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We continue the construction and the analysis of essentially non-
oscillatory shock capturing methods for the approximation of hyper-
bolic conservation laws. We present an hierarchy of uniformly high-
order accurate schemes which generalizes Godunov’s scheme and
its second-order accurate MUSCL extension to an arbitrary order
of accuracy. The design involves an essentially non-oscillatory
piecewise polynomial reconstruction of the solution from its cell
averages, time evolution through an approximate solution of the
resulting initial value problem, and averaging of this approximate
solution over each cell. The reconstruction algorithm is derived
from a new interpolation technique that, when applied to piecewise
smooth data, gives high-order accuracy whenever the function is
smooth but avoids a Gibbs phenomenon at discontinuities. Unlike
standard finite difference methods this procedure uses an adaptive
stencil of grid points and, consequently, the resulting schemes are
highly nonlinear. Q 1997 Academic Press

1. INTRODUCTION

In this paper, the third in a series, we continue to study
the use of essentially non-oscillatory, uniformly high order
accurate schemes for the numerical approximation of weak
solutoins of hyperbolic systems of conservation laws

ut 1 f(u)x 5 0 (1.1a)

3

u(x, 0) eq u0(x). (1.1b)

Here u 5 (u1, ..., um )T is a state vector and f(u), the flux,
is a vector valued function of m components. The system
is hyperbolic in the sense that the m 3 m Jacobian matrix

A(u) 5 f/u

has m real eigenvalues

a1(u) # a2(u) # ? ? ? # am(u)

and a complete set of m linearly independent right-
eigenvectors hrk(u)jm

k51 . We denote by hlk(u)jm
k51 the left-

eigenvectors of A(u) and assume that lirk 5 dik .
We assume that the initial value problem (IVP) (1.1)

(embedded in an appropriate setting which includes en-
tropy considerations) is well posed in the sense of Cauchy
and that its weak solutions are generically piecewise
smooth. We denote its evolution operator by E(t), i.e.,

u(?, t) 5 E(t) ? u0 . (1.2)

Let w(x) denote the sliding average of w(x):

w(x) ; 1
h
Eh/2

2h/2
w(x 1 y) dy ; (Ah ? w)(x). (1.3a)
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We note that w is smoother than w by one derivative,
and that at the points of smoothness

w(x) 5 w(x) 1 O(h2). (1.3b)

The sliding average in x of a weak solution of (1.1), u
(x, t), satisfies



t
u(x, t) 1

1
h Ff Su Sx 1

h
2

, tDD2 f Su Sx 2
h
2

, tDDG5 0.

(1.4)

Integrating this relation from t to t 1 t, we get

u(x, t 1 t) 5 u(x, t) 2 l[ f̂ (x 1 h/2, t; u) 2 f̂ (x 2 h/2, t; u)],
(1.5a)

where l 5 t/h and

f̂ (x, t; w) 5
1
t
Et

0
f(w(x, t 1 h)) dh. (1.5b)

Let hIj 3 [tn , tn11]j, where Ij 5 uxj21/2 , xj11/2 ], and xa 5
ah, tn 5 nt, be a partition of R 3 R1. Writing relation
(1.5) at x 5 xj , t 5 tn we get

un11
j 5 un

j 2 l[ f̂ (xj11/2 , tn; u) 2 f̂ (xj21/2 , tn ; u)]. (1.6a)

Here

un
j 5 u(xj , tn) 5

1
h
E

Ij

u(x, tn) dx (1.6b)

is the ‘‘cell-average’’ of u at time tn .
In this paper we describe a class of numerical schemes

that generalizes Godunov’s scheme [5] and its second-
order extensions [22, 4, 15] to any finite order of accuracy.
These schemes can be written in standard conservation
form

vn11
j 5 vn

j 2 l( f̄ j11/2 2 f̄ j21/2) ; (E h(t) ? vn)j . (1.7a)

Here E h(t) denotes the numerical solution operator and
f̄ j11/2 , the numerical flux, denotes a function of 2k variables

f̄ j11/2 5 f̄ (vn
j2k11 , ..., vn

j1k ), (1.7b)

which is consistent with the flux f(u) in (1.1) in the sense
that f̄ (u, u, ..., u) 5 f(u). We design these schemes so that
the conservation form (1.7a) will approximate (1.5) to a
high order of accuracy. Setting vn

j ; un
j in (1.7) and compar-

ing it to (1.6) we see that if the numerical flux (1.7b) can
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be expanded as

f̄ j11/2 5 f̂ (xj11/2 , tn ; u) 1 d(xj11/2) hr 1 O(hr11) (1.8a)

then

vn11
j 5 un11

j 2 l[d(xj11/2) 2 d(xj21/2)] hr 1 O(hr11).

This shows that if the numerical flux f̄ j11/2 satisfies (1.8a)
then the truncation error in the sense of cell averages is

u(xj , tn 1 t) 2 [E h(t)u(?, tn)]j

5 l[d(xj11/2) 2 d(xj21/2)] hr 1 O(hr11),
(1.8b)

which is O(hr11) where d(x) is Lipschitz continuous.
When f(u) is a nonlinear function of u, the approxima-

tion of f̂ (xj11/2 , tn ; u) to O(hr) requires knowledge of point-
wise values of the solution to the same order of accuracy.
In order to design a numerical flux that satisfies (1.8a), we
must extract high order accurate pointwise information
from the given hvn

j j, which are approximations to hun
j j, the

cell averages (1.6b) of the solution. Solving this reconstruc-
tion problem to an arbitrarily high order of accuracy r,
without introducing O(1) Gibbs-like spurious oscillations
at points of discontinuity, is the most important step in the
design of our new schemes.

Given wj 5 w(xj ), cell averages of a piecewise smooth
function w(x), we construct R(x; w), a piecewise polyno-
mial function of x of uniform polynomial degree (r 2 1)
that satisfies:

(i) At all points x for which there is a neighborhood
where w is smooth

R(x; w) 5 w(x) 1 e(x) hr 1 O(hr11). (1.9a)

(ii) Conservation in the sense of

R(xj ; w) 5 wj (1.9b)

here R denotes the sliding average (1.3) of R.

(iii) It is essentially non-oscillatory

TV(R(?; w)) # TV(w) 1 O(hr), (1.9c)

where TV denotes total variation in x.
The inequality (1.9c) implies that the reconstruction R

is essentially non-oscillatory in the sense that it does not
have a Gibbs-like phenomenon of generating O(1) spuri-
ous oscillations at points of discontinuity that are propor-
tional to the size of the jump there. In [16, 11, 17] we
describe R(x; w) in the scalar case. We show there that R
may occasionally produce O(hr) spurious oscillations
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which are on the level of the truncation error. These small
spurious oscillations may occur only in the smooth part
of w and they usually disappear once w(x) is adequately
resolved on the computational mesh. For sake of complete-
ness we review this reconstruction algorithm in Section 3;
we shall extend it to vector functions w(x) in Section 5 of
this paper.

Using the reconstruction (1.9) we can express the ab-
stract form of our new schemes by

E h(t) ? w ; Ah ? E(t) ? R(?; w). (1.10)

Here Ah is the cell-averaging operator on the RHS of (1.3),
E(t) is the exact evolution operator (1.2), and w is any
piecewise smooth function of x. These schemes are a gener-
alization of Godunov’s scheme and its second-order exten-
sions in the sense that (1.10) with the first-order accurate
piecewise constant reconstruction

R(x; w) 5 wj for xj21/2 # x , xj11/2 (1.11)

is exactly Godunov’s schemes [5]; (1.10) with the second-
order accurate piecewise linear reconstruction

R(x; w) 5 wj 1 sj(x 2 xj) for xj21/2 # x , xj11/2 (1.12a)

such that

sj 5 wx(xj) 1 O(h), (1.12b)

is the abstract form of the second-order extensions to Go-
dunov’s scheme described in [22, 4, 15].

We recall that the evolution operator E(t) is monotone
in the scalar case. Since Ah , the cell-averaging operator,
is also monotone we see that in the scalar case

TV(E h(t)w) 5 TV(Ah ? E(t) ? R(?; w)) # TV(R(?; w)).
(1.13a)

If w in (1.13a) is the sliding average of a piecewise
smooth function w(x), it follows then from (1.9c) that

TV(E h(t)w) # TV(w) 1 O(hr). (1.13b)

This shows that the schemes (1.10) in the scalar case are
essentially non-oscillatory in exactly the same way as the
reconstruction: They do not have a Gibbs-like phenome-
non at discontinuities, yet they may occasionally produce
small spurious oscillations on the level O(hr) of the trunc-
tion error (see Remark 1.3 at the end of this section).

Equation (1.10) is the abstract operator expression of a
scheme in the conservation form (1.7). Although the

scheme generates discrete values vn
j , which are rth order

accurate approximations to the cell-averages un
j , its opera-

tion involves a globally defined pointwise approximation
to u(x, t) of the same order of accuracy, which we denote
by vh(x, t). The latter is defined for all x in the time-strips
tn # t , tn11 , with a possible discontinuity at htk j; we shall
use the standard notation vh(x, tn 6 0) to distinguish be-
tween the two possibly different values.

We define vh(x, t) via the following algorithmic descrip-
tion of the scheme (1.10). We start by setting

v0
j 5 u0(xj ),

where u0 is the given initial datum (1.1b), and u0 is its
sliding average (1.3a). Having defined vn 5 hvn

j j, approxi-
mation to hun

j j in (1.6b), we proceed to evaluate vn11 by
the following three steps:

(i) Reconstruction. Define

vh(x, tn 1 0) 5 R(x; vn). (1.14a)

Note that vh(x, tn 1 0) is a pointwise approximation to
u(x, tn).

(ii) Solution in the small. For tn # t , tn 1 t 5
tn11 , define

vh(?; t) 5 E(t 2 tn ) ? vh(?; tn 1 0). (1.14b)

(iii) Cell averaging. Close the time loop of the algo-
rithm by defining

vn11
j 5 vh(xj ; tn11 2 0) 5

1
h
Exj11/2

xj21/2

vh(x, tn11 2 O) dx.

(1.14c)

We note that vh , being an exact solution of (1.1)
in tn # t , tn11 , satisfies (1.5) in this strip. Using the conser-
vation property (1.9b) of the reconstruction in (1.14a), i.e.,

vh(xj , tn 1 0) 5 vn
j , (1.15)

we get from (1.5) that the schemes (1.10) and (1.14) satisfy
the conservation form

vn11
j 5 vn

j 2 l( f̄ j11/2 2 f̄ j21/2) (1.16a)

with the numerical flux

f̄ j11/2 5 f̂ (xj11/2 , tn ; vh) ; 1
t
Et

0
f(vh(xj11/2 , tn 1 h)) dh.

(1.16b)



We turn now to examine the local truncation error of
the scheme. For this purpose we consider a single applica-
tion of (1.14) starting with vn

j ; un
j , the exact cell averages

of the solution. It follows from (1.9a) and (1.14a) that

vh(x, tn 1 0) 5 u(x, tn) 1 e(x) hr 1 O(hr11). (1.17a)

The definition (1.14b) and our assumption of the well-
posedness of the IVP (1.1) imply that

vh(x, t) 5 u(x, t) 1 O(hr) for tn # t , tn11 . (1.17b)

This in turn implies that the numerical flux (1.16b) of the
scheme satisfies (1.8a), i.e.,

f̄ j11/2 5 f̂ (xj11/2 , tn ; u) 1 d(xj11/2) hr 1 O(hr11). (1.17c)

Clearly non-smoothness of d(x) in (1.17c) can result only
from non-smoothness of the coefficient e(x) in (1.17a). It
follows then from (1.8b) that away from points of disconti-
nuity and points at which e(x) fails to be Lipschitz continu-
ous, the local truncation error in the sense of cell-averages
is O(hr11).

Let u(x, t) be a smooth solution of (1.1) and let us
suppose that as h R 0, t 5 O(h), the numerical approxima-
tion converges pointwise to u(x, t). If e(x) is globally
Lipschitz continuous then the local truncation error in the
sense of cell averages is globally O(hr11). At time t, after
performing N 5 t/t time-steps, we expect the cumulative
error to be O(hr), i.e.,

vN
j 5 u(xj , tN ) 1 O(hr). (1.18a)

In this case we see from (1.9a) that

vh(x, tN 1 0) 5 R(x; vN) 5 u(x, tN ) 1 O(hr). (1.18b)

Thus at the end of the computation we have two sets of
output data at our disposal: (i) discrete values hvN

j j that
approximate hu(xj , tN )j to O(hr) and (ii) a piecewise poly-
nomial function of x, R(x; vN), that approximates u(x, tN)
to O(hr).

Remark 1.1. Note that (1.8) is quite different from the
truncation error in a pointwise sense which is used in for-
mulating Lax–Wendroff-type schemes [20, 21]. There we
take vn

j 5 u(xj , tn ) and require vn11
j 5 u(xj , tn11) 1 O(hr11).

To accomplish that we need a numerical flux that satisfies

2l( f̄ j11/2 2 f̄ j21/2) 5 Or

k51

t k

k!
ku
t kU(xj ,tn)

1 O(hr11).
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We shall see in the following that condition (1.8a) for the
accuracy in a cell-average sense is more manageable in
many respects.

Remark 1.2. When e(x) fails to be Lipschitz continuous
at a point, the local truncation error (1.8b) is only O(hr).
In the MUSCL-type schemes [22, 4] this happens at local
extremum points; in higher order accurate schemes this
may occur at roots of higher derivatives of u (see [15, 11]).
Due to local accumulation we expect the pointwise error
at time t, after N 5 t/t time-steps, to be only O(hr21) at such
points. Away from these points we expect the pointwise
cumulative error to remain O(hr). Consequently the
scheme is (r 2 1)th order accurate in the maximum norm.
Because of the non-oscillatory nature of the schemes, we
expect the number of points where e(x) fails to be
Lipschitz-continuous to remain bounded as h R 0. In this
case the L1-norm of the cumulative error is O(hr). To
distinguish between schemes that are rth order accurate
in the usual pointwise sense, and those that are rth order
accurate in the L1-norm but only (r 2 1)th accurate in the
maximum norm, we shall use ‘‘rth order accurate’’ for the
latter, thus qualifying the difference by the use of quota-
tion marks.

Remark 1.3. It is well known that if the total variation
of the numerical approximation is uniformly bounded, i.e.,

TV(vh(?, t)) # C ? TV(u0 ), (1.19)

where the constant C is independent of h for 0 # t # T,
then any refinement sequence h R 0, t 5 O(h) has a
subsequence that converges in Lloc

1 to a weak solution of
(1.1). Therefore uniform boundedness of the total variation
is an appropriate sense of stability for numerical approxi-
mations to discontinuous solutions of (1.1); see [9, 10] and
the references cited there.

Inequality (1.13) shows that the total variation of our
new schemes is dominated by that of reconstruction step

TV(vn11) # TV(R(?; vn)). (1.20)

When R is the piecewise-constant function (1.11) or the
piecewise-linear function (1.12) (where the slope sj is that
of the MUSCL scheme) then

TV(R(?; v)) # TV(v) (1.21a)

for any function v of bounded total variation. Consequently
Godunov’s scheme and the MUSCL scheme are total varia-
tion diminishing (TVD) in the scalar case

TV(vn11) # TV(vn); (1.21b)

this trivially implies (1.19) with C 5 1.
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In proving relation (1.9c) for higher order reconstruc-
tions we have used the assumption that for h sufficiently
small there are at least r 1 1 points of smoothness between
discontinuities. Consequently we cannot apply this result to
the numerical solution vn. Nevertheless, based on heuristic
analysis and extensive numerical experimentation, we con-
jecture that in the scalar case

TV(vn11) # TV(vn) 1 O(hp11) (1.22)

for some p . 0.

