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Abstract

A possible function of laryngeal air sacs in apes and gibbons was investi-
gated by examining the relationships between air sac distribution, call rate, call
duration and body weight in a phylogenetic context. The results suggest that
lack of sacs in the smaller gibbons and in humans is a derived feature. Call pa-
rameters in primates, such as rate and duration, scaled to resting breathing rate
(and therefore to body weight) only in species without air sacs, which appear to
modify these relationships. Apes and larger gibbons may be able to produce fast
extended call sequences without the risk of hyperventilating because they can
re-breathe exhaled air from their air sacs. Humans may have lost air sacs during
their evolutionary history because they are able to modify their speech breath-
ing patterns and so reduce any tendency to hyperventilate.
Copyright © 2002 S. Karger AG, Basel

Introduction

Many, but not all, primates have sac-like extensions of the larynx or other
parts of the vocal tract called air sacs. These vary in size and configuration in dif-
ferent primate taxa. Only the large sacs of the apes, howler monkeys and cer-
copithecines are reasonably well known, while the air sacs in most other species of
primates have not been a major area of research [1]. A maximum of four types of
air sac (lateral ventricular, subhyoid, infraglottal and dorsal) have been identified,
but no single source describes the morphology and summarises the distribution of all
the types of air sac. The structure of the four sac types isillustrated in figure la-d,
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a Lateral ventricular sacs, e.g. Pan troglodytes

Mid-sagittal section of head and 3D sketch of larynx, Ventral 3D sketch to show variation
trachea and air sacs [17-19] in sac development [16]

b Subhyoid sacs, e.g. Cercopithecus sp.

Mid-sagittal diagrammatic section of head [1] ) )
¢ Infraglottal sacs, e.g. Callithrix sp.

Mid-sagittal diagrammatic section of head [60]

d Dorsal sacs e.g. Varecia variegata

Mid-sagittal diagrammatic section of head [2, 11]

Air sacs
Bone and cartilage

¢ = Cricoid cartilage

h =Hyoid bone
t=Thyroid cartilage

Paired lateral outgrowths from the ventricle, a recess in the larynx formed by the inferior thyro-arytenoid fold.
Unpaired, leave the pharynx just above the glottis, can extend ventrally to fill the cavity of the hyoid or beyond.
Single ventral infraglottal midline opening, extend forward between the cricoid and thyroid cartilages.

Single dorsal infraglottal opening, extend dorsally between the cricoid cartilage and the first tracheal ring and
caudally between the trachea and the oesophagus.

Qo oo

Fig. 1. Four types of laryngeal air sac described in primates. 3D = Three-dimensional.
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Table 1. A summary of the probable distribution of the four types of laryngeal air sac in
primates

Sac type Distribution Source
Lateral ventricular  apes, Alouatta 2,15, 55,56
Callicebus and Cebus monkeys 11
probably Colobus sp. and Presbytis sp. 2,11
Subhyoid Old World monkeys, Alouatta and possibly in 1, 3, 11, 57-60,
Colobus sp. 62
Cebus, Saguinus and Aotus trivirgatus 2
Infraglottal some, but not all, callitrichids 2,15, 60, 61
Dorsal Indri, Varecia variegata and Microcebus murinus 2, 45
Ateles 2,15, 60, 61

and table 1 summarises their probable distribution among primates, although this
has not been documented comprehensively and authors do not always agree about
the type of sac present in a particular taxon.

The function of the different types of air sac also remains uncertain though
most authors assume that all air sacs modify vocalisations in one of three ways. The
best supported suggestion is that the sacs of Old World monkeys help to amplify
vocalisations, possibly by acting as resonance chambers [1-4]. For example, the
intensity of the boom vocalisation of Cercopithecus neglectus was reduced when
the air sac was punctured experimentally and male cercopithecines, which give
loud calls, have larger sacs than the quieter females [1]. A second hypothesis that
air sacs may help to increase the duration and alter the formant frequencies of vo-
calisations, enabling smaller animals to sound like larger ones [2, 5], has not been
tested. Thirdly, other authors have suggested that the lateral air sacs in some spe-
cies might have a more direct role in phonation as air passes in and out of sacs over
aflexible vocal lip, producing sounds such as the boom of the siamang [6-8]. How-
ever, it isnot clear if the air sacs in other gibbons and apes have a similar function.

