition
(1.6a) if an inequality of the following kind is satisfied:

(1.8a) Uit' s U} — NF}, 0 + NF_ ),
where the following abbreviations are used:

(1.8b) U - UG, U - UG,
(1.80) Floip = F(, 0,);

here F(u, v) is a numerical entropy flux, consistent with the entropy flux:
(1.8d) F(u,u) = F(u).

The following is an easy (but useful) extension of an easy (but useful) theorem of Lax
and Wendroff [12]:

THEOREM 1.1. Suppose the difference scheme (1.7) is consistent with the conserva-
tion law (1.1a), and with the entropy condition (1.6a). Let v} be a solution of (1.7), with

initial values v) = ¢(jA). Extend the lattice function v} to continuous values of x,t by
setting, as usual

(1.9) v(x,1) =vf, j=I[x/A], n=[t/7].
Suppose that for some sequence A, — 0, 7/A =\, the limit
Al:_qlo v(x,t) = u(x,t)

exists in the sense of bounded, L\ convergence. Then the limit u satisfies the weak form
(1.2) of the conservation law, and the weak form (1.6b) of the entropy condition.
The proof consists, just as in [12], of multiplying (1.7a) by a test function, summing
by parts over n and j, writing the sum as an integral, and passing to the limit A, — 0.
Theorem 1.1 remains true, and its proof the same, when the fluxes f and F are
allowed to be functions of 2/ arguments:

(1.10) fj+1/z =f(u/>1+1, Uj 11250 * uj+l)’
and similarly for F;, ;.
Assume that u,(x) is equal to some reference state u, for|x|large:

(1.11a) ug(x) = uy for|x|> M.
Then
(1.11b) vi=uy forAlj|> M + nA.
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The entropy U may be altered by adding to it an arbitrary inhomogeneous linear function;
this follows from definition (1.5a). Adding such a linear function to U will not alter its
convexity, but achieves the following:

(1.12) U(uy) =0, U,(uy) =0.

Since U is convex, it follows from (1.12) that U(u) > 0 for u # uy; in fact if U is strictly
convex,

(1.13) U z clu — u*]’

Now sum (1.8a) with respect to j over all integers j; we obtain

(1.14a) durt=y U
J J

In other words: total entropy is a decreasing function of time. In particular

(1.14b) dur=y U
J J

This is an a priori inequality for solutions of the difference scheme (1.7), analogous to the
energy inequality for linear symmetric hyperbolic differential and difference equations.
Since by (1.13) U is positive for u # u,, this is an a priori estimate for solutions of the
difference scheme (1.7), and indicates that the scheme is stable. However (1.14b) is not
strong enough to prove the pointwise boundedness of solutions of (1.7), nor the existence
of convergent subsequences.

Theorem 1.1 holds in any number of space variables. Furthermore multidimensional
schemes that are composites of one-dimensional fractional steps satisfy the multidimen-
sional analogue of the entropy condition (1.8a) if each individual one-dimensional step
satisfies an entropy inequality of the form (1.8a); see Crandall-Majda [2].

A word of caution: when dealing with equations of mathematical physics, in
particular the equations of compressible flow, we must make sure that the difference
scheme we are using keeps the variables within their physical range, i.e., that density and
pressure are always positive quantities.

2. Upstream-differencing schemes. We start our review with the description of the
first-order-accurate Courant—Isaacson—Rees scheme [1], the simplest upstream differ-
encing scheme for the constant-coefficient scalar equation

(2.1) u, +au, =0, a = constant,
(2.22) S g g | T feras0
v —v;, fora>0.
Introducing the notation

a” = min (a,0) = Y5 (a —|al),

a* = max (a,0) = 5 (a +|al),
we rewrite (2.2a) as
(2.2b) it =l — Nat (v — v)) +a (V] — o)),
which can be rewritten as

(2.2¢) T =Nat ol + N1 —al) o] — Na "o,
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Under the Courant—Friedrichs—Lewy condition
(2.2d) AMal=1

all coefficients of » on the right in (2.2b) are positive. Such a scheme is called monotone,
and is stable in the maximum norm; that is, for a monotone scheme

(2.2¢) max |4/*'| = max ||
J J

Equation (2.2b) can be rewritten as
n+1 n A n n A n n n
(2.2f) Uj =1/j ~§a(1/j+l - 1/]'_1) +§Ia|(1/j+l - 21/]' + ‘Vj__]).

This shows that solutions of (2.2) can be thought of as approximating solutions of
(23) w,+awx=‘/zAx|a|(1 _Alal)wxx

to second-order accuracy. We observe that the viscosity term in (2.3) vanishes for a = 0;
this fact later will allow perfectly resolved stationary shocks but may also result in
admitting entropy violating discontinuities.

We describe now the extension of (2.2) to systems of equations with constant
coeflicients:

(2.4) u, + Au, =0, A = constant.

Because of the hyperbolicity assumption, the system (2.4) can be diagonalized by a
similarity transformation

(2.52) w=T"u, T 'AT=A, A;=a}
(2.5b) w, + Aw, = 0.

ijs

The components of w are called characteristic variables and (2.5b) is a system of
decoupled characteristic equations.

We extend the Courant-Isaacson—Rees scheme to systems by applying the scalar

scheme (2.2) to each of the decoupled scalar characteristic equations. In matrix form this
can be written as

A A
(2.6a) Wiy = SAGW = W) + 1AL O = 2] 4 W),

where the diagonal matrix |A| is defined by |A|; =|a;|8;. In the original variables, the
scheme (2.6a) takes the form

A A
(2.6b) g = 0f =S AW = o) + 51410 - 207+ 0 ),

where|A|= T|A|T~". Clearly, the stability condition for (2.6a) and (2.6b) is
At

(2.6¢) ix ’?xlakl =1.
In general we define the matrix x(A) by
(2.7 x(A) = Tx(M)T,  (x(A))y = x(a)é;.

We remark that under our assumption of a full set of eigenvectors we can compute x(A)
by x(A4) = P(A4), where P(x) is the Lagrangian interpolation polynomial such that
P(ai) =X(ai)’i= la s ,m
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In the following we shall describe various techniques to extend the upstream-
differencing scheme (2.6b) to nonlinear systems of conservation laws (1.1).

The linear system (2.4) can be regarded as a system of conservation laws (1.1a),
where the flux depends linearly on u:

(2.8a) f(u) = Au.