2. REVIEW AND OVERVIEW

In [15], the first paper of this series, we present a second-
order accurate scheme which is strictly non-oscillatory in
the scalar case (m 5 1), i.e.,

N0(vn11) # N0(vn), (2.1)

where N0(v) denotes the number of local extreme in v. This
scheme is a modification of the ‘‘second-order accurate’’
MUSCL scheme [22, 4], which is total variation diminishing
(TVD) in the scalar case, i.e.,

TV(vn11) # TV(vn). (2.2)

In order to enforce (2.2), the slope sj (1.12a) in the MUSCL
scheme is subjected to a so called ‘‘limiter.’’ Due to the
operation of this limiter, the coefficient in the O(h) term
in the Taylor expansion (1.12b) becomes discontinuous
at local extrema: Consequently e(x) in (1.9a) fails to be
Lipschitz continuous at such points, which leads to a loss
of accuracy at local extrema. In [15] this difficulty is circum-
vented by using a modified slope sj in (1.12a) which satisfies

sj 5 wx(xj ) 1 O(h2), (2.3)

thus leading to a globally smooth e(x) in (1.9a).
Although the end result is a simple technical modifica-

tion of the formula for the slope sj , the design of the scheme
in [15] invokes major conceptual changes. Realizing that
TVD schemes, independent of their particular form, are
necessarily only first-order accurate at local extrema, we
seek a weaker notion of control over possible growth of
the total variation of the numerical solution. For this pur-
pose we introduce the notion of non-oscillatory schemes,
which satisfy in the scalar case for piecewise smooth w,

TV(E h(t) ? w) # TV(w) 1 O(h2) (2.4)

rather than (2.2). In [16], the second paper in this series,
we show that even the notion of (strictly) non-oscillatory
schemes (2.1) is too restrictive in the sense that it limits

the order of accuracy to 2. To enable the design of higher
order accurate schemes we then introduce the notion of
essentially non-oscillatory schemes (1.13), which excludes
a Gibbs-like phenomenon but allows for the production
of spurious oscillations on the level of the truncation error.

Another conceptual change is the removal of the ‘‘mono-
tonicity limiters’’ which are an essential part of TVD
schemes [30] and may cause a reduction of the order of
accuracy at some points. Our new schemes are of uniform
order of accuracy r. The control over possible growth of
the total variation of the numerical solution is obtained
by an adaptive stencil that at each point attempts to use the
smoothest information available. This adaptive selection of
stencil is introduced to the algorithm through the recon-
struction step (1.14a). The number of points in the stencil,
independent of its orientation, is always (r 1 1).

In [16], the second paper in the series, we investigate
the stability of our new schemes in the scalar constant
coefficient case

ut 1 aux 5 0, a 5 constant. (2.5a)

The exact evolution operator (1.2) in this case is just a
translation with the constant speed a. Therefore our
schemes (1.14) take the particularly simple form

vn11
j 5 R(xj 2 at; vn). (2.5b)

Due to the adaptive selection of stencil in the reconstruc-
tion step, the scheme (1.23b) is highly nonlinear; conse-
quently the use of the standard linear stability analysis is
inappropriate. We demonstrate this point in [16] by choos-
ing initial data for which the reconstruction algorithm se-
lects a stencil that is biased in the ‘‘down-wind’’ direction
(i.e., in the direction opposite to that of the wind); a con-
stant choice of such a stencil is notoriously unstable. Such
an instability usually exhibits itself by the production of
increasing oscillations which start at the highest derivative
and propagate to the function itself. The numerical experi-
ment in [16] shows that once these oscillations begin to
appear on the level of the highest derivative, the adaptive
selection of stencil in (2.5b) reacts by changing the orienta-
tion of the stencil and thus avoids the buildup of instability.

In [16] we also investigate the initial-boundary value
problem (IBVP) for (2.5a). Unlike the treatment of bound-
aries in standard finite-difference schemes we do not use
‘‘numerical boundary conditions.’’ Instead we modify the
scheme (2.5b) by restricting the selection of the stencil to
available information. As a result the scheme is biased
‘‘against the wind’’ at one of the two boundaries. Neverthe-
less, numerical experiments show the scheme to be
strongly stable.

In the present paper, the third in the series, we turn to
consider the general nonlinear case. The abstract form of



our schemes, (1.10) and (1.14), call for the evaluation of
the exact solution in the small (i.e., for 0 # t , t, t small)
of the IVP (1.1) with the initial data R(x; vn); the latter is
a piecewise polynomial function of x with possible discon-
tinuities at hxj11/2j.

When R(x; vn) is the piecewise-constant function (1.11)
(i.e., Godunov’s scheme), we can express this solution in
terms of local solutions to the Riemann problem

ut 1 f(u)x 5 0, u(x, 0) 5 5vn
j ,

vn
j11 ,

x , 0

x . 0
. (2.7)

When R(x; vn) is a piecewise polynomial function of higher
degree we cannot in general express the solution of the
IVP (1.1) in a simple closed form. Nevertheless, (see [1,
6]) we can obtain a local Taylor expansion of the solution
to any desired order of accuracy.

We note, however, that the step of ‘‘solution-in-the-
small’’ (1.14b) is followed by the step of ‘‘cell-averaging’’
(1.14c). Consequently many of the fine details of the exact
solution, which may be very costly to compute, are later
ignored in evaluating vn11

j by averaging the exact solution
over (xj21/2 , xj11/2 ). To economize on the cost of our
schemes it makes sense to use simplified approximate
‘‘solvers’’ that carry only this information which deter-
mines the value of the cell average, namely the one needed
to compute a numerical flux satisfying (1.17c). The study
of such approximate solvers is a main issue of the present
paper. In Section 4 we consider the scalar case; in Section
5 we extend the scheme to hyperbolic systems of conserva-
tion laws.

When we consider the reconstruction (1.9) in the context
of approximation of functions, the assumption that w(x)
is piecewise smooth with a finite number of discontinuities
implies that for h sufficiently small there are at least (r 1
1) points of smoothness separating discontinuities on the
computational grid. Therefore at any point of smoothness
it is possible to select a stencil from the smooth part of
the function. Although the x behavior of weak solutions
of (1.1) is generically of this type, their time dependence
allows for collision of discontinuities, as well as their colli-
sion with a boundary, e.g., solid walls. For points in a region
between two discontinuities that are about to collide, no
matter how small h is, there must come a time when there
are not enough points to select a stencil of (r 1 1) points
from the region of smoothness. Consequently, a compo-
nent-wise extension of the scalar reconstruction algorithm
in [16] to vector functions may produce large spurious
oscillations during this brief encounter.

The elimination of such spurious oscillations has been
a major consideration in designing the extension of our
scalar schemes to systems of conservation laws. In Section
5 we show that this can be accomplished to a great extent
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by extending the scalar reconstruction algorithms to sys-
tems via the use of locally defined characteristic variables.

In Section 6 we describe in detail the algorithm for the
solution of the Euler equations of gas dynamics. In Section
7 we present some numerical experiments.

In future papers we shall present the extension of these
schemes to two-dimensional problems and study the de-
pendence of the computational efficiency on the order of
accuracy of the scheme.

3. RECONSTRUCTION

In this section we present a brief description of the recon-
struction R(x; w) to be used in (1.14a); we refer the reader
to [16, 11, 17] for more details and analysis. For this purpose
we introduce Hm(x; w), a piecewise polynomial function
of x that interpolates w at the points hxj j, i.e.,

Hm(xj ; w) 5 w(xj ), (3.1a)

Hm(x; w) ; qm, j11/2(x; w) for xj # x # xj11 , (3.1b)

where qm, j11/2 is a polynomial in x of degree m.
We take qm, j11/2 to be the (unique) mth degree polyno-

mial that interpolates w(x) at the (m 1 1) successive points
hxi j, im( j) # i # im( j) 1 m, that include xj and xj11 , i.e.,

qm, j11/2(xi ; w) 5 w(xi ) for im( j) # i # im( j) 1 m, (3.2a)

1 2 m # im( j) 2 j # 0. (3.2b)

Clearly there are exactly m such polynomials corre-
sponding to the m different choices of im( j) subject to
(3.2b). This freedom is used to assign to (xj , xj11 ) a stencil
of (m 1 1) points (3.2) so that w(x) is ‘‘smoothest’’ in
(xim( j) , xim( j)1m ) in some asymptotic sense.

The information about smoothness of w(x) is extracted
from a table of divided differences of w. The latter can be
defined recursively by

w[xi ] 5 w(xi ) (3.3a)

w[xi , ..., xi1k ] 5 (w[xi11 , ..., xi1k ]

2 w[xi , ..., xi1k21 ])/(xi1k 2 xi ). (3.3b)

It is well known that if w is Cy in [xi , xi1k ] then

w[xi , ..., xi1k ] 5
1
k!

d k

dx k w(ji,k ), xi # ji,k # xi1k . (3.3c)

However, if w has a jump discontinuity in the pth derivative
in this interval, 0 # p # k, then
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w[xi , ..., xi1k ] 5 O(h2k1p[w(p)]); (3.3d)

here [w(p)] denotes the jump in the pth derivative. Equa-
tions (3.3c)–(3.3d) show that uw[xi , ..., xi1k]u provides an
asymptotic measure of the smoothness of w in (xi , xi1k ),
in the sense that if w is smooth in (xi1

, xi11k ) but is discontin-
uous in (xi2

, xi21k ), then for h sufficiently small uw[xi1
, ...,

xi11k ]u , uw[xi2
, ..., xi21k ]u. Hence the problem of choosing

a stencil of points for which w is ‘‘smoothest’’ is basically
the same as that of finding an interval in which w has the
‘‘smallest divided differences’’ (see [16, 11] for more de-
tails).

In [11] we propose the following recursive algorithm to
evaluate im( j). We start by setting

i1( j) 5 j; (3.4a)

i.e., q1, j11/2 is the first-degree polynomial interpolating w
at xj and xj11 . Let us assume that we have already defined
ik( j); i.e., qk, j11/2 is the kth degree polynomial interpolating
w at

xik( j) , ..., xik( j)1k .

We consider now as candidates for qk11, j11/2 the two
(k 1 1)th degree polynomials obtained by adding to the
above stencil the neighboring point to the left or the one
to the right; this corresponds to setting ik11( j) 5 ik( j) 2 1
or ik11( j) 5 ik( j), respectively. We choose the one that
gives a (k 1 1)th order divided difference that is smaller
in absolute value, i.e.,

ik11( j) 5

Hik( j)21

ik( j)

if uw[xik( j)21 , ...,xik( j)1k ]u, uw[x
i
k

( j)
, ...,xik( j)1k11 ]u

otherwise. (3.4b)

In [16] we analyze this interpolation technique for a
piecewise smooth function w and show that:

(i) wherever w(x) is smooth

d k

dxk Hm(x; w) 5
d k

dxk w(x) 1 O(hm112k), 0 # k # m;

(3.5a)

(ii) Hm(x; w) is an essentially non-oscillatory interpo-
lation of w in the sense that

TV(Hm(?; w)) # TV(w) 1 O(hm11). (3.5b)

We turn now to describe two different techniques to
solve the reconstruction problem (1.9) in terms of interpo-
lation. (See the Appendix for an algorithmic description.)

(1) Reconstruction via a Primitive Function

Given cell averages wj of a piecewise smooth function w

wj 5
1
hj
Exj11/2

xj21/2

w(y) dy, hj 5 xj11/2 2 xj21/2 , (3.6)

we can immediately evaluate the point values of the primi-
tive function W(x)

W(x) 5 Ex

x0

w(y) dy (3.7a)

by

W(xj11/2) 5 Oj

i5i0

hjwj . (3.7b)

Since

w(x) ; d
dx

W(x)

we apply interpolation to the point values (3.7b) of the
primitive function W(x) (3.7a) and then obtain an approxi-
mation to u(x) by defining

R(x; w) 5
d

dx
Hr(x; W). (3.8)

We note that this procedure does not require uniformity
of the mesh.

The primitive function W(x) is one derivative smoother
than w(x); therefore it follows from (3.5a) that wherever
W(x) is smooth

d k

dxk Hr(x; W) 5
d k

dxk W(x) 1 O(hr112k);

thus we get from the definition (3.8) that

d l

dxl R(x; w) 5
d l

dxl w(x) 1 O(hr2l), (3.9)

which implies (1.9a) for l 5 0.
The conservation property of the reconstruction (1.9b)

follows immediately from the definition (3.8):



1
hj
Exj11/2

xj21/2

R(x; w) dx 5
1
hj

[Hr(xj11/2 , W) 2 Hr(xj21/2 ; W)]

5
1
hj

[W(xj11/2 ) 2 W(xj21/2)] 5 wj .

(3.10)

The non-oscillatory nature of the reconstruction (1.9c)
follows primarily from the non-oscillatory nature of the
interpolation (3.5b); see [16].

We denote the reconstruction via the primitive function
(3.8) by RP.

(2) Reconstruction via Deconvolution

We assume that the mesh is uniform and consider the
given cell averages wj to be point values of w(x), the glob-
ally defined sliding-average function (1.3) of w, i.e.,

wj 5 w(xj ), (3.11a)

where

w(x) 5
1
h
Eh/2

2h/2
w(x 1 y) dy. (3.11b)

Expanding w(x 1 y) in (3.11b) around y 5 0, we get

w(x) 5 Oy
k50

w(k)(x)
k!

Eh/2

2h/2
yk dy 5 Oy

k50
akhkw(k)(x), (3.12a)

where

ak 5H0

22k/(k 1 1)!

k odd

k even.
(3.12b)

Multiplying both sides of (3.12a) by hld l/dxl and then trun-
cating the expansion in the RHS at O(hr), we get

hlw(l)(x) 5 Or2l21

k50
ak hk1lw(k1l)(x) 1 O(hr). (3.13a)

Writing the relations (3.13a) for l 5 0, ..., r 2 1 in a matrix
form, we obtain
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w(x)

hw9(x)

h2w0(x)

.

.

.

hr21w(r21)(x)

5

1 0 a2 0 a4 ? ? ? ar21

a4

0

a2

0

0 1

3 4
. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . .









w(x)

hw9(x)

h2w0(x)

.

.

.

hr21w(r21)(x)

1O(hr). (3.13b)3 4
Let us denote the coefficient matrix in the RHS of

(3.13b) by C. This matrix is upper triangular and diagonally
dominant. Multiplying both sides of (3.13b) by C21 from
the left we get

1
w(x)

hw9(x)

.

.

.

hr21w(r21)(x)
25 C211

w(x)

hw9(x)

.

.

.

hr21w(r21)(x)
21 O(hr).

(3.13c)

Given wj we interpolate w(x) by Hm(x; w) with m $
r 2 1. Since w(x) is smoother than w(x) it follows from
(3.5a) that

d k

dxk Hm(x; w) 5
d k

dxk w(x) 1 O(hm112k)

wherever w(x) is smooth. We note that although Hm is
only continuous at xj , the one-sided derivatives at xj 6 0
do satisfy the above relations, i.e.,

d k

dxk Hm(xj 6 0; w) 5
d k

dxk w(xj ) 1 O(hm112k). (3.14)

Next we define

D0, j 5 wj (3.15a)

Dl, j 5 hlM S d l

dxl Hm(xj 2 0; w),
d l

dxl Hm(xj 1 0; w)D
for 1 # l # r 2 1, (3.15b)
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where M(x, y) is the min mod function

M(x, y)

5 Hs ? min(uxu, uyu)

0

if sgn(x) 5 sgn(y) 5 s

otherwise.
(3.16)

Clearly

Dl, j 5 hlw(l)(xj ) 1 O(hr); (3.17a)

using Dj 5 (D0, j , ..., Dr21, j )T to approximate the vector, on
the RHS of (3.13c) we get that

Dj 5 C21Dj (3.17b)

satisfies

Dj 5 (w(xj ), hw9(xj ), ..., hr21w(r21)(xj ))T 1 O(hr). (3.17c)

Finally we define

R(x; w) 5 Or21

k50

1
k!

Dk, j[(x 2 xj )/h]k for ux 2 xju , h/2.

(3.18)

We note that since C is upper triangular Dl, j in (3.17b)
can be computed by back-substitution; i.e., we set

Dr21, j 5 Dr21, j (3.19a)

and then compute for k 5 r 2 2, ..., 0

Dk, j 5 Dk, j 2 Or21

l5k11
al Dl, j . (3.19b)

It follows immediately from the definition (3.18) and the
relations (3.17a) that wherever w(x) is smooth

d l

dxl R(x; w) 5
d l

dxl w(x) 1 O(hr2l); (3.20)

this for l 5 0 implies (1.9a). The conservation property of
the reconstruction (1.9b) follows from

1
h
Eh/2

2h/2
R(x 1 y; w) dy 5 Or21

k50

Dk, j

k!
1

hk11 Eh/2

2h/2
yk dy

5 D0, j 1 Or21

k51
akDk, j (3.21)

5 D0, j 5 wj .

The last two equalities in (3.21) follow from (3.19b) with
k 5 0 and (3.15a).

The non-oscillatory nature of the reconstruction (1.9c)
follows primarily from the non-oscillatory nature of the
interpolation Hm(x; w); see [16] for more details.

We note that w(x) is the convolution of w(x) with ch(x),
the characteristic function of a cell, i.e.,

w(x) 5 (w p ch )(x) (3.22a)

ch(x) 5 H1/h

0

for uxu , h/2

for uxu . h/2.
(3.22b)

Hence (3.13c) is actually a deconvolution to O(hr). There-
fore we refer to (3.18) as reconstruction via deconvolution
and denote it by RD.

Remark 3.1. We note that for RP with m 5 r and RD
with m 5 r 2 1 the coefficient e(x) of hr in the reconstruc-
tion error (1.9a) is discontinuous at points where there is
a change of orientation in the stencil of the associated
interpolation; this may happen at critical points of the
function and its derivatives. Hence the resulting schemes
(1.14) are ‘‘rth order accurate’’ (See Remark 1.4). On the
other hand, RD with m 5 r yield e(x) which is globally
Lipschitz continuous, thus resulting in schemes that are
rth order accurate in a pointwise sense. This follows from
the fact that (3.17a) is upgraded to

Dl, j 5 hlw(l)(x) 1 O(hr11), (3.23)

which has the effect of pushing the non-smoothness due
to the change of stencil orientation in the associated inter-
polation to the O(hr11) level.

Remark 3.2. We note that both RD with r 5 2,
m 5 1 and RP with r 5 2 are piecewise linear reconstruc-
tions of the form (1.12). The slope sj for RD is identical
to that of the ‘‘2nd-order accurate’’ TVD scheme in [5].
The slope for RP is the same as that of RD except at local
extrema, where sj 5 0 for RD while for RP

sj 5 5w[xj , xj11]

w[xj21 , xj ]

if uw[xj , xj11 ]u , uw[xj21 , xj ]u

otherwise.
(3.24)

Although RP does not ‘‘chop’’ local extrema as RD, the
lack of smoothness in (3.24) results in the same loss of
accuracy at local extrema.

We note that RD with m 5 r 5 2 is essentially the same
reconstruction that gives the non-oscillatory second-order
accurate scheme of [15].



4. SCALAR CONSERVATION LAWS

The abstract form of our scheme calls in (1.14b) for the
evaluation of the exact solution in the small of the IVP
(1.1) with the initial data R(x; vn). This step is followed
by the cell-averaging operation in (1.14c) which results in
the conservation form (1.16). Thus we are spared the task
of having to compute a global solution. All we need to do
is evaluate

f̄ j11/2 5
1
t
Et

0
f(vh(xj11/2 , tn 1 h)) dh. (4.1)

To simplify our notation let us denote vh(x, tn 1 t) by
v(x, t). Thus v(x, t) is the solution of

vt 1 f(v)x 5 0 (4.2a)

with the piecewise-polynomial initial data

v(x, 0) 5 R(x; vn) 5 Or21

l50
bj, l(x 2 xj )l/l!

(4.2b)

for xj21/2 # x , xj11/2

in the time strip 2y , x , y, 0 # t # t, t small.
The solution v(x, t), for sufficiently small t, is composed

of sections of smoothness separated by ‘‘fans’’ that emerge
from the discontinuities at hxi11/2j. We use here the term
‘‘fan’’ loosely, allowing a ‘‘fan’’ with zero spread which is
just a curve. In the linear case discontinuities propagate
along characteristic curves; in this case all the ‘‘fans’’ are
just curves. In the nonlinear case the ‘‘fans’’ with zero
spread are shock curves, while ‘‘fans’’ with positive spread
are rarefaction fans—or possibly a succession of rarefac-
tion fans separated by contact shocks in the case of noncon-
vex flux. We denote by vj(x, t) the section of smoothness
of v(x, t) that is connected to the polynomial data in
(xj21/2 , xj11/2 ).

A global description of v(x, t) can be quite complicated.
Fortunately all we need is v(xj11/2 , t) for small t, which can
be easily described in terms of vj(x, t), vj11(x, t) and the
‘‘fan’’ emanating from x 5 xj11/2 at t 5 0 as follows: If for
t . 0 the ‘‘fan’’ stays to the right of x 5 xj11/2 then
v(xj11/2 , t) 5 vj(xj11/2 , t); if this ‘‘fan’’ stays to the left of
x 5 xj11/2 then v(xj11/2 , t) 5 vj11(xj11/2 , t); if the ‘‘fan’’ covers
x 5 xj11/2 , then v(xj11/2 , t) 5 constant 5 V(0; vj(xj11/2 , 0),
vj11(xj11 , 0)). Here V(x/t; uL , uR ) denotes the self-similar
solution of the Riemann problem

ut 1 f(u)x 5 0, u(x, 0) 5 5uL

uR

x , 0

x . 0,
(4.3)
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with constant uL and uR . We note that the ‘‘fan’’ covers
x 5 xj11/2 only when it contains a sonic centered rarefaction
wave (i.e., one that includes a point for which f 9 5 0); this
wave retains its self-similar form as long as it does not
interact with shocks. Therefore if we choose t sufficiently
small so that no shock crosses x 5 xj11/2 for 0 , t # t, we
can express f(v(xj11/2 , t)) by

f(v(xj11/2 , t))

5 5
f(vj(xj11/2 , t)) ‘‘fan’’ stays to the right of x 5 xj11/2

f R(vj(xj11/2 , 0), vj11(xj11/2 , 0)) ‘‘fan’’ covers x 5 xj11/2

f(vj11(xj21/2 , t)) ‘‘fan’’ stays to the left of x 5 xj11/2 .
(4.4)

Here f R denotes the flux at x 5 0 of the solution to the
Riemann problem (4.3), i.e.,

f R(u1 , u2) 5 f(V(0; u1 , u2)); (4.5)

using the formula in [23] it can be expressed by

f R(u1 , u2 ) 5 5
minu1#u#u2

f(u)

maxu1$u$u2
f(u)

if u1 # u2

if u1 . u2 .
(4.6a)

When f(u) is a convex function of u, i.e., f 0(u) . 0, f(u)
may have only a single local extremum which is a minimum;
let us denote its location by us . Using this fact in (4.6a)
we can express f R(u1 , u2) in the convex case by

f R(u1 , u2) 5

f(u1)

f(us )

f(u2 )

f(u1 )

f(u2 )

if us , u1 # u2

if u1 # us # u2

if u1 # u2 , us

if u1 . u2 and a(u1 , u2 ) . 0

if u1 . u2 and a(u1 , u2 ) # 0.

(4.6b)5
Here

a(u1 , u2 ) 5 [ f(u2 ) 2 f(u1 )]/(u2 2 u1 ) (4.7)

is the speed of the shock with uL 5 u1 and uR 5 u2 in (4.3).
We remark that (4.4) is deliberately formulated in terms
of f(v(xj11/2 , t)) rather than v(xj11/2 , t) in order to remove
ambiguity in the definition when v is discontinuous at
xj11/2 . The continuity of f(v) in this case follows from the
Rankine–Hugoniot relation for a stationary shock.

We turn now to derive a simple but adequate approxima-
tion to the numerical flux (4.1), which is
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f̄ j11/2 5
1
t
Er

0
f(v(xj11/2 , t)) dt (4.8)

with the integrand given by (4.4). Note that the integrand
is a smooth function of t.

The first step is to discretize the integral in (4.8) by using
a numerical quadrature

1
t
Et

0
g(t) dt 5 OK

k50
ak g(bkt) 1 O(t r); (4.9)

thus

f̄ j11/2 P OK
k50

ak f(v(xj11/2 , bkt)). (4.10)

The second step is to approximate vj(x, t) in (4.4) by its
Taylor expansion which is obtained by the following local
Cauchy–Kowalewski procedure. We start by expressing
tv(x, 0)/xl at xj by

lv(xj , 0)
xl 5 Hbj, l

0

for 0 # l # r 2 1

for l $ r.
(4.11a)

Next we use (4.11a) to evaluate

lv
xktl2k (xj , 0) for all l and 0 # k # l (4.11b)

by taking derivatives of the partial differential equation
(1.1a) in the following ordered way,

vt 5 2f 9vx

vxt 5 2[ f 0(vx )2 1 f 9vxx ]

vtt 5 2[ f 0vtvx 1 f 9vxt ]
(4.11c)

vxxt 5 2[ f -(vx )3 1 3f 0vxvxx 1 f 9vxxx ]

vxtt 5 2[ f -(vx )2vt 1 f 0(2vxvxt 1 vtvxx) 1 f 9vxxt ]

vttt 5 2[ f -(vt )2vx 1 f 0(2vtvxt 1 vxvtt ) 1 f 9vxtt ],

etc., and then compute (4.11b) by successively evaluating
the RHS of (4.11c); note that this procedure always uses
known values which are either initially given by (4.11a) or
previously computed in the algorithm (4.11c). We ob-
serve that

ṽj(x, t) 5 Or21

l50
Ol

k50

lv(xj , 0)
x kt l2k ?

(x 2 xj )k

k!
tl2k

(l 2 k)!
(4.12a)

satisfies

ṽj(x, 0) 5 vj(x, 0) 5 v(x, 0) for xj21/2 , x , xj11/2 ,
(4.12b)

and that

ṽj(x, t) 5 vj(x, t) 1 O(hr ), (4.12c)

wherever vj(x, t) is well defined.
The last step in our derivation of the numerical flux is

to approximate f(v(xj11/2 , t)) in (4.4) by

f(v(xj11/2 , t)) P f R(ṽj(xj11/2 , t), ṽj11(xj11/2 , t)), (4.13)

where f R is (4.5)–(4.6). The resulting numerical scheme is

vn11
j 5 vn

j 2 l( f̄ j11/2 2 f̄ j21/2 ) (4.14a)

f̄ j11/2 5 OK
k50

ak f R(ṽj(xj11/2 , bkt), ṽj11(xj11/2 , bkt)). (4.14b)

In the following we show that the numerical flux f̄ j11/2 in
(4.14b) is an adequate approximation to the ‘‘abstract nu-
merical flux’’ (4.1).

We start by proving that the scheme (4.14) is rth order
accurate in the sense of (1.8). To do so we take in (4.14)
vn

j 5 u(xj , tn ), where u(x, t) is a smooth (either globally
or locally) solution of (1.1) and show that

f̄ j11/2 5
1
t
Et

0
f(u(xj11/2 , tn 1 h)) dh 1 O(hr). (4.15)

When we apply the reconstruction R to u n we get (3.9)
and (3.20) that

d k

dxk R(x; u n) 5
k

xk u(x, tn ) 1 O(hr2k) for 0 # k # r 2 1.

(4.16a)

Consequently it follows from the Cauchy–Kowalewski
procedure (4.11)–(4.12) and t 5 O(h) that

ṽi(xj11/2 , t) 5 u(xj11/2 , tn 1 t) 1 O(hr) for i 5 j, j 1 1,
(4.16b)

f R(u1 , u2 ) is Lipschitz-continuous with respect to u1 and
u2 , and it is consistent with f(u) in the sense that f R(u, u)
5 f(u); therefore

f R(u1 , u2 ) 5 f(u) 1 O(uu 2 u1 u 1 uu 2 u2 u). (4.16c)



Applying (4.16c) to (4.16b) we get that

f R(ṽj(xj11/2 , t), ṽj11(xj11/2 , t)) 5 f(u(xj11/2 , tn 1 t)) 1 O(hr).
(4.16d)

Finally using the assumed smoothness of u(x, t) and the
order of accuracy of the numerical quadrature (4.9) we
obtain (4.15).

Next we consider the constant coefficient case

vt 1 avx 5 0, a 5 constant. (4.17a)

Here the ‘‘fan’’ in (4.4) is the characteristic line

xj11/2(t) 5 xj11/2 1 at (4.17b)

and

vj(x, t) 5 v(x 2 at, 0) 5 R(x 2 at ; vn) (4.17c)

for xj21/2(t) , x , xj11/2(t).

Since vj(x, t) in (4.17c) is a polynomial of degree r 2 1 in
(x 2 at) we get that

lv
xkt l2k ; 0 for l $ r; (4.17d)

this implies in (4.11)–(4.12) that

ṽj(x, t) ; vj(x, t). (4.18a)

Hence

f R(ṽj(xj11/2 , t), ṽj11(xj11/2 , t)) ; f(v(xj11/2 , t)). (4.18b)

Since the numerical quadrature (4.9) is exact for polynomi-
als of degree r 2 1 we get that the numerical flux f̄ j11/2

(4.14b) is identical to (4.8). It follows then that the numeri-
cal scheme (4.14) in the constant coefficient case is the
‘‘abstract scheme’’ (1.14), (1.16), i.e.,

vn11
j 5 R(xj 2 at; vn). (4.18c)

We observe that since the ‘‘fans’’ in the solution
v(x, t) in the constant coefficient case have zero spread,
the evaluation of f(v(xj11/2 , t)) in (4.4) involves only the
smooth parts of the solution vi(x, t). The ‘‘fans’’ in the
numerical approximation mark the domain of validity of
the Taylor expansions ṽj(x, t). Therefore the only role of
the Riemann solver in the formulation of the numerical
flux (4.14b)
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f R(ṽj(xj11/2 , t), ṽj11(xj11/2 , t))

(4.19)5 5
f(vj(xj11/2 , t))

f(ṽj11(xj11/2 , t))

if a . 0

if a , 0

is to serve as a pointer, i.e., to identify whether x 5 xj11/2

falls into the domain of validity of ṽj or into that of ṽj11 .
Since ṽi(xj11/2 , t) 5 v(xj11/2 2 at, 0), the use of the Cauchy–
Kowalski procedure is equivalent to that of a characteristic
method that traces the characteristic curve through
(xj11/2 , t) to the initial data.