The upstream-differencing scheme (2.6b) is in conservation form (1.7), with numerical
flux given by

(2.8b) fu,v) =A*u+ A" v

where A* and A~ are the positive and negative parts of A, defined by the functional
calculus (2.7) as

(2.8¢) A" =x"(4), A =x(A4)

where we set

(2.8d) x"(@=a", x(a)=a.
Note that since x*(a) + x (@) = a,and x* (@) — x"(a) =|al, we can write
(2.9) A" =h(A+|Al), A =h(A4-]|A].

DEFINITION. A difference scheme in conservation form (1.7) is said to be an
upstream scheme if:

(i) For u and » nearby states, (2.8b) is a linear approximation to the numerical flux
S(u,v).

(ii)) When all signal speeds associated with the numerical flux f(u, v) are > 0,

S(u,v) = f(u).
When all signal speeds are < 0,
S(u,v) = f(v).

The relevant signal speeds generally differ from the characteristic speeds of the states u
and v.

We restate (i) in analytic terms: Suppose u and » are near some reference state uy;
then we require that

S, v) = flug) + A" (ug) (1 — uy) + A (us) (v — uy)

(2.10a)
+o(|u — ug|+|v — uygl).

A natural choice for u, is (4 + v)/2; setting this into (2.10a), making use of (2.9) to set

AT — A =|A]|
and noting that
u-+v u) + v
() - L0y
we get

(2.10b)  f(u,v) =

S(w) + f(v) _1‘A(u_H) (v —u) +o(lu—v|).

2 2 2
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We can write any numerical flux in the form

Sw) + () 1

(2.11a) f(u,v) = > —2-d(u, v);

for the sake of consistency (1.7¢) we need
(2.11b) d(u, u) =0.

The upstream condition (2.10b) can be expressed then as

(2.11¢) d(u,v)='A(u+v) (v — u) + o(lu — v]).

2

Formula (2.6a) shows that linear upstream difference schemes contain a large dose
of artificial viscosity, except for those components where a, is small, in particular where
a; = 0. The same appears to be true for all upstream difference schemes for nonlinear
conservation laws: when all characteristic speeds are not zero, each component is treated
like a scheme with a hefty amount of artificial viscosity, smearing discontinuities. There is
however quite a distinction among the schemes when one of the characteristic speeds is
zero; this shows up in the way each scheme resolves a stationary shock, centered transonic
rarefaction wave, and stationary contact discontinuity. We turn now to examining these
matters.

The most critical difference in performance occurs in resolving a stationary shock
(see (1.6d)):

u,

x <0,
(2.12a) Uy(x) = { 0 fw) = f(v), F(v) < F(u).

v, x>0,

The lack of numerical dissipation allows the design of schemes that perfectly resolve

stationary shocks, i.e., (2.12a) is a steady solution of the numerical scheme. The condition
for that is

(2.12b) d(u,v) =0 if f(u) = f(v), F(v) < F(u).
On the other hand
{u, x <0,
(2.12¢) uy(x) = F(v) > F(u)
v, x>0,

is not an admissible discontinuity and should not be a steady solution of the finite
difference scheme, i.e., we require that

(2.12d) d(u,v) #0 if f(u) = f(v), F(v) > F(u).

We remark that the danger that a given upstream scheme selects a nonphysical
solution will occur only for stationary or near-stationary discontinuities; otherwise there is
enough numerical viscosity in (2.3) to enforce the selection of a physically relevant
solution. Hence there are two options in designing an upstream-differencing scheme for
solving problems with discontinuous solution:

(1) to switch direction of differencing in a way that will effectively introduce
nonlinear dissipation at the expense of slightly spreading the shock;

(2) tosatisfy (2.12) and thus get perfect resolution of a stationary shock, but to add
a mechanism for checking the admissibility of the discontinuity.
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We turn now to describing various forms of d(u, v) in (2.11a). The most straightfor-
ward way to generate such functions is by
(2.13a) d(u,v) =|A|(u, v)(v — u),

where| 4| (u, v) is a matrix function of « and » that has nonnegative eigenvalues, and such
that

(2.13b) |41 (u, u) =|A@);

| A(w) |is defined by (2.7).
The simplest forms of (2.13) are

(2.14a) |A|(u,u)=<A(";”) ,
or
(2.14b) [Al(u,v) =L [|A@W)| + |A@)]].

The latter was used by van Leer in [13], and introduces some nonlinear numerical
dissipation that somewhat smears stationary shocks but on the other hand excludes
nonphysical discontinuities.

Another form of (2.13a) with (2.14a) has been suggested by Huang [10]:

u+v

@15) dtw0) = sen (4 (“52)) L@ - s

here sgn (x) is the sign of x, and sgn (A4) is defined by (2.7).
Yet another type of scheme has been designed by Roe [19]. His scheme is of the form
(2.13a), where the matrix function A(u, v) is required to have these properties:
()
(2.16a) f) — f(u) = A(u, v)(v — u).
(ii) A(u,v) has real eigenvalues and a complete set of eigenvectors.
(iii)
(2.16b) A(u, u) = A(u).

For the Euler equations of compressible flow Roe [19] has constructed a linearization of
form (2.16a) having these properties. We show now that such a linearization exists quite
generally:

THEOREM 2.1 (Harten-Lax). Suppose (1.1a) has an entropy function. Then (1.1a)
has a Roe-type linearization.

Proof. We shall construct an A4 satisfying (2.16a) which is of form 4 =BP, B
symmetric, P positive definite. Clearly, such an A is similar to the symmetric matrix
P'?BP'? and so has property (ii). In our construction we use the entropy function U(u);
since U is convex, the mapping u — w = U, is one-to-one; we introduce w as new variable
in place of u. Let u, and u, be two arbitrary states, w, = w(u,), w, = w(w,), fi = f(u,),

fo =f(u,). Then

fomfim [ O+ (L= ) 0
(2.17) 0

- L.lfwdﬂ(wz —w) = B(w, —w)).
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We claim that f, is a symmetric matrix; this implies that B is symmetric. To see about f,,
we use relation (1.5a); differentiating with respect to u we get

Uuufu + Uu.f;m = Fuu'

The second term on the left is a linear combination of symmetric matrices f*,; the right
side, F,,, also is symmetric. Therefore so is the first term

Uuuf;l'
It follows then that also

(2.18) LU

is symmetric.
Differentiating

w=U,
with respect to u shows that w, = U,,; therefore
U, =u,.

Substituting this into (2.18) shows that
fuu u, =fw

is symmetric, as asserted.
Next we express

d
Wy — wy — f‘ 2 WO + (1 = O)uy) a0
(2.19) 0

= fl w,di(u, — u,) = P(u, — u,).
0

Using w, = U, and the convexity of U we conclude that P as defined by (2.19) is positive
definite.

Combining (2.17) and (2.19) gives
So—fi=BP(uy — uy) = A(u, — uy).

Thus the 4 we have constructed can be factored as BP, as asserted. Condition (2.16b) is
clearly satisfied. [J

Note that B depends symmetrically on w; and w,, and P symmetrically on u, and u,.
This shows that 4 is a symmetric function of u, and u,.

A similar result holds for systems of conservation laws in any number of space
variables as long as there is an entropy (see Harten [8]).

Having constructed A, we can define its absolute value by (2.7); then we set

(2.20) d(u,v) =|A(u, v)| (v — u).

When u and » correspond to a stationary discontinuity (2.12), then it follows from
f(v) — f(u) = 0and (2.16a) that v — u is a null vector of 4 (u, v), and consequently in the
null space of |A(u,v)|; thus d(u,v) =0, whether or not the entropy condition
F(v) — F(u) <0 is satisfied. Therefore the corresponding upstream differencing may
admit nonphysical solutions. In an appendix to [9], Harten and Hyman describe a
viscosity-like term, i.e., of the form (3.33a), that can be added to (2.15) and (2.16) to
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reject inadmissible discontinuities without affecting the perfect resolution of the physical
ones.

Yet another way to construct d in (2.11c) is
(2.21) d(u, v) = f”lA(w)Idw,

where the integration in (2.21) is carried out on a path in state-space connecting « and ».
Osher in [16] suggests a path of integration I' that is piecewise parallel to the right
eigenvectors R, of A:

(2.22a) r-Jr,
k=1
du*
— = Ry (u), O<l<l, k=1,-+.,m,
(2.22b) reldl F g
W (L) = u(0),
(2.22¢) WOy =u, u'(,)=v.

Existence of a unique solution to (2.22b)—(2.22c) is guaranteed if |u — | is sufficiently
small [16]. A consequence of this choice of path is that 4 in (2.21) decouples into
characteristic contributions

(2.23) d(u,v) = kz l’“lak(u(l))l R (u(l))dl.

Osher shows that limit solutions of (2.11) with (2.23) satisfy the entropy condition
and that a stationary contact discontinuity is perfectly resolved; the representation of a
stationary shock requires at least one intermediate state.

3. Godunov-type schemes.

A. The general theory. Godunov, in his construction of the “best” monotone scheme
[4], has used the exact solutions of local Riemann problems to obtain an upstream-
differencing scheme.

The solution of the Riemann problem

{uL, x <0,
3.1 u, + f(u), =0, u(x,0) =

ug, x>0,

depends only on the states u; and uy and the ratio x/¢; it will be denoted by u(x/¢; u;, ug).
Since signals propagate with finite velocity,

(3.2a) u(x/tu, ug) =u; forx/t=a,
(3.2b) u(x/tug, ug) = ug forx/tz ag;

a; and ag are the smallest and largest signal velocity.
Godunov derives his scheme by considering the numerical approximation »(x, t,) of
the discrete time levels 7,,n =0, 1, - - -, to be a piecewise constant function in x, i.e.,

(3.3a) v(x,t,) =vf forxinl = ((j—h)A, (j + A)A).

To calculate the numerical approximation at the next time level ¢,,, = ¢, + 7, we first
solve exactly the initial-value problem

(33b) U, +f(u)x = 0’ u(xa tn) = v(x, tn), — < X < o,
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for t, =t =t,+ 7, and denote its solution by u,(x, ). Each discontinuity in »(x,?,)
constitutes locally a Riemann problem. If we keep \|ay,,| < '2 where | a,,,| is the largest
signal speed, then because of (3.2) there is no interaction between neighboring Riemann
problems, and u,(x, t) can be expressed exactly in terms of the solutions of local Riemann
problems:

—(i+ %A
%;v}‘,v}'ﬁ) forjA<x<(+ 1A, t,=t=t,,.

(3.3¢) u,(x,t) =u (

Godunov obtains a piecewise-constant approximation v(x, ¢, ,) by averaging u,(x,t,.,),
i.e., he sets

1
(3.3d) o -3 f U,(x, t, + 7) dx.
1

J

We can rewrite (3.3d) in terms of the solutions to the local Riemann problem as
n 1 n n 1 0 n n
(3.4a) vt = A ‘/O’A/z u(x/7;vj_y, vj) dx + 3 [A/Zu(x/r; vj, vj,,) dx.

Since u, is an exact solution of the conservation laws (3.1), we can evaluate the integral
defining »/*" in (3.3d) by applying (1.2b) over I; x (t,, Z,,,); we get

(3'4b) V}'H = 1/7 - k[f(ajn/z) _f(i)j—l/Z)]y
where
(3.40) aj+l/2 = u(O; 1/;1, U;I+l).

This shows that (3.4b) is in conservation form, with
(3.4d) S, w) = f(u(0; v, w)).

The exact solution u,(x, t) of the Riemann problem satisfies the entropy condition
(1.6¢):

[ U(un(X, 1,,1)) dx = AUW) — 7F(9;,12) + TF(9;_1).

Since U'is a convex function, Jensen’s inequality holds:

U(%[u(x,t) dx)é%[ U(u(x, 1)) dx.

Combining the last two inequalities, we deduce that Godunov’s scheme satisfies the
entropy inequality (1.8a).

The description (3.3c) makes sense only if the local Riemann problems don’t
interact, i.e., if

xIamax|< 1/2-

On the other hand, (3.4b) remains consistent with (3.3d) as long as the waves issuing from
(Jj = '2)A do not reach (j ¥ 15)A during the time interval ¢, = ¢ = t,,,. This will be the
case as long as

Map = 1.