Next we consider the scalar IVP (1.1) with convex f(u)
and smooth initial data u0(x) and we show that the above
interpretation of the numerical approximations applies to
this nonlinear case as well. The numerical solution vn

j P
u(xj , tn ) typically forms a monotone transition of 1–2 points
across shocks and stays close to u(xj , tn ) in the smooth
parts of the solution (see the numerical experiments with
ut 1 uux 5 0 and u(x, 0) 5 sin fx in Section 7). Let us
now examine the discontinuities of R(x; vn) at hxj11/2 j and
the nature of the ‘‘fans’’ emanating from these points.
Relation (4.16b) with t 5 0 shows that the jump at xj11/2

in the smooth part of the solution is of the order of the
local error, say O(hp) with 0 , p # r. Hence the ‘‘fan’’
emerging from xj11/2 in a region of smoothness is either a
shock curve or a rarefaction fan with O(hp) spread. On
the other hand, in the vicinity of shocks of u(x, tn ) the side
of this jump is O(1); however, the ‘‘fan’’ is necessarily a
shock curve. We see therefore that the global picture is
very similar to that of the constant coefficient case, i.e.,
the ‘‘fans’’ separating hvj(x, t)j are either shock curves with
zero spread or rarefaction fans with O(hp) spread (these
can be thought of as ‘‘blurred’’ characteristic curves); these
‘‘fans’’ are the boundaries of the domains of validity of
the Taylor expansions ṽi(x, t). We note that the value given
by ṽi(xj11/2 , t) differs of O(t r) from that obtained by solving
the nonlinear characteristic relation for v

v 5 R(xj11/2 2 a(v)t; vn). (4.20)

Hence the use of the local Cauchy–Kowalewski procedure
is again computationally equivalent to tracing the charac-
teristic curve through (xj11/2 , t) to the initial data. Since
the evaluation of f(v(xj11/2 , t)) in (4.4) essentially involves
only ṽj(xj11/2 , t) and ṽj11(xj11/2 , t), the role of the Riemann
solver in the numerical flux (4.14b) is again that of a
pointer, i.e., to identify to which domain of validity x 5
xj11/2 belongs. This indicates that the monotonicity of the
exact solution operator is approximately preserved by our
procedure. See C1 in Section 7. This also suggests that
f R in (4.14b) can be adequately replaced by the simpler
expression f ROE which corresponds to Roe’s approximate
solution of the Riemann problem (see [25, 14]):
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f ROE(u1 , u2 ) 5 !s[ f(u1 ) 1 f(u2 ) 2 ua(u1 , u2 )u(u2 2 u1)]

5 5f(u1 )

f(u2 )

if a(u1 , u2 ) . 0

if a(u1 , u2 ) # 0,
(4.21)

where a(u1 , u2 ) is defined by (4.7). Observe that f ROE in
(4.21) satisfies (4.16c) and therefore the modified scheme
remains rth order accurate.

The heuristic analysis presented above is applicable only
when all the discontinuities in the solution to the IVP
(1.1) are shocks; discontinuities that are not shocks may
be present in the solution either by being introduced
through the initial data u0(x) or as a result of a shock–shock
interaction in the non-convex case. Clearly f ROE in its form
(4.21a) should not be used when the solution contains a
sonic rarefaction wave since it admits any discontinuity
with a(uL , uR ) 5 0 as a stationary solution. This problem
is well known and there are many ways to overcome it
(see [13, 26, 9], and Section 7).

In Section 7 we present numerical experiments testing
the performance of the scheme (4.14) in the solution of
the Riemann IVP (4.3), where f(u) is non-convex and
a(uL , uR ) 5 0. In all these experiments, as well as in others
not reported here, we have found the scheme to develop
the correct structure of the solution.

5. SYSTEMS OF CONSERVATION LAWS

In this section we extend the reconstruction algorithm
of Section 3 and the solution-in-the-small procedure of
Section 4 to the case of hyperbolic systems of conserva-
tion laws.

As always we are interested only in ‘‘computable’’ solu-
tions and therefore assume that the initial data u0(x) in
(1.1b) are such that u(x, t), which is a vector function of m
components u 5 (u1 , ..., um )T, is, at any given t a piecewise
smooth function of x with a finite number of discontinuities.
Given cell averages un

j 5 u(xj , tn ), it seems natural from
the point of view of approximation theory to reconstruct
u(x, tn ) by applying the scalar reconstruction R to each of
the scalar component un

k , i.e.,

R(x; un) 5 (R((x; un
1 ), ..., R(x; un

m))T; (5.1)

here R denotes vector reconstruction. However, compo-
nentwise reconstruction seems natural only if we disregard
the time-dependence of u(x, t) which allows discontinuities
in the solution to collide with each other.

We recall that the scalar reconstruction is non-oscillatory
only if discontinuities are separated by at least r 1 1 points
of smoothness, where r is the order of accuracy. Conse-
quently the component-by-component reconstruction (5.1)
may cease to be non-oscillatory around the discrete set of

points (xc , tc ), where discontinuities of u(x, t) interact. In
the following we describe an algorithm to reconstruct u(x,
tn ) from un which avoids this difficulty by decomposing
un which avoids this difficulty by decomposing un into m
locally defined scalar characteristic variables.

We start by examining the constant coefficient case
f(u) 5 Au, where A is a constant m 3 m matrix

ut 1 Aux 5 0 (5.2a)

u(x, 0) 5 u0(x). (5.2b)

We note that the eigenvalues hak j as well as the eigenvec-
tors hrk j, hlk j are also constant. We assume that

a1 , a2 , ? ? ? , am (5.3a)

lirj 5 dij . (5.3b)

We define the kth characteristic variable w k by

w k 5 lku. (5.4a)

It follows then from (5.3b) that

u 5 Om
k51

w krk . (5.4b)

Multiplying (5.2) from the left by lk we see that w k(x, t)
satisfies the following scalar IVP,

(w k)t 1 ak(wk )x 5 0 (5.5a)

w k(w, 0) 5 lku0(x) ; w k
0(x), (5.5b)

the solution to which is

w l(x, t) 5 w k
0(x 2 ak t). (5.5c)

Using (5.4b) and (5.5c) we can express the solution
u(x, t) of the constant coefficient IVP (5.2) by

u(x, t) 5 O w k
0(x 2 akt) rk .

Let us now consider the following initial data in (5.2b):

u0(x) 5 5
uL

uM

uR

x , xL

xL # x # xR

xR , x.

(5.6a)

First let us consider the case xL 5 xR 5 0 which is the
Riemann IVP (4.3). The solution u(x, t) is a self-similar



solution V(x/t; uL , ur ) of the following form,

u(x, t) 5 V(x/t; uL , uR )

5 5
uL

u k

uR

x/t , a1

ak , x/t , ak11 , 1 # k # m 2 1

am , x/t,

(5.6b)

where

uk 5 uL 1 Ok
i51

(w i
R 2 wi

L ) ri , 1 # k # m 2 1. (5.6c)

In the case xR . xL in (5.6a) the solution u(x, t), for t
small, is

u(x, t)

5

V Sx 2 xL

t
; uL , uMD

uM

V Sx 2 xR

t
; uM , uRD

for x , xL 1 amt

for xL 1 amt # x # xR 1 a1t

for xR 1 a1t , x.

(5.6d)

5
As t increases, the discontinuity in the kth characteristic
field originating at x 5 xL will eventually collide with any
discontinuity in the lth field, l 5 1, ..., k 2 1 originating
at x 5 xR .

The example (5.6) demonstrates the difficulty encoun-
tered in using the component-wise reconstruction (5.1).
We may get oscillations for small t in both (5.6b) and (5.6d)
since the discontinuities are too close due to the self-similar
nature of the solution to the Riemann problem. Later on
we may get more oscillations in (5.6d) as discontinuities
collide.

We observe that there are no such problems with
w k(x, t) 5 w k

0(x 2 ak t). Therefore it makes sense to use
the scalar reconstruction R(x; w k ) to define

R(x: u) 5 Om
k51

R(x; w k ) rk , (5.7a)

where

w k 5 lku. (5.7b)

We generalize (5.7) to the nonlinear system case by using
locally defined characteristic variables. To reconstruct u
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from u in (xj21/2 , xj11/2 ) we define

R(x; u) 5 Om
k51

R(x; w k(uj )) rk(uj ) for xj21/2 # x , xj11/2 ,

(5.8a)

where the mesh function w k(uj ) 5 hw k
i (uj )j is defined by

w k
i (uj ) 5 lk(uj )ui for j 2 p # i # j 1 p; (5.8b)

here p is the desired order of reconstruction.
In Section 7 we present calculations for the Euler equa-

tions of gas dynamics with the initial data (5.6a). The results
of these calculations (as well as those of shocks reflecting
from a wall) demonstrate that the reconstruction (5.8)
works well also in the nonlinear case.

We turn now to describe our scheme in the case of
hyperbolic systems of conservation laws. This scheme is
identical in form to (4.14):

vn11
i 5 vn

i 2 l( f̄ j11/2 2 f̄ j21/2 ) (5.9a)

f̄ j11/2 5 OK
k50

ak f R(ṽj(xj11/2 , bkt), ṽj11(xj11/2 , bkt)). (5.9b)

The derivation of (5.9), although different in some details,
is basically the same as the one presented in Section 4 for
the scalar case. Rather than repeating ourselves we shall
use the formulae of Section 4 (which are to be interpreted
here in a vector sense), and point out the differences when-
ever they do exist.

The problem to be solved in the ‘‘solution-in-the-small’’
step of the algorithm (1.14b) is as before (4.2). The general
structure of the solution v(x, t) is similar to that of the
scalar case, i.e., it is composed of sections of smoothness
separated by ‘‘fans’’ emanating from the discontinuities at
hxj11/2 j. As in the scalar case we can use a local Cauchy–
Kowalewski procedure to approximate vj(x, t), the section
of smoothness of v(x, t) that is connected to the polynomial
initial data in (xj21/2 , xj11/2 ), by ṽj(x, t) in (4.12) to any
desired order of accuracy. Since f(u) is now a vector, f 9(u)
is a matrix, f 0(u) is a tensor, and so on; consequently,
(4.11c) has to be replaced by a much more complicated
expression. Rather than doing this we shall present an
algorithm in Section 6 to carry out the Cauchy–
Kowalewski procedure in the specific case of the Euler
equations for gas dynamics.

Next we consider the ‘‘fan’’ that emanates from the
discontinuity at xj11/2 . As in the scalar case this ‘‘fan’’ starts
at t 5 0 as a self-similar solution to the Riemann problem
(4.3), which in the system case is a packet of m fans corre-
sponding to the different characteristic fields. A major
difference from the scalar case is that (except when the
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initial data in (4.2b) are piecewise constant) the ‘‘fan’’
emerging from xj11/2 at t 5 0 immediately loses its self-
similar nature. Therefore it is no longer possible to express
v(xj11/2 , t) in a simple closed form as we did in (4.4). How-
ever, v(xj11/2 , t) can be expressed to any desired order of
accuracy via a local Taylor expansion of the various curves
in the ‘‘fan’’ and the states in between. (We refer the
interested reader to [1], where Ben-Artzi and Falcowitz
describe such an expansion for the Euler equations of gas
dynamics.) Thus as in the scalar case, although at consider-
ably more effort, it is possible to obtain an explicit expres-
sion that approximates the ‘‘abstract numerical flux’’ (4.8)
to any desired order of accuracy.

We turn now to show that the numerical scheme (5.9)
is an adequate approximation to the ‘‘abstract scheme’’
(1.16). First we observe that relations (4.16) hold also for
the system case; therefore (4.15) follows in exactly the
same way as in the scalar case and consequently the scheme
(5.9) is likewise rth order accurate.

Next we consider the scheme in the constant coefficient
case (5.2). Since both the PDE (1.1a) and the scheme
(5.9) decouple into m scalar relations for the characteristic
variables w k in (5.4a), we can apply the analysis of the
scalar constant coefficient case to systems in a characteris-
tic-wise fashion. It follows then from (4.17)–(4.18) that the
numerical flux (5.9b) is exact and that the numerical
scheme (5.9) is identical to the ‘‘abstract scheme’’ (1.16).
Let us examine now the structure of the solution v(x, t):
The ‘‘fan’’ emanating from xj11/2 has the same form as
(5.6b) except that uL , u k, and uR are now functions of x
and t. The section of smoothness xj21/2 1 am t , x , xj11/2

1 a1 t is also the domain of validity of the Taylor expansion
(x, t). We note, however, that lkṽj(x, t), which is the Taylor
expansion of w k

j (x, t), is valid in the larger domain
xj21/2 1 akt , x , xj11/2 1 ak t. Next let us examine the
role of f R in formulating the numerical flux (5.9b):

f R(ṽj(xj11/2 , t), ṽj11(xj11/2 , t)) 5 O
k

(ak)1[lkṽj(xj11/2 , t)] rk

1O
k

(ak ) [lkṽj11(xj11/2 , t)] rk , (5.10a)

where

(ak )1 5 max(0, ak ), (ak )2 5 min(0, ak ). (5.10b)

We see from (5.10) that as in the scalar case the role of
f R is that of a pointer, i.e., to identify for each characteristic
variable wk 5 lkv to which domain of validity of hlkṽij does
x 5 xj11/2 belong. Since lkṽi(xj11/2 , t) 5 lkv(xj11/2 2 akt, 0), the
use of Cauchy–Kowalewski procedure in this procedure in
this fashion is again computationally equivalent to that of
a characteristic method.

In the following we argue that except for the discrete
set h(xc , tc )j of interactions, the above interpretation can
be applied to the nonlinear case as well. Unlike the scalar
case we do not consider in this paper the ‘‘non-convex
case’’ for systems and assume that each characteristic field
is either genuinely nonlinear or linearly degenerate (see
[19]). When we consider the IVP (4.2) in the context of
the numerical scheme where v(x, 0) 5 R(x; vn) we see
that the ‘‘fans’’ in the solution v(x, t) are related to the
global structure of u(x, tn ) in the following way (see Figs.
14 and 16): When u(x, tn ) is smooth, the ‘‘fan’’ has the
basic structure of the constant coefficient case linearized
around u(xj11/2 , tn ), except that the k waves may have a
spread of O(hp). When xj11/2 is in the vicinity of a shock
of u(x, tn ), the ‘‘fan’’ is essentially a shock wave with small
perturbations in the other fields. We see that typically
(excluding interactions) the ‘‘fan’’ emanating from xj11/2 in
the solution v(x, t) is degenerate in the sense that except
possibly for a single large shock (or a contact discontinuity)
all the waves in it are weak. This heuristic analysis suggests
that f(v(xj11/2 , t)) can be adequately approximated by a
local Roe’s linearizaton; this linearization is exact for a
single shock or a contact-discontinuity and amounts to a
characteristic approximation for weak waves.

As in the scalar case, f ROE is obtained by a local lineariza-
tion with respect to a particular average û 5 û(uL , uR )
for which

f(uR ) 2 f(uL ) 5 A(û)(uR 2 ul ). (5.11a)

f ROE is defined as the flux at x 5 0 of the solution to the
constant coefficient Riemann IVP:

ut 1 A(û) ux 5 0

u(x, 0) 5 5uL

uR

x , 0

x . 0,

which can be expressed as

f ROE(uL , uR )

5
1
2 Ff(uL ) 1 f(uR ) 2 Om

k51
dk(uL , uR )uak(û)urk(û)G ,

(5.11b)

where

dk(uL , uR ) 5 lk(û)(uR 2 uL ); (5.11c)

here ak(û), lk(û), and rk(û) are evaluated with respect to the
Jacobian matrix A(û). The derivation of Roe’s Riemann
solver is well documented in the literature (see [25, 8, 9,



14]). In Section 6 we describe f ROE for the Euler equations
of gas dynamics.

Finally let us examine the performance of the scheme
(5.9) during an interaction of discontinuities in the solution
u(x, t) of the IVP (1.1). We observe that it takes some
time until the outcoming waves can be properly described
on the computational grid. Until then R(x; vn), which is
based on polynomial interpolation, can only be a crude
approximation to u(x, tn ). Under these circumstances we
expect the ‘‘fans’’ in the solution v(x, t) (4.12) that originate
from discontinuities in the interaction zone of u(x, tn ), to
be adequately approximated by the self-similar solution
to the local Riemann problem. We note that once the
outcoming waves are properly resolved on the computa-
tional grid, the previous analysis applies.

In Section 7 we present numerical experiments where
the scheme (5.9) with f R replaced by f ROE (5.11) is applied
to an interaction problem for the Euler equations of poly-
tropic gas. In all these experiments the scheme (5.9) has
developed the correct structure of the solution.