It follows from the Rankine—~Hugoniot relation (1.3) that f(u(s; v, w)) — su(s; v, w)
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is a continuous function; however it is only piecewise differentiable. It follows that the
Godunov flux function f(», w) defined by (3.4d) is only piecewise differentiable.
Godunov’s scheme satisfies criterion (ii) for upstream schemes because of (3.2). To

'm

FiG. 1.

verify that it also satisfies criterion (i) we shall show that Godunov’s scheme, when
applied to linear equations, reduces to (2.6b).
Consider

(3.52) u, + Au, =0,

A a constant matrix. Here the solution of the Riemann problem is composed of constant
states separated by a fan of m characteristic lines (see Fig. 1).

(3.5b) u(x/tyug,ug) =u, foray<xft<a,,, k=0,--.,m,
where we have defined
uo = u,_, u,,, = uR, ao = —O00, am+l = 400,

The intermediate states ug can be calculated from the representation of ugx — u; in terms
of the right eigenvectors R, of A4 in the following way:

(3.5¢) Up — Uy = Z JiR;,
i=1
k
(3.5d) we=u,+ _JiR.
i=1
We can write this by (2.7) as
(3.5¢) U =up + 0, (A)(ug — uy)

where o, is the function

1 fora<ay,
(3.5f) o (a) =
0 forax> a.
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Let IV be an integer such that
ay<0<ay,,.
Then by (3.5¢)
u(0;up, ug) = uy = up + on(A)(ug — u;)
= (I = op(A))uy + on(A)ug.
Since by (2.8a), in the linear case f(u) = Au, substituting (3.6) into (3.4d) gives
Sf(u,v) = AU — oy(A))u + Aoy(A)v.

From the functional calculus (2.7) and (2.8c) we deduce that

Al — oy(A4)) = A7, Aoy(A4) =47,

3.6)

so that
flu,v) =A*u + A0,

in full agreement with (2.8b). Thus in the linear case Godunov’s scheme reduces to the
upstream scheme (2.6b).

The solution to the Riemann problem (3.1) has a rather complicated structure: as in
the constant coefficient case (3.5), the solution to (3.1) depends on x/¢ and consists of
constant states u,, k=0, - - -, m; uy = u,, u,, = Ug, separated by a fan of waves. Unlike
in the constant coefficient case, the k-wave separating u,_, and u, is not necessarily a
single line having a characteristic speed a,. If the kth characteristic field is genuinely
nonlinear then the k-wave is either a rarefaction wave (a,(u,_,) < a,(u;)) or a shock
propagating with speed S, (a;(ui_,) > S > a,(u,)). If the kth characteristic field is
linearly degenerate then the k-wave is a contact discontinuity propagating with speed
a(uy 1) = a(u) (see [12]).

It is evident from (3.3d) that, due to averaging, the Godunov scheme does not make
use of all the information contained in the exact solution of the Riemann problem. We
therefore consider replacing the exact solution to the Riemann problem u(x/t; u;, ug) in
(3.4a) by an approximation w(x/f; u;, ug); the latter can have a much simpler structure
as long as it does not violate the essential properties of conservation and entropy
inequality. The following theorem due to Harten and Lax [7, Thm. 2.1] shows that this
type of approximation is consistent:

THEOREM 3.1 (Harten-Lax). Let w(x/t; u;, up) be an approximation to the solution
of the Riemann problem that satisfies the following conditions:

(i) consistency with the integral form of the conservation law in the sense that

A
(3.72) S 2wt ) dx = 5 (e + ) = ofa + 7

for A/2 > 7 max|a,|, where
Sr =f(ug), Jo=f(uy);
(ii) consistency with the integral form of the entropy condition in the sense that
(3.7b) S ://22 Uw(x/t; up, ug)) dx = % (U, + Ug) — 7Fg + 7F,
for A2 > 7 max|a,|, where

Fgr = F(ug), Fp=F(u).
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Using the approximation w to the Riemann problem, we can define a Godunov-type
scheme as follows:

1 1
(3.8) 5ot lA/z W/ 8501, 0f) dx + 1 f Ao/zw(x/t; o0 dx.

Assertion. If conditions (3.7a) and (3.7b) are satisfied, the scheme (3.8) is in
conservation form consistent with (3.1), and satisfies the entropy inequality (1.8a).

For proof, see [7, after Thm. 2.1]. It is shown there that the Godunov-type averaging
can be replaced by Glimm-type sampling. [7] contains a good account of this technique
and an analysis of its accuracy.

Theorem 3.1 shows that Godunov-type schemes that satisfy conditions (i) and (ii)
above satisfy the hypotheses of Theorem 1.1; this shows that if such a scheme converges,
the limit satisfies the conservation law and the entropy condition in the weak sense.

We note that Godunov’s scheme is of Godunov type.

We have shown at the beginning of this section that Godunov’s scheme (3.3) can also
be written as a scheme (3.4) in conservation form. The appropriate numerical flux was
obtained from the integral conservation laws (1.2b). We show now that all schemes of
Godunov type can be expressed in conservation form; we can obtain the appropriate
numerical flux by applying the integral conservation law (1.2b) to the approximate
solution of the Riemann problem over the rectangle (—A/2,0) x (0, 7):

(3.92) R L = VA AR

where

Jir = f(ug, ug).
This gives

A
(3.9b) fir=fr—7" /:; 2w()c/'r; U, ug) dx + % uy.
If we apply the integral conservation law (1.2b) over the rectangle (0,A/2) x (0, 7), we
obtain

A
(3.9¢) fin=fet T j(: Vw7 ug, ue) dx — 5 .

The equality of (3.9b) and (3.9¢) is just the content of the consistency relation (3.7a).

Using formula (3.9b) for f;,,,, in (1.7b) and (3.9¢) for f;_,, in (1.7b) and setting the
resulting expressions into (1.7a) gives (3.8), i.e., it puts the Godunov-type scheme in
conservation form (1.7a):

(3.10) g = = LU v0) [ 9]

If all signal speeds are positive, then w(s; u,, uz) = u, for s <0; according to (3.9b)
in this case f;x = f;. Similarly, if all signal speeds are negative, then w(s; u,, ug) = ug for
s> 0; it follows from (3.9c) that in this case f;z = fx. This is property (ii) of upstream
schemes, which is thus satisfied by all Godunov-type schemes.

In a scheme of Godunov type we can incorporate into the numerical flux all physical
insights that we can put into the approximate solution of the Riemann problem. Also, as
Harten and Lax pointed out in [7], a Godunov-type scheme (3.8) can be used just as easily
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on a grid that varies in time, by adjusting the intervals of integration on the right in (3.8).
This makes these schemes the natural choice for adaptive grids; further development of
such algorithms and numerical experiments are described in Harten and Hyman [9].

B. Construction of particular Riemann solvers. We turn now to describing two
different approximate Riemann solvers, and the Godunov-type schemes corresponding o
them. The first, due to Roe, is based on a linearization notion of type (2.16). Roe
approximates solutions of the Riemann problem for (3.1) by exact solutions of the
Riemann problem for the following linear hyperbolic equation with constant coefficients:

U, x< 0,
(3.11a) w, + Agw, =0, w(x, 0) =
ug, x>0.

Here A, is a matrix that satisfies (2.16a)—(2.16b) and has properties (i)—(iii) listed
there. Combining (2.16a) with (3.5¢) yields

(3.11b) Sr —fr = Ar(ug — uy) = Z a;J;R;,

where g; are the eigenvalues of A4,;, R; the corresponding right eigenvectors, and J; the
coefficients in the resolution (3.5¢):

(3.11¢) Ug — U = Z JiR,.

The approximate Riemann solver is given by (3.5b), with u, defined by (3.5d).
The numerical flux associated with an approximate Riemann solver is given by
(3.9b); substituting (3.5d) into (3.9b) we get

(3.12a) fir=fi+D_ai JiR,
where

a” = min (a,0) = Y(a —|al).

Substituting this into (3.12) and using (3.11b) gives

Jir="%(fL +fr) — I/ZZlailJiRi

= %h(fr+ fr) — Ll Akl (ug — up);

in the last step we have used the definition of | 4 |as given by (2.7). Indeed, (3.12b) is Roe’s
scheme defined in (2.11a), (2.20).

As already pointed out in §2, Roe’s scheme admits nonphysical, i.e. entropy-
violating, stationary discontinuities. In an appendix to [9], Harten and Hyman show how
to modify Roe’s scheme to eliminate such entropy-violating discontinuities while retaining
those that satisfy the entropy law.

We note that the numerical flux (3.12b) of Roe’s scheme resembles Osher’s scheme
(2.23). There the jumps J in the characteristic state variables are represented by the path
length /,. Osher’s scheme, however, is not of Godunov type in the sense of (3.9) since the
integration path T' in state-space does not correspond to a univalued approximate
Riemann solution w(x/t, u,, ug) as in (3.8).

Roe’s Riemann solver contains a great amount of detail: m — 1 intermediate states.

(3.12b)
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We describe next a hierarchy of Riemann solvers where much of this detail is lumped
together. The simplest of these schemes contains only one intermediate state.
i) Denote by a, and ag lower and upper bounds, respectively, for the smallest and

largest signal velocity, calculated according to some algorithm. Define the approximate
Riemann solver by

u, forx/t<a,
(3.13) u(x/tug,ug) ={ue fora,<x/t<apg,
ugp foragp<ux/t,

where the state u, ; is determined from the conservation law (3.7a):

A
(rap + A/2)uy + 7(ag — a)ur + (A/2 — Tag)ug = 3 (u + ug) — 7[fr — f1].
This gives

QgUug — aru; Jr— 11
ag — a ag —a;

(3.14)

Uig =

We turn now to the determination of the associated numerical flux. We substitute (3.14)
into (3.13), and then into (3.9b):

fi when 0 < a,,
—a a aa
(3.15a) fix = L e+ R fi LR (ug — u;) whena; <0 < ug,
rR— 4L ag — ay ag — a;
Sfr when ag; < 0.

This can be combined into a single formula

ag —a; ag’ —a;’ 1 agla;| — a;|ag|
3.15b = + — = (ug — uy).
GSt) S By By el el

Since u;z was chosen to satisfy the conservation law (3.7a), we conclude that u,, is the
mean value of the exact solution over the interval (ra,, rag). It follows therefore from
Jensen’s inequality that (3.15) satisfies the entropy inequality (3.7b).

Suppose that u, and u, can be connected with a shock of the first or the mth family.
In these cases the exact solution is

[uL forx/t <SS,
(3.16) u(x,t) =

ug forS<x/t,

where S is the speed of propagation of the shock. Suppose the algorithm for calculating a,
and ag is such that it furnishes a, = S or a; = S, depending on whether the shock belongs
to the first or the mth family. Then it follows from the equality of u,, with the mean value
of the exact solution that (3.15) is the exact solution.

ii) We describe next a class of approximate Riemann solvers, where u; and uy are
linked through fwo intermediate states. These states are so chosen that:

a) The conservation laws are satisfied.

b) If the exact solution of the Riemann problem links u; and uy through a single
shock (or contact discontinuity) of any of the m families of waves, then so does the
approximate Riemann solver.
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c) The entropy law is satisfied.

Such an approximate Riemann solver was constructed in [7]; the one presented here
differs from it in some important details. We are grateful to Paul Woodward for a
suggestion which has been incorporated in the scheme.

Let the velocities a; and ay be defined as in approximation i) described above. We
define a velocity V as follows: Let U be an entropy function defined by (1.5); denote its
gradient by w = U,, and introduce the abbreviation

(3.17a) w(ug) — w(u,) = Iz
We set
(3.17b) V=1 (fr _fL)/lLR  (ug —uy)

where the dot denotes the Euclidean scalar product.
Next we show that Vis well defined, and derive its salient properties:
LEMMA 3.2:1) The denominator in (3.17b) is positive for u; # ug.
il) Vis uniformly bounded.
iii) If u, and ug satisfy the Rankine—Hugoniot condition (1.3),

(3.18) Jr = fo=S(ug — u,),
thenV =S.
Proof. i) Combining (3.17a) and (2.19),
(3.19) Iir - (ug — u) = P(ug — uy) - (ug — uL);

since P is positive definite, the above quantity is positive for uz # u;.
ii) Use (2.17), (3.17a) and (2.19) to express the numerator of (3.17b), and (3.19) for
the denominator; we get
_ P(ug — u;) - BP(ug — u;)
(ug — u) - P(ug — uy)
This is a ratio of two quadratic forms and therefore lies between the smallest and largest
eigenvalue of P'/>BP'/%. These are equal to the eigenvalues a; of 4 = BP constructed for

Theorem 2.1. In fact, ¥ can be represented as a weighted average of the eigenvalues of A.
iii) Setting (3.18) into (3.17Db) gives

V=_S.