We remark that the scheme (5.9) with f ROE in its form
(5.11b) admits a stationary ‘‘expansion shock’’ as its steady
solution. This can be easily rectified by adding entropy
viscosity terms for the genuinely nonlinear characteristic
fields (see [13, 14, 9]).

6. EULER EQUATIONS OF GAS DYNAMICS

In this section we describe how to apply the scheme (5.1)
to the Euler equations of gas dynamics for a polytropic gas:

ut 1 f(u)x 5 0 (6.1a)

u 5 (r, m, E)T (6.1b)

f(u) 5 qu 1 (0, P, qP)T (6.1c)

P 5 (c 2 1)(E 2 !srq2). (6.1d)

Here r, q, P, and E are the density, velocity, pressure, and
total energy, respectively; m 5 rq is the momentum and
c is the ratio of specific heats.

The eigenvalues of the Jacobian matrix A(u) 5 f/u are

a1(u) 5 q 2 c, a2(u) 5 q, a3(u) 5 q 1 c. (6.2a)

where c 5 (cP/r)1/2 is the speed of sound.
The corresponding right-eigenvector are

r1(u) 5 1
1

q 2 c

H 2 qc
2 , r2(u) 5 1

1

q

!sq22 , r3(u) 5 1
1

q 1 c

H 1 qc
2 ;

(6.2b)
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here

H 5 (E 1 P)/r 5 c2/(c 2 1) 1 (1/2)q2 (6.2c)

is the enthalpy.
To compute hlk(u)j which is bi-orthonormal to hrk(u)j in

(6.2b), we first form the matrix T(u), the columns of which
are the right-eigenvectors in (6.2b)

T(u) 5 (r1(u), r2(u), r3(u))

and then define lk(u) to be the kth row in T21(u), the
inverse of T(u). We get

l1(u) 5 (1/2)(b2 1 q/c, 2 b1q 2 1/c, b1 )

l2(u) 5 (1 2 b2 , b1q, 2 b1 ) (6.2d)

l3(u) 5 (1/2)(b2 2 q/c, 2 b1q 1 1/c, b1 ),

where

b1 5 (c 2 1)/c2 (6.2e)

b2 5 (1/2) q2b1 . (6.2f)

Given hvn
j j, approximation to hu(xj , tn )j, we use (6.2d)–

(6.2f) to evaluate the locally defined characteristic vari-
ables (5.8b)

w k
i (vn

j ) 5 lk(vn
j ) vn

i for i 5 j 2 r, ..., j 1 r and k 5 1, 2, 3.
(6.3a)

Next we apply our scalar reconstruction algorithm to each
of the locally defined charracteristic variables in (6.3a).
The scalar reconstruction R(x, w) is described in an algo-
rithmic form in an Appendix; the output of this algorithm
is in the form of the finite Taylor series in (4.2b). Thus we
get for each characteristic variable in (xj21/2 , xj11/2 )

R(x; w k(vn)) 5 Or21

l50
bk

j, l(x 2 xj)l/l! (6.3b)

Rearranging terms we can express the vector reconstruc-
tion (5.8a) by

R(x; vn) 5 Or21

l50
bj, l(x 2 xj )l/l!, (6.3c)

where

bj, l 5 O3
k51

bk
j, lrk . (6.3d)
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[Note that whenever the solution is smooth

bj, l 5
l

xl (r, m, E)TU
x5xj

1 O(hr21) for 0 # l # r 2 1.

(6.3e)

We turn now to describe the Cauchy–Kowalewski proce-
dure (4.4)–(4.5) for the Euler equations of gas dynamics.
We start by using the reconstruction output (6.3c) to define
(4.4a), i.e.,

lv(xj , 0)
x l 5 5bj, l

0

for 0 # l # r 2 1

for l $ r.
(6.4a)

We find it convenient to express lv(xj , 0)/xkt l2k in
terms of derivatives of the 4-vector Z 5 (r, m, P, q)T. For
this purpose we use (6.4a) and the relations

m 5 rq

P 5 (c 2 1)(E 2 !sqm)

to find the x-derivatives of q and P, by

mx 5 qrx 1 rqx ⇒ qx 5 (mx 2 qrx)/r

Px 5 (c 2 1)[Ex 2 !s(qxm 1 qmx )] (6.4b)

mxx 5 rqxx 1 2rxqx 1 qrxx ⇒ qxx 5 (mxx 2 qrxx 2 2qxrx)/r

Pxx 5 (c 2 1)[Exx 2 !s(mqxx 1 2qxmx 1 qmxx )] (6.4c)

and so on. Having evaluated lZ(xj , 0)/xl for 0 # l #
r 2 1, we proceed to obtain the rest of the derivatives
lZ(xj , 0)/xktl2k, 0 # l # r 2 1, 0 # k # l by differentiating
the PDEs

rt 1 mx 5 0 (6.5a)

mt 1 (qm)x 1 Px 5 0 (6.5b)

Pt 1 qPx 1 cPux 5 0 (6.5c)

and the algebraic relation

m 5 qr (6.5d)

in the following ordered way: Compute Zt(xj , 0) from

rt 1 mx 5 0

mt 1 qxm 1 qmx 1 Px 5 0
(6.6a)

Pt 1 qPx 1 cPqx 5 0

rqt 1 rtq 5 mt ;

compute Zxt(xj , 0) from

rxt 1 mxx 5 0

mxt 1 2qxmx 1 qmxx 1 mqxx 1 Pxx 5 0
(6.6b)

Pxt 1 qPxx 1 cPqxx 1 (1 1 c) qxPx 5 0

rqxt 1 rxqt 1 rtqx 1 qrxt 5 mxt ;

compute Zu(xj , 0) from

rtt 1 mxt 5 0

mtt 1 qmxt 1 mqxt 1 Pxt 1 (qxmt 1 qtmx) 5 0
(6.6c)

Ptt 1 qPxt 1 cPqxt 1 (qtPx 1 cPtqx ) 5 0

rqtt 1 2rtqt 1 qrtt 5 mtt ,

compute Zxxt(xj , 0) from

rxxt 1 mxxx 5 0

mxxt 1 qmxxx 1 mqxxx 1 Pxxx 1 3qxmxx 1 3qxxmx 5 0

Pxxt 1 qPxxx 1 cPqxxx 1 (2 1 c) qxPxx

1 (1 1 2c) qxxPx 5 0
rqxxt 1 2(rxqxt 1 rxtqx) 1 qrxxt 1 rxxqt 1 rtqxx 5 mxxt ;

(6.6d)

compute Zxtt(xj , 0) from
rxtt 1 mxxt 5 0

mxtt 1 qmxxt 1 mqxxt 1 Pxxt

1 2(qxmxt 1 mxqxt ) 1 (mtqxx 1 qtmxx) 5 0

Pxtt 1 qPxxt 1 cPqxxt 1 (c 1 1)[qxtPx 1 qxPxt ]

1 qt Pxx 1 cPtqxx 5 0

rqxtt 1 qrxtt 1 rxqtt 1 qxrtt 1 2(rxtqt 1 rtqxt ) 5 mxtt ;
(6.6e)

compute Zm(xj , 0) from

rttt 1 mxtt 5 0

mttt 1 qmxtt 1 mqxtt 1 Pxtt

1 2(qtmxt 1 mtqxt ) 1 (qxmtt 1 mxqtt) 5 0

Pttt 1 qPxtt 1 cPqxtt 1 cqxPtt

1 2(qtPxt 1 cPtqxt ) 1 qttPx 5 0

rqttt 1 qrttt 1 3(rtqtt 1 qtrtt ) 5 mttt ;
(6.6f )

and so on.



We note that one can differentiate the algebraic relation
(6.1d) in order to obtain lE(xj , 0)/xktl2k in terms of the
already evaluated derivatives of P, q, and m and use the
derivatives of the conserved quantities r, m, E to compute
vj(x, t) in (4.5). However, it is more convenient to evaluate
the flux f(u) and f R(u1 , u2 ) in terms of p, q, and P ; since
vj(x, t) is smooth and the scheme (5.9) is in conservation
form we do not really need to worry about relation (4.12b).
See Remark 6.2. For this reason we use the first, third,
and fourth components of Z̃j(x, t)

Z̃j(x, t) 5 Or21

l50
Ol

k50

lZ(xj , 0)
xk tl2k ?

(x 2 xj )k

k!
tl2k

(l 2 k)!
(6.7)

to define r̃j(x, t), P̃j(x, t), and q̃j(x, t), respectively.
Once we have computed (6.7) we can compute the nu-

merical flux f̄ j11/2 in (5.9b).
An exact f R(u1 , u2 ), i.e.,

f R(u1 , u2 ) 5 f(V(0; u1 , u2 )), (6.8)

where V(x/t; u1 , u2 ) is the exact solution of the Riemann
problem for the Euler equations of gas dynamics, can be
computed through an iterative algorithm. This algorithm
is rather complicated, and we refer the reader to [5, 3, 28]
for its details.

To compute f R ; f ROE in (5.11b) and (5.9b) all we need
is to describe the particular average û(u1 , u2 ) for the Euler
equations of gas dynamics (see [25, 9]). To do so we denote
the arithmetic mean of b(u) with respect to u1 and u2 by

kbl 5 !s[b(u1 ) 1 b(u2 )] (6.9a)

and define

q̂ 5 kÏrql/kÏrl, Ĥ 5 kÏrHl/kÏrl,
(6.9b)

ĉ 5 (c 2 1)1/2 ? ÏĤ 2 (!s) q̂2;

here H is the enthalpy (6.2c). Having prescribed q̂, Ĥ,
and ĉ, we have all the quantities needed to define the
eigenvalues and eigenvectors in (6.2).

Remark 6.1. The importance of using the particular
average (6.9) rather than a simpler one is that when (u1 ,
u2 ) corresponds to a single shock or a single contact discon-
tinuity in the solution of the Riemann problem V(x/t; u1 ,
u2 ), then f ROE is exact, i.e.,

f ROE(u1 , u2 ) 5 f R(V(0; u1 , u2 )). (6.10)

Remark 6.2. No matter how we derive ṽj(x, t) the nu-
merical approximation (1.16a) is in conservation form.
However, in order to make vn11

j approximate the cell aver-
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age (1.14c) (which is desirable for stability purposes), we
need the reconstruction to be conservative; i.e., (1.14b)
should be valid.

7. NUMERICAL EXPERIMENTS

In this section we present results of several computer
experiments with the schemes (4.14) and (5.9). These
schemes will be referred to as rth order ENO schemes
(or ‘‘rth order’’ when applicable—see Remark 1.2); ENO
stands for essentially non-oscillatory.

The ENO schemes are highly nonlinear and conse-
quently do not easily lend themselves to rigorous analysis.
At present we have comleted the analysis of the non-
oscillatory interpolation Hm (3.1)–(3.5) and have acquired
a fairly good understanding of the reconstruction
R(x; w); these reconstruction results can be extended to a
single application of the ‘‘abstract scheme’’ (1.10) to
piecewise smooth data. Unfortunately we have not been
able as yet to analyze rigorously the crucial question of
accumulation of error. Under these circumstances, com-
puter experiments have become our main tool of analysis.
We have performed a large number of numerical experi-
ments with initial data ranging from random noise to
smooth functions. We have studied two notions of ‘‘stabil-
ity’’: (i) boundedness of a refinement sequence h R 0,
t 5 O(h) for 0 # t # T ; (ii) boundedness of the numerical
solution as n R y with fixed h and t. In all our experiments1

we have found the ENO schemes to be stable under a CFL
restriction of 1 and strongly so, in the sense that they
strongly damp high frequency noise—this is probably due
to the cell-averaging step (1.14c).

In [15], the first paper in this series, we have presented
numerical results which compare the second-order ENO
scheme based on RD with r 5 2 to a ‘‘second-order accu-
rate’’ MUSCL-type scheme, which is computationally
equivalent to the ‘‘second-order’’ ENO scheme based on
RP with r 5 2.

In [16], the second paper in this series, we have presented
numerical experiments that verify our statements about the
accuracy and non-oscillatory nature of the reconstruction
R(x; w) and demonstrate the stability of the ENO schemes
in the scalar constant coefficient case for both the pure
IVP and the mixed initial-boundary value problem (IBVP).

In this paper we present a sample of our numerical
experiments for the nonlinear scalar case and the Euler
equations of gas dynamics in 1D. The purpose of this pre-
sentation is to address the open questions that we could

1 The only expection where we had to reduce the CFL number is for
the initial data of the mesh oscillation function v0

j 5 (21) j. This choice
of initial data forces the ENO scheme to become linear; for v0

j 5 uj(21) j,
where uj is a positive random number, the scheme is again stable under
a CFL restriction of 1 (see [16] for more details).
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not fully answer by analysis: The accumulation of error,
the adequacy of the ‘‘solution in the small’’ procedure,
consistency with entropy inequalities, and the effectiveness
of the characteristic-wise reconstruction for systems. We
have performed most of the numerical experiments for
r 5 1, 2, 3, 4, 5, 6. Since it is not practical to present six
sets of data for each problem we usually compare r 5 2,
which is the current state of the art scheme, to r 5 4
which seems to be optimal for smooth solutions. However,
presentation of a comprehensive efficiency study is de-
ferred to a future paper.

A. Scalar Conservation Laws

A1. Convex f(u) with Smooth Initial Data

In this subsection we show results of applying the ENO
schemes to

ut 1 (u2/2) x 5 0 (7.1a)

u(x, 0) 5 a 1 b sin(fx 1 c), (7.1b)

for 21 # x # 1, t $ 0. In these calculations we have used
the ENO schemes with f R replaced by f ROE (4.21) (without
any entropy correction).

Let F(x, t) denote the solution of (7.1a) with F(x, 0) 5
sin fx, i.e., b 5 1, a 5 c 5 0 in (7.1b). The solution F(x,
t) is smooth for 0 # t , 1/f; when t 5 1/f a shock develops
at x 5 61 and stays there as a stationary shock for t .
1/f. Some time after its development, this shock starts
interacting with the expansion wave in 21 , x , 1; this
brings about a fast decay of the solution. The ‘‘exact’’
solution presented in the following is computed in 0 #
x , 1 by using Newton–Raphson iterations to solve the
characteristic relation

F 5 sin f(x 2 F t); (7.2)

F in (21, 0) is obtained from F in (0, 1) by F(2x, t) 5
2F(x, t). The general solution of (7.1) is computed from
F(x, t) in (21, 1) by

u(x, t) 5 a 1 bF(x 2 at 1 c, bt). (7.3)

In Tables I and II and Fig. 1 we present the computation
of (7.1) with a 5 1, b 5 !s , c 5 0, i.e., u(x, t) 5 1 1
!sF(x 2 t, !st); thus the shock develops at t 5 2/f. The results
are presented at t 5 0.3 when the solution is still smooth.
We divide (21, 1) into J equal intervals and define

xj 5 21 1 ( j 2 1/2)h, h 5 2/J, 1 # j # J. (7.4)

First we consider the pure IVP for (7.1), i.e., periodic
boundary conditions at x 5 61. In Figs. 1a and 1b we show

the results of the ENO schemes with RD at t 5 0.3; Fig.
1a shows the second-order ENO scheme, while Fig. 1b
shows the fourth-order one. Both calculations were per-
formed with J 5 10 and CFL 5 0.6. The continuous line
in these figures is the exact solution; the circles represent
the values of R(xj ; vN). In Tables IA and IB we list the Ly-
error and the L1-error at t 5 0.3 of a refinement sequence
J 5 8, 16, 32, 64, 128 for r 5 1, 2, 3, 4, 5 with CFL 5 0.6.
Table IA shows the results of the ENO schemes with RP
while Table IB shows the ones with RD. The value of rc

in Tables I and II is the ‘‘computational order of accuracy’’
which is calculated by assuming the error to be a constant
times hrc; this definition is meaningful only for h suffi-
ciently small.