This completes the proof of Lemma 3.2.
We now outline two methods for constructing approximate Riemann solvers

w(x/t; u;, ug) with two intermediate states u} and u} separated by the line %5 = V;ie., w
is of the form

Uy, x/t <a,

uf, a, <xft<V,
(3.20) w(x/t;ug, ug) =

ug, V<x/t<ap,

Ug, ag < x/t.
(See Fig. 2.)

The flux across the line x = st for equation (1.1) is defined as

(3.21) fi(u) = f(u) — su.
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t
dx 1
Z_v
dt |
J | dx _
X =ag
E=a" | dt
|
|
|
|
|
[
I
|
u, | ug
|
|

F1G. 2.

We introduce a numerical flux across the line x = V#, denoted as

S(ug, ug).
We require consistency with the exact flux:
(3.22) Sv(u, u) = f(u) = f(u) — Vu.

Having introduced flux (3.21) across lines, we can write approximate conservation
laws for the triangular regions bounded by ¢t =7, x=V?, and x =a;t or x =agt
respectively:

(3.23a) WV — ap)uf + filug, ug) — f,,(u) =0
and
(3.23b) (ag — VYuf + fo (ug) — filug, ug) = 0;

uf and u¥ can be determined from (3.23). Clearly, since (3.23a,b) are conservation laws,
the resulting scheme (3.20) satisfies the consistency relation (3.7a). Thus requirement a)
on conservation is fulfilled.

We turn now to requirement b), the exact resolution of single shocks and contact
discontinuities. A shock or contact discontinuity is characterized by the Rankine-
Hugoniot condition (3.18) and the entropy condition (1.6d). Using the notation (3.21),
these can be written as follows:

(3.24) Ss(u) = fs(ug),  Fs(u.) z Fs(ug)
where
(3.25) Fs(u) = F(u) — SV.

We denote by f v a vector function that has the following property:
If fy(u.) = fy(ug), then

(3.26) Folug, ug) = filuy) = filug).
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Below we shall specify two distinct ways of constructing such an f,. We now set

(3.27) S(ug, ug) =fV(uLa ug) — B(ug, ug)(ug — ur),
where (3 has the following property:
(3.28) B(uy, ug) =0 when (3.24) holds.

We take (3.27) as our numerical flux. It follows from (3.26) that this flux satisfies the
consistency condition (3.22), and from (3.26), (3.28) and part iii) of Lemma 3.2 that
single shocks and contact discontinuities are resolved exactly.

Here are our choices for f vand B: we define 6z and §, by

(3.292) 6"’2,1::;’ aF%.

Note that

(3.29b) 0=08g 0=6,, O6g+6,=1.

Then we define

(3.30a) fur, ug) = Or fr(ur) + 0p fi(ug)

and

(3.30b) F s, ug) = filure) — fGrug + xug) + 80.f1 + Or frs

where u,  is defined by (3.14).

It can be verified immediately that % satisfies (3.26). To verify it for f % we note that
if fi{u,) = fi(ug), then u,z = 6xug + 6, u,; setting this into the right side of (3.30b) we see
that it equals the right side of (3.30a).

We define 3 as follows:

(3.31a) B=CB + GCpB,y
where

(3.31b)
Bi(ur, ug) = [Fy(ug) — Fy(uy) — 5 (up + ug) - (fy(ug) — fr(u )" " Ug — uL"_2

where p* denotes max (0, p), and

(3.31¢) Ba(uy, ug) = (ag — ay) ™" | filug) — filu )| lug — .l =2

The analysis in [7, §4] shows 3, is a bounded function.

By construction, 8, = 0 when the shock condition (3.24) is satisfied; 8, = 0 when the
Rankine-Hugoniot condition (3.18) alone is satisfied. Thus our choice of § satisfies
(3.28), and so requirement b) is fulfilled.

An analysis similar to that carried out in [7, §4] shows that the positive constants C,
and C, in (3.31a) can be so chosen that the entropy condition (3.7b) is satisfied. Thus is
requirement c) fulfilled.

To derive the numerical flux associated with the above Godunov-type scheme we
substitute (3.20) into (3.9b), using (3.23) to express uf and ug:

Jir= 1/Z{fL + fr + vl f(ur) — filug, ug)l

(3.32a)
+ Yl filug, ug) — filug)] — V] (ug — up)}
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where
_Wizlal a1V
V—a, ’ R ag—Vv

One can easily verify that when a, = 0, f; z = fr, and that when V' = 0, f;r = fy(u, ug).
If on the right side of (3.32a) we substitute (3.27) for f;(u,, ug), the following term
containing 8 appears:

(3.33a) —h(vr — vL) B(ug — uy).
From (3.32b)

(3.32b) YL

0 ifa, > 0orag <0,
|aL| .

— ifa;, <0< V<ag,

(3.33b) Ylve — ) ={lal+ V] ~°* *
|aR| .

e f V<0 ,

Tanl & V] ifa, <V<0<ag

a nonnegative quantity. This shows that 8 enters the difference scheme as an artificial
viscosity. Note that, unlike classical artificial viscosity, our 3 is zero across a shock and is
positive across an incipient rarefaction wave.

Unlike the previous schemes described in this review, the schemes (3.32) are
nonlinear even when applied to linear equations. Thus it is not upstream in the sense of our
definition in §2. The decrease of entropy guarantees the L, stability of the scheme.

For systems with many components, (3.32) requires less computational effort than
either Godunov’s or Roe’s scheme; more experimentation is needed to see whether its
accuracy is comparable.

Schemes of type (3.32) are especially suitable for computation on a moving mesh: we
move each meshpoint with velocity V. Such mesh algorithms have been studied in [9].

We remark that any scheme in conservation form (1.7) with a numerical flux f(u, v)
that yields perfect resolution of discontinuities but also admits entropy-violating ones may
be corrected by modifying its numerical flux to be

Sf(u,0) = CiB(v — u).

4. Flux-splitting. In this section we discuss generalizations of the upstream-
differencing scheme (2.6b) to nonlinear systems of conservation laws that are based on
the flux-splitting

(4.12) Sy =f7(w) +f~w).

We consider schemes in conservation form (1.7a) with the numerical flux
(4.1b) SCu,0) = f7(u) +f(v);

clearly (4.1a) implies the consistency relation (1.7¢). Let us define

(4.2a) Siw)=f7(w) = f~(w),

and rewrite (4.1b):

(4.2b) SCu,0) =% [ f(w) + f() = (f*(0) = f“(W))].

Recalling the notation (2.11a) we write

(4.20) d(u,v) = f*(v) — f*(u).
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It is easy to see that (4.1)—(4.2) reduces to (2.6b) in the constant-coefficient case if and
only if f“(w) becomes| A4 |w.

Steger and Warming [22] introduced the notion of flux splitting for the equations of
gas dynamics. They took advantage of the fact that in gas dynamics f'is a homogeneous
function of w of degree one. Then Euler’s identity holds:

(4.3a) Sf(w) = A(w)w, A=f,.
Steger and Warming define
(4.3b) fTw)y=Aa"(ww, (W) =4 (w)w,
where A" and A~ are defined by (2.7), (2.9). Clearly (4.1a) is satisfied; (4.2a) becomes
(4.3c) Sow) =1Aw)|w,
where| A(w)|is defined by (2.7).
Substituting (4.3c) into (4.2¢) gives, after rearrangement,
(4.3¢) d(u,0) =L (JAW) |+ |A@))(@ — u) + L (| A@)| - 4@) ) (u + v).

The right-hand side is of the upstream form (2.11c¢), except for those nearby values of
u and v for which sgn a,(«) # sgn a,(v) for some k. The consequence of this nonsmooth-
ness is a kink in computed solutions near such transitions, e.g. near sonic points. This can
be rectified to some extent if one replaces |A| by x(A4), where x(s) is a smooth
approximation to|s|; see Steger [23] or Harten [5]. Van Leer [15] has derived a smooth
flux splitting for the Euler equations without reference to (4.3a).

We describe now a way of splitting when f(u) is not a homogeneous function of u, by
introducing a reference state u, and applying the mean-value linearization (2.16a) to u
and u:

(4.42) S) — fuo) = A(uo, u)(u — o).

We consider u — u, to be a new state variable, and f(u) — f(u,) to be a new flux function;
denote them again by u and f(u), respectively. Thus any solution of the conservation law
(1.1) satisfies

(4.4b) u, + [A(u, w)u], =0.

The new flux

(4.5a) S(u) = A(uy, w)u

can be split as

(4.5b) f(u) = A" (ug, w)u + A" (uou)u = (1) + f~(u),

exactly as in the homogeneous case (4.3a).

We turn now to a class of upstream schemes that are a natural generalization of
Steger and Warming’s flux splitting. These schemes are obtained by approximating each
conservation law in (1.1a) by a collisionless Boltzmann equation.

Let ¢(x, 1, g) be a vector function whose ith component denotes the density of a
particle of ith kind at position x and time ¢, travelling with velocity g. We assume that the
particles stream freely, i.e. that ¢ satisfies the collisionless Boltzmann equation:

(4.6a) ¢+ q¢.=0.
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Note that the densities of the different kinds of particles are completely decoupled.
Using equation (4.6a) we can determine the value of ¢ for £ > 0 in terms of ¢o(x, q) =
#(x,0,9):

(4.6b) d(x,1,9) = do(x — g1, 9).
We denote by z and g the total density and flux associated with the density ¢:

(4.7a) 2t 0) = [6(x,1,9) dg,

(4.7b) g5, = [qo(x,1,9) dg.

These satisfy the conservation law obtained by integrating (4.6a) with respect to g:
(4.8) z,+ g, =0.

The initial values of z and g can be obtained by setting t = 0 in (4.7):

(4.9) () = [oc. 0 da, &) = [qou(x.9) da.

If the initial values of z and g are equal to those of u and f(u):

(4.10) zo(x) = uo(x),  go(x) = f(uo(x));

then for ¢ small enough the solution z of (4.8) would be a reasonable approximation to the
solution u of (1.1a). We show now how to choose ¢, so that (4.10) holds: we introduce a
vector distribution u(q, ©), depending on a vector parameter u, satisfying

(4.11a) [ 1w, ) dg = u,
(4.11b) [ an(a, w) dg - fw).
Then we simply set

(4.12a) bo(x, @) = u(q, up(x)).

Substituting (4.12a) into (4.9) and using (4.11) shows that (4.10) is satisfied.
Equation (4.8) can be solved explicitly; as in the Godunov-type schemes, averages of
these explicit solutions will be used to approximate solutions of (1.1a).

Let »(x) be an approximation at ¢, to the solution u of (1.1a). We define the initial
value ¢, by (4.12a):

(4.12b) bo(X, 9) = u(g, v(x)).

Using this in formula (4.6b) for the exact solution of equation (4.6a) gives
(4.12c) é(x,t,q) = n(q,v(x — qt)).
Substituting this into (4.7a) results in

(4.13) 26,0 = [ (g, v(x — qn) dg.

We assume that » = ¢" is piecewise constant. We define an approximation »"*' to u at
l,1 = I, + 7 that is piecewise constant on each interval I; = (x;_;, X;,1/,) by defining the
value 2! of »"*' on I, to be the average of z(x, 7) over I,. Using (4.13) we get

(4.14) gt =1 [ fua v x — gr) dg .
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We show next how to express (4.14) as a scheme in conservation form. We integrate
(4.6a) over the rectangle I; x (0, 7); we get

T Xjr1/2
dx| + [ qeat =0.
Sodx|, L a0 .
We integrate this with respect to ¢, obtaining the conservation form
(4.15a) |GI@ = o) + 7(ffap = fi1) =0,

where ¢/*', o] are the values of v"*' v on I, and [, 12 1s defined by

7'f;'-H/Z = f»/o.f q¢(xj+l/29 Z ‘1) dt dq»

with f7_,, defined similarly. Using (4.12c) to express ¢ on the right-hand side we get

(4.15b) Shap= [ [ an@. (.00 - a0) di dg.

This is the numerical flux associated with the scheme (4.14).

We show now that this numerical flux is consistent with the flux fin (1.1a). Let’s
take the case, sure to be satisfied in any scheme of practical significance, that p has
bounded g-support. Then it follows from (4.15b), and the fact that ¢" is piecewise
constant, that there is an integer /V, whose value depends on 7, such that

f}‘+1/2 =f(y}’—N+l$ R v;‘:_,v).

Suppose v,y =v, k= —N +1, . - -, N; then v"(x;,,/, — g¢) on the right-hand side
of (4.15b) equals v on the g-support of u; using (4.11b) we see that the right-hand side of
(4.15b) equals 7f(»). This proves consistency.