In Figs. 2a and 2b we use the same schemes as in Fig.
1, but with J 5 16, and show the results at t P 2/f (after
17 time steps) which is the time of the formation of the
shock. In Figs. 3a and 3b we show the reconstruction R(x;
vn) corresponding to the numerical solutions of Fig. 2. The
squares in Figs. 3a and 3b mark the values of R(xj11/2 6
0; vn). R(x; vn) is a piecewise linear in Fig. 3a and piecewise
cubic in Fig. 3b.

Next we consider the IBVP for (7.1); since the character-
istic speed for (7.3) with a 5 1, b 5 !s , c 5 0 is positive,
we prescribe

u(21, t) 5 g(t); (7.5a)

x 5 11 is an outflow boundary and no condition is pre-
scribed there. To be able to compare with the periodic
problem we take g(t) in (7.5a) to be the value of the
periodic solution at x 5 21, i.e.,

g(t) 5 1 1 !sF(21 2 t, !st). (7.5b)

The point of view that we have taken in treating boundary
conditions is consistent with the presentation of the ‘‘ab-
stract scheme’’ (1.10), (1.14) as a sequence of global opera-
tions. Thus in the reconstruction step, as in the pure IVP
case, we use the given cell averages hvn

j j, 1 # j # J, to get
R(x; vn) for 21 , x , 1; in the presence of boundaries
we restrict the choice of stencil to the available information
by imposing the condition

1 # ik( j) # J 2 r for 1 # k # r (7.6)

in the algorithm (3.4). Note that we do not use the given
boundary data g(t) (7.5a) in the reconstruction step. The
boundary data is incorporated into the scheme on the PDE
level by considering the solution-in-the-small step to be
an IBVP. Obviously the resulting scheme is biased ‘‘against
the wind’’ near x 5 21; nevertheless, numerical experi-
ments in the nonlinear case as well as in the constant
coefficient case (see [16]), indicate that the ENO schemes



22 HARTEN ET AL.

TABLE IA

Solution of the Periodic IVP (7.1) at t 5 0.3 by ENO Schemes Based on RP

J R 5 1 rc r 5 2 rc r 5 3 rc r 5 4 rc r 5 5 rc

Ly-error

8 1.582 3 1021 9.047 3 1022 3.804 3 1022 2.715 3 1022 2.117 3 1022

0.80 1.07 2.24 2.76 2.86
16 9.082 3 1022 4.300 3 1022 8.038 3 1023 3.998 3 1023 2.906 3 1023

0.87 1.24 2.10 3.18 3.76
32 4.964 3 1022 1.819 3 1022 1.876 3 1023 4.423 3 1024 2.151 3 1024

0.91 1.32 2.35 3.39 3.65
64 2.648 3 1022 7.296 3 1023 3.684 3 1024 4.211 3 1025 1.713 3 1025

0.92 1.33 2.14 3.02 4.50
128 1.404 3 1022 2.900 3 1023 8.356 3 1025 5.188 3 1036 7.562 3 1027

L1-error

8 8.440 3 1022 4.507 3 1022 1.669 3 1022 1.003 3 1022 7.000 3 1023

0.98 1.79 2.70 3.21 3.57
16 4.279 3 1022 1.304 3 1022 2.574 3 1023 1.086 3 1023 5.875 3 1024

0.97 1.81 2.69 3.53 4.08
32 2.186 3 1022 3.707 3 1023 3.992 3 1024 9.400 3 1025 3.462 3 1025

0.96 1.89 2.69 3.57 4.48
64 1.124 3 1022 9.980 3 1024 6.165 3 1025 7.905 3 1026 1.546 3 1026

0.99 1.83 2.56 3.53 4.62
128 5.675 3 1023 2.813 3 1024 1.042 3 1025 6.835 3 1027 6.270 3 1028

TABLE IB

Solution of the Periodic IVP (7.1) at t 5 0.3 by ENO Schemes Based on RD

J r 5 1 rc r 5 2 rc r 5 3 rc r 5 4 rc r 5 5 rc

Ly-error

8 1.582 3 1021 5.204 3 1022 4.484 3 1022 2.787 3 1022 2.115 3 1022

0.80 1.94 3.01 2.97 3.17
16 9.082 3 1022 1.352 3 1022 5.577 3 1023 3.565 3 1023 2.343 3 1023

0.87 1.92 2.67 3.24 3.61
32 4.964 3 1022 3.562 3 1023 8.791 3 1024 3.777 3 1024 1.191 3 1024

0.91 2.05 3.96 3.69 5.20
64 2.648 3 1022 8.610 3 1024 5.658 3 1025 2.927 3 1025 5.242 3 1026

0.92 2.30 3.22 4.76 5.36
128 1.404 3 1022 1.748 3 1024 6.081 3 1026 1.077 3 1026 1.276 3 1027

L1-error

8 8.440 3 1022 2.231 3 1022 1.333 3 1022 8.600 3 1023 6.045 3 1023

0.98 2.40 3.26 3.71 3.90
16 4.279 3 1022 4.228 3 1023 1.388 3 1023 6.575 3 1024 4.063 3 1024

0.97 2.30 3.31 4.02 4.40
32 2.186 3 1022 8.565 3 1024 1.399 3 1024 4.056 3 1025 1.919 3 1025

0.96 2.23 3.67 4.39 5.40
64 1.124 3 1022 1.826 3 1024 1.096 3 1024 1.096 3 1025 1.936 3 1026

0.99 2.18 3.35 4.53 5.53
128 5.675 3 1023 4.039 3 1025 1.071 3 1026 8.385 3 1028 9.810 3 1029
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TABLE IIA

Solution of the IBVP (7.1) and (7.5) at t 5 0.3 by ENO Schemes Based on RP

J r 5 1 rc r 5 2 rc r 5 3 rc r 5 4 rc r 5 5 rc

Ly-error

8 1.471 3 1021 9.047 3 1022 2.849 3 1022 2.936 3 1022 1.766 3 1022

0.68 1.07 0.77 1.56 0.69
16 9.184 3 1022 4.300 3 1022 1.672 3 1022 9.943 3 1023 1.096 3 1022

0.77 1.24 2.75 2.98 3.58
32 5.382 3 1022 1.819 3 1022 2.477 3 1023 1.275 3 1023 9.149 3 1024

0.75 1.32 2.75 5.14 5.56
64 3.198 3 1022 7.296 3 1023 3.684 3 1024 3.614 3 1025 1.944 3 1025

0.88 1.33 2.14 2.83 4.69
128 1.742 3 1022 2.900 3 1023 8.356 3 1025 5.089 3 1026 7.540 3 1027

L1-error

8 7.745 3 1022 3.355 3 1022 1.221 3 1022 8.065 3 1023 5.265 3 1023

0.95 1.33 1.60 2.40 1.92
16 4.015 3 1022 1.339 3 1022 4.032 3 1023 1.528 3 1023 1.389 3 1023

0.91 1.88 3.14 3.40 4.15
32 2.143 3 1022 3.643 3 1023 4.563 3 1024 1.445 3 1024 7.810 3 1025

0.96 1.86 2.89 4.27 5.04
64 1.102 3 1022 1.003 3 1023 6.175 3 1025 7.505 3 1026 2.371 3 1026

0.97 1.81 2.70 3.58 5.07
128 5.630 3 1023 2.855 3 1024 9.485 3 1026 6.285 3 1027 7.060 3 1028

TABLE IIB

Solution of the IBVP (7.1) and (7.5) at t 5 0.3 by ENO Schemes Based on RD

J r 5 1 rc r 5 2 rc r 5 3 rc r 5 4 rc r 5 5 rc

Ly-error

8 1.471 3 1022 3.264 3 1022 3.122 3 1022 1.799 3 1022 9.192 3 1023

0.68 0.78 1.86 0.69 2.65
16 9.184 3 1022 1.907 3 1022 8.571 3 1023 1.114 3 1022 1.441 3 1022

0.77 2.46 2.65 3.58 3.54
32 5.382 3 1022 3.454 3 1023 1.366 3 1023 9.312 3 1024 1.240 3 1023

0.75 2.06 4.71 5.01 6.96
64 3.198 3 1022 8.302 3 1024 5.220 3 1025 2.897 3 1025 9.727 3 1026

0.88 2.24 3.12 4.75 6.07
128 1.742 3 1022 1.754 3 1024 5.996 3 1026 1.075 3 1026 1.473 3 1027

L1-error

8 7.745 3 1022 1.488 3 1022 8.425 3 1023 5.480 3 1023 2.240 3 1023

0.95 1.52 2.45 2.00 0.88
16 4.015 3 1022 5.190 3 1023 1.540 3 1023 1.372 3 1023 1.217 3 1023

0.91 2.57 3.18 4.07 3.83
32 2.143 3 1022 8.740 3 1024 1.694 3 1024 8.105 3 1025 8.570 3 1025

0.96 2.22 4.00 4.90 6.26
64 1.102 3 1022 1.879 3 1024 1.059 3 1025 2.747 3 1026 1.119 3 1026

0.97 2.15 3.39 4.90 6.68
128 5.630 3 1023 4.219 3 1025 1.012 3 1026 9.200 3 1028 1.092 3 1028



are stable. We observe that a similar choice of stencil occurs
near discontinuities in the interior of the computational
grid.

In Tables IIA and IIB we repeat the calculation in Table
I for the IBVP (7.1) with (7.5). In Figs. 4a and 4b we show
the calculations of the ENO schemes based on RP with
r 5 2 and r 5 4, respectively, for the IBVP (7.1) with
a 5 0, b 5 1, c 5 f. Here the boundaries x 5 61 are charac-
teristic, and a stationary shock develops at x 5 0 at
t 5 1/f. In these calculations we have treated x 5 21 as
an inflow boundary and specified

u(21, t) 5 0;

x 5 11 was treated as an outflow boundary. The results
show the numerical solution with J 5 16 and CFL 5 0.6
at t 5 0.6, at which time the solution has already started
to decay considerably due to the interaction of the shock
with the expansion waves.
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A2. Riemann IVP for Nonconvex f(u)

In this subsection we show results of applying the ENO
schemes to the Riemann IVP

ut 1 f(u)x 5 0, u(x, 0) 5 5uL

uR

x , 0

x . 0,
(7.7a)

where f(u) is the nonconvex function

f(u) 5 !f(u2 2 1)(u2 2 4). (7.7b)

We recall that the main difficulty in justifying the approxi-
mation (4.13) is when the ‘‘fan’’ in (4.4) covers x 5 xj11/2 ;
the same difficulty is encountered in justifying the use of
f ROE (4.21) instead of the exact flux of the Riemann prob-
lem (4.6). Therefore we present two cases in which
a(uL , uR ) 5 0; in the first case, x 5 0 is covered by a

FIGURE 1

FIGURE 2
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centered sonic rarefaction fan while, in the second one,
there is a stationary (sonic) shock at x 5 0.

In each case we present two sets of experiments. In the
first set we use the ENO schemes with the exact f R which
is defined by (4.6a); these results, which we consider to be
rather pleasing, are presented in Figs. 5 and 7. In the second
set of experiments we use the ENO schemes with f R re-
placed by the following modification of f ROE in (4.21):

f ROE(u1 , u2 )

5 !s[ f(u1 ) 1 f(u2 ) 2 max(ua(u1 , u2 )u, «)(u2 2 u1 )].
(7.8a)

The addition of the linear viscosity term 2«(u2 2 u1 )/2
for uau , «, is the simplest but crudest entropy correction
of (4.21). We note that « 5 0 in (7.8a) corresponds to
(4.21), while « 5 1/l (l 5 t/h) corresponds to Lax’s first-
order scheme [18]; since (7.8a) satisfies relation (4.16c)
the modified scheme remains rth-order accurate. In our
calculations we take

« 5 0.1/l. (7.8b)

Analysis presented in [24] shows that using (7.8a)–(7.8b)
in the ‘‘second-order’’ TVD scheme of [9] results in a
scheme which converges to entropy correct solutions for
convex f(u), provided that l is sufficiently small; numerical
experiments in the convex case [9] and the non-convex
case [32] seem to verify this statement even for a CFL
number close to 1.

The numerical results of the ENO schemes using (7.8a)–
(7.8b) are shown in Figs. 6 and 8. These results show that
the ENO schemes converge to entropy correct solutions;
however, the quality of the numerical approximation de-
pends strongly on the formal order of accuracy of the
scheme.

We remark that an entropy correction to f ROE which is
more appropriate for the nonconvex case is obtained by
using in (7.8a), « 5 «(u1 , u2 ) which is defined by

« 5 max [0, a(u1 , u2 ) 2 aL , aR 2 a(u1 , u2 )], (7.8c)

FIGURE 3

FIGURE 4



where

aL 5 min
v[[u1 , u2]

a(u1 , v), aR 5 max
v[[u1 , u2]

a(v, u2 ); (7.8d)

see [13]. In this case the modified f ROE becomes computa-
tionally equivalent to the exact f R.

Our purpose in presenting numerical experiments with
the crude entropy correction (7.8b) rather than the more
appropriate one (7.8c)–(7.8d) is to demonstrate that the
importance of the Riemann solver in the formulation of
the ENO schemes is decreasing with increasing order of
accuracy. When r 5 1 R(x; vn) is piecewise constant and
all the variation of the solution is contained in the disconti-
nuities of the reconstruction. Consequently the Riemann
solver is the only mechanism to describe time evolution.
For r . 1, the smooth polynomial variation in the cell
(which is O(h) in regions of smoothness) is generally larger
than the variation in the discontinuities of the reconstruc-
tion (which is O(hr) in regions of smoothness)—Figs. 3,
14, and 16. Therefore the time evolution of the smooth
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polynomial part, namely the Cauchy–Kowalewski proce-
dure is, in general, more important than the Riemann
solver. The only exception is in the first few time-steps
needed to introduce intermediate states in the solution to
the Riemann IVP (7.7), where (uL , uR ) is not a shock.

In all the calculations presented in this subsection we
have used the ENO schemes with RD and CFL 5 0.8.

Case (i). uL 5 2, uR 5 22. The exact solution in this
case is (see Fig. 5a)

u(x, t) 5 5
2,

g(x/t),

22,

x/t , 20.5281529

uxu/t , 0.5281529

x/t . 0.5281529;

(7.9a)

here g(x/t) is a centered rarefaction wave: g(y) is the solu-
tion of

y 5 f 9(g)

FIGURE 5
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FIGURE 6

in the concave part of f which is uuu , Ï5/6;

g(60.5281529) 5 70.2152504.

In Figs. 5b, 5c, and 5d we show the results of the ENO
schemes using the exact f R as defined by (4.6a) for r 5 1,
2, 4, respectively; in these calculations we used J 5 40 in
(7.4) and N 5 80 time steps. The exact solution is shown

by the continuous line; the circles mark the values of R(xj ;
vN). We observe that the structure of the solution in these
calculations has developed at the correct rate; this is evi-
dent from the fact that the location of the computed shocks
is accurate. In Fig. 5b we notice the ‘‘dog-leg’’ which is
typical of Godunov’s scheme.

In Figs. 6a, 6b, and 6c we repeat the calculations in Figs.
5b, 5c, and 5d but with f R replaced by f ROE (7.8a)–(7.8b).
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From these figures we see that the scheme develops the
correct structure of the solution, but not at the correct
rate. This is due to the fact that « 5 0.1/l represents a fan
which is much narrower than the initial fan in the exact
solution. The location of the computed shocks lags behind
the correct location by 8 cells for r 5 1, 3 cells for r 5 2,
and only one cell for r 5 4. To verify that the numerical
approximations converge to the entropy correct solution
we refine the mesh by a factor of 2 and repeat the calcula-
tions of Figs. 6a, 6b, and 6c with J 5 80, N 5 160; the
results of these calculations are shown in Figs. 6d, 6e, and
6f. Since the number of cells by which the computed shocks
lags behind the correct location remains the same, we con-
clude that the numerical approximations indeed do con-
verge to the entropy solution.