We turn now to the task of determining the distribution u. Clearly, since only the first
two moments of u are specified by conditions (4.11), there is a great deal of leeway. For
guidance we turn to the linear case,

f(u) = Au, A constant.
The solution of the linear equation
(4.16a) u, + Au, =0,

with initial values u(x, 0) = uy(x), has the form
(4.16b) u(x,t) = y_ Pug(x — a;t).
Here a; are the eigenvalues of A4, and P, is projection onto the line spanned by the right

eigenvector R;. On the other hand, substituting (4.6b) into (4.7a) gives the following
expression for z:

(4.17) 2(06,0) = [ do(x — gt.q) dg.
Clearly, comparing (4.16b) and (4.17) we see that

(4.18a) z(x,t) = u(x,1)

if

(4.18b) do(x, @) = D_ Piuy(x)6(q — a;).
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It is not hard to show that (4.18a) holds for no other choice of ¢, whose support is bounded
in x and q. Setting (4.18b) for ¢, into (4.12a) we conclude that u must be of the form

(4.19) (g, u) = 8(q — a) Pu.

We turn now to the nonlinear case. As we have shown earlier in this section, the flux
can be put in form (4.5a):

S(u) = A(w)u

where the matrix 4(u) has real eigenvalues a,(u#) and a complete set of eigenvectors.
According to the spectral theory of matrices,

(4.20) > P=I, Y aP -A.

It follows from this that the distribution i defined by (4.19) satisfies relations (4.11) even
when q, and P; are functions of u.

Since relations (4.11) are linear, the most general u that satisfies (4.11) is of the
form

(421) M(q’ u) = ﬁ(q’ u) + ’7(4, u)’

where 7 is any distribution whose first two g-moments are zero for all values of u.

We call schemes of form (4.14) Boltzmann-type; we list some of their properties.

(a) Suppose the support of the distribution u is contained in |g| = Q. Suppose for
simplicity that the mesh over which we discretize is uniform, i.e., that each interval I; has
the same length A. Then it follows easily that (4.14) is a three-point scheme if 7 is chosen
so that

(4.22) Q= A

For Boltzmann-type schemes, the flux (4.15b) splits naturally into two parts. We
define

u(g,u) forgqz0,
M+(q’ u) =

0 forq <O,
(4.23)

0 for g > 0,
p_(q,u) =
u(g,u) forqg<O.

Clearly u = p, + p_; substituting this into (4.15b) we obtain a splitting

S =flap+fian

If (4.22) holds, f /', /, depends only on »;, and f ;,;, only on v;, ;, as in (4.1b).

(b) Suppose fis of the form (4.5a) and u is chosen to be of form (4.19). The support
of 4 extends from ap, t0 @, S0 Q =max;|q;|, and the restriction (4.22) is the
Courant—Friedrichs—Lewy condition. The decomposition of f is

i, =2 8(q - a)Pu, p_o=> 8(q—a)Pu.

a;z0 a;<0

Substituting this into (4.15b) gives
Siip=A"(v)vy; Sinp=A(v1)v,



UPSTREAM DIFFERENCING AND GODUNOV SCHEMES 59

where A* and A~ are the positive and negative parts of the matrix 4 defined by (2.7) and
(2.9). This is the Steger—Warming scheme (4.3).

(c) Consider the equations of compressible flow in Euler coordinates. In this case the
three components of ¢ describe the transport of mass, momentum and energy. Since
momentum is mass x velocity, and ¢ is velocity, it is reasonable to stipulate that the
second component of ¢ be g times its first component. In view of (4.12a), this would be the
case if and only if the same relation holds for the components of u:

u® = qu,
We claim that this is true for fi as given by (4.19). For
P,'u = w,'R,'
and so, by (4.19),
(4.242) i=2_d(qg—a)wR,
4.24b) qi = Z 6(q — a))a;w;R,.

For the equations of compressible flow, the first component £V of flux and the
second conserved quantity u® are equal. This implies that the first row of A =f, is
(0,1, 0). It follows then from the eigenvalue equation

AR,’ = a,~R,~

that the second component of R; is a; times its first component. This shows that the second
component of (4.24a) equals the first component of (4.24b), as asserted.

The use of i as given in (4.19) in a Boltzmann-like difference scheme for the Euler
equations goes back to Sanders and Prendergast [21]. Other choices of u are found in
[11],[17],and [18].

(d) We analyze now the stability of Boltzmann-type schemes for linear equations
with constant coefficients. In this case we take u to depend linearly on u,

(4.25) (g, u) = M(q)u,

M a matrix-valued function. The consistency conditions (4.11) become

(4.26) [M@ydg=1,  [qM(q)dg = A.

The scheme (4.13) is

2, 1) = [ M(@)o(x - q1) dg.
Taking the Fourier transform we get

2(5,1) = M(1£)5(9).

A condition for stability is that M (£) should be power bounded, uniformly for all £. Note
that there is no stability restriction of the time step ¢; the reason for this is that
Boltzmann-type schemes automatically adjust their domain of dependence.

Note that we have analyzed here the stability of scheme (4.13). The full scheme
(4.14) is a combination of (4.13) and projection onto the space of piecewise-constant
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functions. The latter decreases every weighted L, norm. Therefore if (4.13) decreases
some weighted L, norm, the combined scheme (4.14) is L,-stable.
For the case (4.19), we have

M(q) -2 5(g—a)P; and M) - %P,

If A is symmetric, the P; are orthogonal projections, and | #(£)]| = 1; so in this case the
scheme is stable. For 4 nonsymmetric, stability can be proved by replacing the Euclidean
norm by some matrix-weighted norm.

(e) We have not carried out any stability analysis in the nonlinear case, nor studied
the interesting question of how to assure the entropy condition.

(f) We conclude by observing that flux-splitting schemes cannot exactly resolve
stationary discontinuities. For suppose that the stationary Rankine—Hugoniot condition
f(u) = f(v) is satisfied. It does not follow from this that also

(4.27) Su) =)

But for a split-flux scheme, (4.2b) shows that (4.27) is necessary for the exact resolution
of stationary discontinuities.

The split-flux scheme of van Leer [15] for the Euler equations can represent a
stationary shock with, at best, one intermediate state, just as the Osher [16] scheme. A
contact discontinuity, however, will keep on spreading with the use of any split flux

scheme. This follows immediately from the diffusive nature of the underlying Boltzmann
model.
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