Taking into account the crudeness of the entropy correc-
tion (7.8b) we consider the performance of the fourth-
order scheme in Figs. 6c and 6f to be surprisingly good.

Case (ii). uL 5 23, uR 5 3. The exact solution in this
case is (see Fig. 7a)

FIGURE 7

u(x, t) 5

23

g̃(x/t)

2g̃(2x/t)

3

x/t # 219.5

219.5 # x/t , 0

0 , x/t # 19.5

19.5 # x/t;

(7.9b)5
here g̃(y) is the solution of

y 5 f 9(g̃)

in the convex part of f which is uuu . Ï5/6. Note that the
solution (7.9b) is discontinuous at x 5 0; g̃(0) 5 Ï2.5.

In Figs. 7b, 7c, and 7d we show the results of the ENO
schemes using the exact f R as defined by (4.6a) for r 5 1,
2, 4, respectively; in these calculations we used J 5 40 in
(7.4) and N 5 20 time steps. We observe that the stationary
shock at x 5 0 in these figures is perfectly resolved.

In Figs. 8a, 8b, and 8c we repeat the calculations in Figs.
7b, 7c, and 7d but with f R replaced by f ROE (7.8a)–(7.8b).
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FIGURE 8

Since the rarefaction fans in this case are not sonic, the
quality of the numerical approximation of the rarefaction
wave in Figs. 8a, 8b, and 8c is similar to that of the corre-
sponding one in Figs. 7b, 7c, and 7d. We observe that the
stationary shock at x 5 0 in Figs. 8a, 8b, and 8c is somewhat
smeared—this is due to the fact that the Riemann solver
corresponding to (7.8b) places a fan of the size ux/tu , «
around x 5 0. Nevertheless, if we compare the results of
the fourth-order ENO schemes in the two experiments,
we find that the results in Fig. 8c are only slightly inferior
to those of Fig. 7d.

B. Euler Equations of Gas Dynamics

In this subsection we present numerical experiments
with the ENO schemes for the Euler equations of gas
dynamics for a polytropic gas with c 5 1.4 (see Section
6). In all these calculations we have used reconstruction
via primitive function (RP) and f ROE (5.11), (6.9) without
any entropy corrections.

B1. Riemann Problems

In Figs. 9 and 10 we show the results of applying the
ENO schemes with r 5 2 and r 5 4, respectively, to the
Riemann problem (7.7a) with the initial data

(rL , qL , PL ) 5 (1, 0, 1); (rR , qR , PR ) 5 (0.125, 0, 0.10).
(7.10a)

In these calculations we have used the characteristic recon-
struction (5.8), (6.3) with 100 cells, h 5 0.1, CFL 5 0.8,
and 50 time steps.

In Fig. 11 we repeat the calculation of the ‘‘fourth-order’’
ENO scheme in Fig. 10 but with component-wise recon-
struction (5.1). Comparing Fig. 10 with Fig. 11 we see that
there is some ‘‘noise’’ in the component-wise reconstruc-
tion which is eliminated by using characteristic reconstruc-
tion. We note however that the level of ‘‘noise’’ in Fig. 11
may be considered acceptable for practical calculations.

The initial data (7.10a) are those of the Riemann prob-
lem proposed by Sod in [23], which has become a standard



test problem. The solution of this problem has a monotone
decreasing density profile and therefore it does not display
certain difficulties, that may arise when the intermediate
state has to be ‘‘built-up.’’ In Figs. 12–16 we present calcu-
lations for the Riemann problem

(rL , qL , PL ) 5 (0.445, 0.698, 3.528);
(7.10b)

(rR , qR , PR ) 5 (0.5, 0, 0.571)

used by Lax in [18]; see also [7, 9]. All these calculations
were performed with 100 cells, h 5 0.1, CFL 5 0.8, and
85 time steps using a component-wise reconstruction
(5.11). In Fig. 12 we show the results of the ‘‘fourth-order’’
ENO scheme using a component-wise reconstruction
(5.11). Comparing these results to Fig. 11 we see that the
component-wise reconstruction here is much ‘‘noisier’’
than in Sod’s problem. In Figs. 13 and 15 we show the
results of the ENO schemes using characteristic reconstruc-
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tion (6.3) for r 5 2 and r 5 4, respectively; comparing Fig.
15 to Fig. 12 we see that most of the ‘‘noise’’ in Fig. 12
is eliminated.

In Figs. 14 and 16 we show the characteristic reconstruc-
tion R(x; vn) of the numerical solution in Figs. 13 and 15,
respectively; R(x; vn ) is piecewise-linear in Fig. 14 (r 5 2)
and piecewise-cubic in Fig. 16 (r 5 4). The squares in
these figures mark the values of R(xj11/2 6 0; vn ); thus the
difference between the two squares at the same location
shows the size of the discontinuity in the reconstruction
there (we recall that the circles in Figs. 13 and 15 are the
values of R(xj ; vn )). We see that the discontinuities in the
reconstruction of the rarefaction wave are small enough
to be graphically imperceptible. Surprisingly the disconti-
nuities in the reconstruction of the contact-discontinuity
are also rather small. Comparing Fig. 16 to Fig. 14 we notice
that the size of the discontinuities in the reconstruction for
r 5 4 is always considerably smaller than that for r 5 2.
It is interesting to note that even in the shock region in
Fig. 16 (r 5 4), the sum of the jumps in the reconstruction
is only about 35% of the size of the shock, while about
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65% of the shock jump is described by the smooth polyno-
mial part of the reconstruction.

We remark that because of the self-similar nature of the
solution to the Riemann problem, the rate of convergence
of any scheme is inherently limited to first order (see [27]).
Comparing r 5 4 with r 5 2 in the solution of the above
Riemann problems we notice a slight improvement in the
smearing of the contact-discontinuity (we have not used
artificial compression in these calculations) and the de-
scription of the rarefaction wave. Because of the self-simi-
lar nature of the solution it is better to compare the perfor-
mances of two schemes by using x/t as the spatial variable
and to find how many time steps it takes to get well-
resolved intermediate states. Doing so for the problem
(7.10b) we find that r 5 4 with N 5 35 gives about the
same result as r 5 2 with N 5 70.

B2. Interaction of Blas Waves

In this subsection we present numerical experiments
with the ENO schemes for the problem of two interacting

blast waves:

u(x, 0) 5 5
uL

uM

uR

0 # x , 0.1

0.1 # x , 0.9

0.9 # x , 1,

(7.11a)

where

rL 5 rM 5 rR 5 1, qL 5 qM 5 qR 5 0,
(7.11b)

PL 5 103, PM 5 1022, PR 5 102;

the boundaries at x 5 0 and x 5 1 are solid walls. This
problem was suggested by Woodward and Colella as a test
problem; we refer the reader to [31], where a comprehen-
sive comparison of the performance of various schemes
for this problem is presented.

In our calculations we divided the interval (0, 1) into J
cells by

FIGURE 10



xj 5 ( j 2 !s)/J, j 5 1, ..., J, (7.12a)

where xj marks the center of the jth cell. The boundary
conditions of a solid wall in x 5 0 and x 5 1 were treated
by reflection, i.e., we defined auxiliary states vn

0 , ..., vn
2r11

for the left wall and vn
J11 , ..., vn

J1r for the right wall by

rn
2j11 5 rn

j , qn
2j11 5 2qn

j , P n
2j11 5 2Pn

j , j 5 1, ..., r
(7.12b)

rn
J1j 5 rn

J2j11 , qn
J1j 5 2qn

J2j11 , P n
J1j 5 P n

J2j11 , j 5 1, ..., r.
(7.12c)

We observe that representing the solid wall condition
by the above reflection is very suitable for the characteristic
reconstruction: A 3-wave approaching the right boundary
is reflected as a 1-wave; consequently there is hardly any
interaction between the waves in the characteristic vari-
ables (6.3a) and a situation of not having enough points
of smoothness to choose from is thus avoided.
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In Figs. 17a–17h we show the solution of the ‘‘fourth-
order’’ ENO scheme at t 5 0.010, 0.016, 0.026, 0.028, 0.030,
0.032, 0.034, 0.038, respectively. We refer the reader to
Fig. 2 in [31], where a highly accurate solution is displayed
and a detailed description of the various interactions that
occur at these instances is presented. The continuous line
in Figs. 17a–h, 18, and 19 is the solution of the ‘‘fourth-
order’’ ENO scheme J 5 800 in (7.12a). Comparing this
solution to the ‘‘exact’’ solution of Woodward and Colella
in [31], we find that it shows all the important features
of the various interactions and thus can be considered a
‘‘converged’’ solution. (The continuous line representing
the solution with J 5 800 is the piecewise-linear interpola-
tion of hR(xj ; vn )j; consequently cusps in the solution,
which do appear in R(x; vn ), are chopped in the graphic
representation). The circles in Figs. 17a–17h show the val-
ues of R(xj ; vn ) of the ‘‘fourth-order’’ ENO scheme with
J 5 400. Comparing the numerical solution for J 5 400 to
that of J 5 800 we see that the velocity and pressure have
already converged, while the density in Figs. 17g and 17h
still deviates from the ‘‘converged’’ solution. This is due

FIGURE 11



HIGH ORDER ACCURATE SCHEMES, III 33

to the smearing of 3 contact discontinuities which are pres-
ent in the solution at this time; the numerical results of
Woodward and Colella demonstrate that the addition of
‘‘contact-discontinuity steepeners’’ improve the density
profile considerably.

In Fig. 18 we show the solution of the ‘‘fourth-order’’
ENO scheme with J 5 200 at the final time t 5 0.038; In
Fig. 19 we repeat the calculation in Fig. 18 for the ‘‘second-
order’’ ENO scheme. Comparing Figs. 18 and 19 we see
that the ‘‘fourth-order’’ scheme gives a much better resolu-
tion. We remark that the results of the ‘‘fourth-order’’
scheme with J 5 100 (not shown here) are of the same
quality as those of the ‘‘second-order’’ scheme with J 5
200.

We note that a parabola interpolating

P(x21 ) 5 240, P(x0 ) 5 0.01, P(x1 ) 5 40

has an interval in which it is negative; the same is true for
higher order interpolating polynomials that pass through
these points. A situation of this type occurs in the calcula-

tion of the two interacting blast waves just before the
interaction in Fig. 17d, when the low pressure region in
Fig. 17c is shrinking to 1–2 computational cells. Since high
order interpolating polynomials may produce negative val-
ues of pressure and density in such drastic situations, we
have imposed a ‘‘positivity condition’’ on the reconstruc-
tion step of our programs for the Euler equations. To
ensure that R(x; vn ) in the j th cell yields density and
pressure that are positive, i.e.,

Pj 1 Or21

k51

kP
x kUx5xj

(x 2 xj )k

k!
. 0

(7.13a)

rj 1 Or21

k51

kr

x kUx5xj

(x 2 xj )k

k!
. 0 for ux 2 xj u , h/2

We check whether

Or21

k51
UkPj

xk U (h/2)k

k!
, 0.8 Pj ; Or21

k51
Ukrj

xkU (h/2)k

k!
, 0.8 rj . (7.13b)
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If condition (7.13b) is not satisfied we reduce the order of
the reconstruction locally at x 5 xj until positivity is en-
sured. We observe that the LHS of the inequalities in
(7.13b) is O(h) in smooth regions, hence this positivity
condition does not reduce the asymptotic order of accu-
racy. Our computer program monitors does not reduce
the asymptotic order of accuracy. Our computer program
monitors occurrences of order reduction due to the posi-
tivity condition; we have found that the order in the calcula-
tions of the ‘‘fourth-order’’ ENO scheme has been reduced
during two time steps before the interaction in Fig. 16d,
and only at the interaction zone itself ; we have not encoun-
tered any order reduction in the solution to the Riemann
problems (7.10).

C. Variants and Extensions

C1. Characteristic Method for the Scalar Case

In [15] we described an approximation to v(x, t), the
solution-in-the-small of (4.2), which is obtained by tracing
approximate characteristics to the initial data. This approx-
imation ṽ(x, t) can be extended to an arbitrary order of
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accuracy as follows: Let ãn
j11/2 denote

ãn
j11/2 5 a(R(xj11/2 2 0; vn ), R(xj11/2 1 0; vn )), (7.14a)

where a(u1 , u2 ) is defined in (4.7), and let ã(x) denote the
interpolation of ãn

j11/2 by Hm (3.1) with m 5 r 2 1, i.e.,

ã(xj11/2 ) 5 ãn
j11/2 (7.14b)

ã(x) 5 Hm(x; ã n ), m 5 r 2 1. (7.14c)

The approximation ṽ(x, t) is obtained by prescribing
constancy of the solution along the approximate character-
istic lines

x 5 x0 1 ã(x0 )t, (7.15a)

i.e.,

ṽ(x0 1 ã(x0 )t, t) 5 ṽ(x0 , 0) 5 R(x0 ; vn ); (7.15b)
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thus

ṽ(x, t) 5 R(x0(x, t); vn ), (7.15c)

where x0(x, t) is the solution of the algebraic equation
(7.15a). Let x1

0(x, t) denote the solution to (7.15a) for
m 5 1 in (7.14c); if x and t are such that

x̃j21/2(t) , x # x̃j11/2(t), (7.16a)

where

x̃i11/2(t) 5 xi11/2 1 tãn
i11/2 (7.16b)

then

x1
0(x, t) 5 xj21/2 1

xj11/2 2 xj21/2

x̃j11/2(t) 2 x̃j21/2(t)
(x 2 x̃j21/2(t)).

(7.16c)

For m . 1 we obtain x0(x, t) by solving (7.15a) with New-
ton–Raphson iterations starting with the initial guess
(7.16c).

Using ṽ(x, t) (7.15c) we define the following variant
of (4.14):

vn11
j 5 vn

j 2 l( f̄ j11/2 2 f̄ j21/2 ) (7.17a)

f̄ j11/2 5 Ok
k50

ak f (ṽ(xj11/2 , bkt)). (7.17b)

We have started the development of the ENO schemes
with the version (7.17); later on we have replaced the
characteristic method by the Cauchy–Kowalewski proce-
dure which offers a unified approach in extending the
scheme to include forcing terms and to systems of conserva-
tion laws. Our numerical experiments show that the two
versions are computationally equivalent, although the ver-
sion with the characteristic method (7.17) seems to be
slightly more accurate than (4.14).
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We remark that the scheme (7.17), as the scheme (4.14)
with f ROE in (4.21a), also admits any discontinuity with
a(uL , uR ) 5 0 as a stationary solution. This can be easily
rectified by replacing the ‘‘shock curve’’ x̃i11/2(t) in (7.16b)
by an appropriate fan.

C2. Semi-discrete Formulation
and Runge–Kutta Methods

The semi-discrete version of the ENO schemes can be
derived either directly from (1.4) or by letting t R 0 in
(4.14), (5.9). It takes the form

d
dt

vj(t) 5 2
1
h

[ f̄ j11/2(t) 2 f̄ j11/2(t)] ; Q ? vj(t), (7.18a)

where

f̄ j11/2(t) 5 f R(R(xj11/2 2 0; v(t)), R(xj11/2 1 0; v(t)));
(7.18b)
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here vj(t) is an approximation to u(xj , t); v(t) 5 hvj(t)j;
f R(u1 , u2 ) is either the exact flux (4.5) or f ROE (4.21), (5.11).

Considering (7.18) to be a system of ordinary differential
equations in t for the vector v(t) 5 hvj(t)j, we can solve
the problem by using a numerical ODE solver. In [2] we
present two sets of numerical experiments in which we use
Runge–Kutta methods of appropriate order to approxi-
mate the solution of (7.18). In the first set of experiments
we apply the scheme to the Riemann problem (7.10a) for
r 5 1, 2, 3, 4, 5, 6. In the second set of experiments we
apply the scheme with r 5 2, 4 to a Laval nozzle problem
which involves the addition of a forcing term to the Euler
equations (6.1). In these calculations we have used RP,
f ROE and CFL 5 0.5. Comparing the results of the Riemann
problem to those in the present paper we find them to be
of similar quality. The numerical experiments of [2] indi-
cate that the semi-discrete formulation (7.18) with Runge–
Kutta temporal discretization does not generate spurious
oscillations for CFL # 0.5; however, when we increase the
CFL number beyond 0.5 we start getting some oscillations
and eventually the scheme becomes unstable.
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The main advantage of using the Runge–Kutta temporal
discretization is the ease of its programming; however it
seems to be less efficient than the fully discrete formulation
and also requires more storage.

C3. Variable Grid and Front Tracking

In Section 3 we have pointed out that the non-oscillatory
interpolation Hm (3.1)–(3.5) and the reconstruction via
primitive function (RP) (3.6)–(3.10) are well defined for
non-uniform grids; see the Appendix. Since the solution-
in-the-small step also does not require uniformity of the
grid, we may compute new cell-averages vn11

j in (1.14c) on
any choice of intervals hI n11

j j by

vn11
j 5

1
uI n11

j u EIn11
j

vh(x, tn11 2 0) dx; (7.19)

here I l
k 5 (j l

k21/2 , k l
k11/2 ) and uI l

k u 5 (j l
k11/2 2 j l

k21/2 . Using
the same rationale as before, our approximation to
(7.19) becomes

uI n11
j uvn11

j 5 uI n
j uvn

j 2 t( f̄ s
j11/2 2 f̄ s

j21/2 ). (7.20a)

The numerical flux f̄ s
j11/2 is consistent with f(u) 2 sj11/2u,

sj11/2 5 (j n11
j11/2 2 j n

j11/2 )/t, (7.20b)

and can be expressed as

f̄ s
j11/2 5 Ok

k50
ak f̄ R(ṽj(xj11/2 1 bktsj11/2 , bkt),

(7.20c)

ṽj11(xj11/2 1 bktsj11/2 , bkt); sj11/2 ),

where

f̄ R(u1 , u2 ; s) 5 f(V(s; u1 , u2 )) 2 sV(s; u1 , u2 ); (7.20d)

we recall that V(s; uL , uR ) denotes the value of the solution
to the Riemann problem (4.3) at x/t 5 s. Roe’s lineariza-
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FIGURE 17
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FIGURE 17—Continued
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FIGURE 17—Continued
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FIGURE 17—Continued



tion (5.11) yields the following approximation:

f̄ ROE(u1 , u2 ; s) 5
1
2 Ff(u1 ) 1 f(u2 ) 2 s(u1 1 u2 )

2 Om
k51

dk(u1 , u2 )uak(û) 2 surk(û)G.

(7.21)

In Fig. 20 we show the results of the scheme (7.20) with
f̄ R approximated by f̄ ROE (7.21) for the Riemann problem
(7.10b); the values of hj n11

j j in this calculation were chosen
by the self-adjusting grid algorithm of [13]. This algorithm
provides an automatic way to place interval end points
j n11

j at the location of significant discontinuities and thus
avoid their smearing by the cell-averaging step (7.19). The
calculation in Fig. 20 was initialized by taking the exact
solution of the Riemann problem at t 5 0.5 (at which time
there are 4 grid points between the contact-discontinuity
and the shock). The results displayed in Fig. 20 show the
numerical solution of the scheme with r 5 4 after 100 time
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steps with CFL 5 0.5. These results clearly demonstrate
the adaptability of the ENO schemes to front tracking tech-
niques.

We note that the use of irregular grids disallows the
extra order of accuracy which was gained in (1.18) for a
uniform grid. Numerical experiments with irregular grids
(where j n11

j is randomly selected within a specified interval)
show that the error in solving the scalar smooth problem
(7.1) by the scheme (7.20) is O(hr21) in the L1 , L2 , and
Ly norms. However, comparing Fig. 20 with Fig. 15 we
observe a considerable gain in resolution in spite of the
reduction in formal order of accuracy.

C4. Extension to 2D

In this subsection we outline the extension of the ENO
schemes to the solution of the two-dimensional IVP

ut 1 f(u)x 1 g(u)y 5 0, u(x, y, 0) 5 u0(x, y). (7.22)

We note that Strang-type dimensional splitting [29] is only
second-order accurate in time, and therefore is unsuitable
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for extending the higher order accurate members of the
ENO schemes to 2D.

Let w denote the two-dimensional ‘‘sliding average’’
of w:

w(x, y) 5
1

Dx Dy
EDx/2

2Dx/2
EDy/2

2Dy/2
w(x 1 j, y 1 h) dh dj.

(7.23)

Integrating (7.22) over the computational cell Iij 3 (tn ,
tn11 ], Iij 5 [xi21/2 , xi11/2 ][yj21/2 , yj11/2 ], we find that u n

ij 5
u(xi , yj , tn ) satisfies

un11
ij 5 un

ij 2 lx( f̂ i11/2, j 2 f̂ i21/2, j ) 2 ly( ĝi, j11/2 2 ĝi, j21/2 ),
(7.24a)

where lx 5 t/Dx, ly 5 t/Dy, and

f̂ i11/2, j 5
1

t Dy
Et

0
EDy/2

2Dy/2
f(u(xi11/2 , yj 1 h, tn 1 t)) dh dt,

(7.24b)

ĝi, j11/2 5
1

t Dx
Et

0
EDx/2

2Dx/2
g(u(xi 1 j, yj11/2 , tn 1 t)) dj dt.

(7.24c)

The abstract form of the ENO schemes for the solution
of (7.22) remains (1.10), i.e.,

vn11 5 Ah ? E(t) ? R(?, ?; vn ), v0 5 u0 . (7.25)

As before E(t) is the exact evolution operator of (7.22);
however, Ah is now the two-dimensional cell-averaging
(7.23) and R(x, y; w) is an appropriate two-dimensional
reconstruction of w(x, y). In the scalar constant coeffi-
cient case

ut 1 aux 1 buv 5 0, u(x, y, 0) 5 u0(x, y), (7.26a)

the ENO scheme (7.25) becomes

vn11
ij 5 R(xi 2 at, yj 2 bt; vn ), v0

ij 5 u0(xi , yj ). (7.26b)
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In [12] we present numerical experiments with the ENO
scheme (7.26) for the scalar constant coefficient case, where
the reconstruction R(x, y; w) is obtained via a two-dimen-
sional deconvolution. Expanding w(x 1 j, y 1 h) in (7.23)
around j 5 h 5 0 we get as in (3.12)

w(x, y) 5 w(x, y) 1 a2[(Dx)2wxx 1 (Dy)2wyy ]

1 a4[(Dx )4wxxxx 1 2(Dx)2(Dy)2wxxyy (7.27)

1 (Dy)4wyyyy ] 1 O(D6).

Multiplying both sides of (7.27) by (Dx)k(Dy)l2k l/xk yl2k

and truncating the expansion in the RHS at O(Dr), we get
as in (3.13) an invertable system of linear equations which
expresses w and its derivatives in terms of w and its deriva-
tives. We set

(D0,0 ) ij 5 w(xi , yj ) (7.28a)

and obtain approximation
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(Dk, l)ij 5 (Dx)k(Dy)l k1l

xk yl w(xi , yj ) 1 O(Dr),

1 # k 1 l # r 2 1;
(7.28b)

then, as in (3.17), we invert the system of linear equations
to get the following approximations to w and its derivatives:

(Dk,l)ij 5 (Dx)k(Dy)l k1l

xk yl w(xi , yj ) 1 O(Dr),

0 # k 1 l # r 2 1.
(7.29a)

Using (7.29a) we define R in the cell Iij by

R(x, y; w) 5 Or21

l50

1
l! O

l

k50
(Dk,l2k)ij S l

k
DSx 2 xi

Dx DkSy 2 yj

Dy Dl2k

,

(x, y) [ Iij . (7.29b)

The approximations Dkl in (7.28b) are obtained by a
sequence of applications of the one-dimensional operation
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(3.15b), which we rewrite now in the following operator
form:

(Gl
m ? u)j 5 M S d l

dzl Hm(zj 2 0; u),
d l

dxl Hm(zj 1 0; u)D;

(7.30)

here u denotes the one-dimensional vector hu(zj )j J
j51 .

Using (7.30) and the notation convention w?, j 5
hw(xi , yj )jl

i51 , we define

(D k,0 )ij 5 (Dx)k(Gk
m ? w?, j )i , 1 # k # r 2 1, (7.31a)

(D 0,l )ij 5 (Dy)l(Gl
m ? wi, ? )j , 1 # l # r 2 1. (7.31b)

To obtain approximations to the mixed derivatives of w
we first evaluate

(D̃k,l
1 )ij 5 (Dy)l[Gl

m2k ? (Dk,0)i,?]j , 1 # l # r 2 1 2 k,

(D̃k,l
2 )ij 5 (Dx)k[Gk

m2l ? (D0,l)?, j ]i , 1 # k # r 2 1 2 l,

and then define

(Dk,l)ij 5 M((D̃kl
1 )ij , (D̃kl

2 )ij ), (7.31c)

where M is the min mod function (3.16).
We observe that the restriction of the two-dimensional

reconstruction (7.29) to y 5 yj , i.e., R(x, yj ; w) is identical
to the one-dimensional reconstruction (3.18) applied to
the restriction of w to y 5 yi , i.e., R(x; w(? yj )); the same
observation applies to the restrictions to x 5 xi .

We recall that the one-dimensional reconstruction is es-
sentially non-oscillatory only if discontinuities are sepa-
rated by at least r 1 1 points of smoothness. In the one-
dimensional system case we had to overcome the problem
of collision (in time) of discontinuities; in the two-dimen-
sional case we also have to worry about intersections (in
space) of curves of discontinuity. In order to study the
severity of the problem we have experimented with the
constant coefficient problem (7.26a) with the initial data

u0(x, y) 5 51

0

(x, y) [ S;

(x, y) [ U 2 S.
(7.32)

Here U 5 [21, 1] 3 [21, 1] and S is a rotated square
contained in U. In [12] we present numerical results which
are obtained by applying the scheme (7.26) with r 5 1,
2, 3, 4 to the initial data (7.32) with periodic boundary
conditions on U. These results show that indeed small
spurious oscillations are generated for r $ 2 at the corners
of S; however, it seems to us that they are small enough
to be computationally acceptable.

APPENDIX: AN ALGORITHM FOR RECONSTRUCTION

In this appendix we describe our algorithm for comput-
ing the coefficients bj,k in

R(x, w) 5 Or21

k50
bj,k(x 2 xj )k, (A.1)

where xj is the center of the jth cell. To obtain these coeffi-
cients we start with Newton’s form of interpolation

Hr(x; u) 5 Or

k50
u[yi , ..., yi1k ] p

k21

l50

(x 2 yi1l ). (A.2)

Here i 5 i( j) is selected by the algorithm (3.4) with respect
to the divided differences

di,k 5 u[yi , ..., yi1k ]. (A.3)

In the following we describe an algorithm to rewrite the
polynomial on the RHS of (A.2) as a finite Taylor series
around x 5 xc :

q(x) 5 Or

k50
di,kPi,k(x) 5 Or

k50
q(k)(xc )(x 2 xc )k/k!, (A.4)

where

Pi,k(x) 5 p
k21

l50

(x 2 yi1l ) ; Ok
l50

Sl,k(x 2 xc )k2l. (A.5)

Using the fact that the coefficients hSl,k j satisfy a recursion
relation we compute them as follows: We set

Zl 5 xc 2 yi1l , 0 # l # r 2 1;
(A.6)

S0,k 5 1, 0 # k # r ;

then we evaluate

do l 5 1, r

Sl,l 5 Sl21, l21Zl21
(A.7)

do k 5 l 1 1, r

Sl,k 5 Sl,k21 1 Sl21,k21Zk21 .

It is easy to see that

q(k)(xc ) 5 k! Or

l5k
Sl2k, l di, l . (A.8)



We note that the algorithm (A.6)–(A.8) is defined for
a non-uniform grid. When the grid is uniform we can obtain
(A.8) in two steps: First we take xc 5 yi and observe that
Zl 5 2lh in (A.6); consequently hSl,k j are independent of
i. Denoting

d k̄ 5 hkdi,k , ck 5 hkq(k)(yi ) (A.9)

and using the convention d k̄ 5 0 for k . r, we get for
1 # r # 6

c0 5 u(yi )

c1 5 d 1̄ 2 d 2̄/2 1 d 3̄/3 2 d 4̄/4 1 d 5̄/5 2 d 6̄/6

c2 5 d 2̄ 2 d 3̄ 1 11d 4̄/12 2 5d 5̄/6 1 137d 6̄/180

c3 5 d 3̄ 2 1.5d 4̄ 1 1.75d 5̄ 2 1.875d 6̄ (A.10)

c4 5 d 4̄ 2 2d 5̄ 1 17d 6̄/6

c5 5 d 5̄ 2 2.5d 6̄

c6 5 d 6̄

q(x) 5 Or

k50

ck

k! Sx 2 yi

h Dk

.

Thus

hkq (k)(xc ) 5 Or

l5k

cl

(l 2 k)! Sxc 2 yi

h Dl2k

. (A.11)

Reconstruction via Primitive Function (RP)

In this case Ik 5 (yj , yj11 ) is the jth cell and xc 5 xj 5
!s(yj 1 yj11 ) is its center. The given data is

wl 5
1

yl11 2 yl
Eyl11

yl

w(y) dy, (A.12)

from which we evaluate the point values of the primitive
function

W(yk ) 5 Ok21

l50
(yl11 2 yl ) wl . (A.13)

Applying the algorithm (A.6)–(A.8) to

di,k 5 W[yi , ..., yi1k ] (A.14)

with i 5 i( j) selected by (3.4), we obtain the values of
q(l)(xj ). Using the definition (3.8) in (A.4) we get the coef-
ficients of the Taylor expansion in (A.1) by

bj,k 5 q(k11)(xj )/k!. (A.15)
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We note that when the grid is uniform yk 5 xk21/2 and we
can also use the algorithm (A.9)–(A.11).

Reconstruction via Deconvolution (RD)

We recall that RD is used with a uniform grid so that
the given data wi can be thought of as point values w(xl)
of the sliding average function (1.3). Applying the algo-
rithm (A.9)–(A.11) to

di,k 5 w [xi , ..., xi1k] (A.16)

with xc 5 xj we get in (A.11) for i 5 i( j 2 1) the values of

hk d k

dxk Hr(xj 2 0; w); (A.17a)

when we apply this algorithm with i 5 i( j) and xc 5 xj we
get in (A.11) the values of

hk d k

dxk Hr(xj 1 0; w). (A.17b)

Next we evaluate Dk,j in (3.15) by taking the min mod
of the appropriate values in (A.17a) and (A.17b). Finally
we use the back-substitution (3.19) to obtain the coeffi-
cients of the Taylor expansion (A.1)

bj,k 5
1
k!

Dk,j /hk. (A.18)

We remark that the use of the algorithms (A.9)–(A.11)
is preferable to that of (A.6)–(A.8) since, it enables us to
save computing time by rearranging the operations
(A.16)–(A.17) as follows: First we set i 5 i( j) in (A.16)
and evaluate (A.9)–(A.10). Using the same coefficients ck

in (A.10) we now apply (A.11) to xc 5 xj and xc 5 xj11 to
obtain (d k/dxk) Hr(xj 1 0; w) and (d k/dxk) Hr(xj11 2 0; w),
respectively; the min mod operation (3.15) is then per-
formed in a following sweep.
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