It seems probable that the lateral ventricular and subhyoid sacs serve different
purposes [3]. For example, Andrew [9] suggested in the 1960s that air sacs opening
above the larynx (such as subhyoid sacs) can only function as resonators, unlike the
air sacs that open within the ventricle. It is the function of the latter, especially the
sacs of gibbons and apes, that is particularly unclear. Harrison [10], based on Ne-
gus [11], dismissed the idea of vocal functions for such sacs. He reasoned that the
smaller gibbons lack air sacs, yet they are all renowned for their loud great calls
and duets that can be heard over long distances in dense forest [10, 12]. Harrison
[10] therefore concluded that ventricular air sacs in apes are unlikely to be neces-
sary for the production of such vocalisations.

Both Harrison [10] and Starck and Schneider [2] explored and rejected three
alternative functions for ventricular air sacs. Firstly, inflated air sacs are unlikely to
gtiffen the thorax in brachiators because some excellent brachiators such as gibbons
lack air sacs while gorillas and chimps have them. Secondly, inflated air sacs must
play only a limited role in visual social displaysin most apes and gibbons because
air sac inflation changes appearance markedly only in the siamang. Smaller
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changes in appearance would not be sufficiently obvious to act as a visual signal
when viewed at a distance in a forest canopy. Thirdly, air sacs are also unlikely to
allow re-breathing of air so avoiding the necessity of taking a fresh breath during
high levels of activity (as suggested by Negus [11]), because many highly active
mammals do not have them. Additionally, air sac walls are not highly vascularised
and would not give an appreciable oxygen supply [2].

Harrison [10] concluded that the large ventricular air sacs of apes are rela-
tively functionless, and Kleinschmidt (1938, cited in Starck and Schneider [2])
even suggested that the development of air sacsis simply a by-product of high pres-
sure in the airways during vocalisations. But, as Starck and Schneider [2] pointed
out, reasonably well-developed sacs are found in fetuses and neonates, and these
authors reasoned that air sacs in apes play some, as yet unclear, role in vocalisa
tions. It also seems unlikely that the sacs of apes have no function because they can
become seriously infected. Both captive and wild apes have been reported with ‘air
sacculitis' [13]. For example, an air sac infection in a free-ranging mountain gorilla
was so severe that it was treated with antibiotics and the air sacs were surgically
drained [14], and a captive bonobo had a similar problem [15]. Additionally, it
seems strange that the lateral ventricular sacs of the apes are so large if they have
no function. Those of the orang utan (Pongo pygmaeus) can extend to 6 litres in
volume when fully inflated [2]. Gorillas (Gorilla gorilla), chimpanzees (Pan trog-
lodytes and P. paniscus) and the siamang (Hylobates syndactylus) also have rela-
tively large lateral ventricular sacs of paired origin [2, 6, 10, 11, 13, 15-20]
(although they are variable in both size and in the relative development of the right
and left sacs between individuals of a species[2, 16-19, 21]).

In contrast, humans are usually described as lacking air sacs, or having lost
them during human evolution [6], and Harrison [10] proposed that the small sac-
cules extending from the human larynx might be vestigial air sacs. The pattern of
evolution of air sacs in the Hominoidea has not been studied to date. However, if
air sacs were lost during human evolution, then an examination of possible reasons
for this loss (first considered by MacLarnon and Hewitt [22] in the context of the
evolution of human speech and eloquently highlighted as an outstanding question
by Fitch [23]) could help to illuminate the functions of air sacs in the other mem-
bers of the Hominoidea.

MacLarnon and Hewitt [22] speculated that the loss of air sacs in humans may
be related to the evolution of fine control of breathing required for speech. We are
able to produce long phrases containing many syllables on single extended exhala-
tions, each preceded by a rapid, deep inhalation. Apes and gibbons, in contrast, are
not able to modify their quiet breathing cycle to this extent. They give their long,
loud, varied call sequences on repeated cycles of inhalations and exhalations with
one sound per air movement. In slower sequences, sounds may be made only on
exhalations, but faster, louder sequences can involve sound production on both
inhalations and exhalations.

Video observations recorded for the present study of the breathing patterns of
other primates giving loud call sequences, and descriptions of calling breathing
patterns by other authors, suggest that calling on repeated sequences of inhalations
and exhalations is not restricted to gibbons and chimpanzees. It has also been ob-
served in a number of strepsirhines, such as the brown lemur [9], the ruffed lemur
[pers. observation], the sifaka [9] and the indri [24]. Similarly, it has been de-
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scribed in the night monkey [9], the titi monkey [25], in mangabeys [26], in the
Mentawi langur [24] and in baboons and mandrills [9] and observed in ared howler
monkey [pers. observation]. The majority of these species also have air sacs, but
the pattern of movement of air in and out of the sacs during such call sequencesis
unknown. In fact, few studies have directly measured respiratory movements asso-
ciated with naturally produced calls. One such study demonstrated that trills in
squirrel monkeys involve repeated rapid, shallow inhalations and exhal ations super-
imposed on a slightly extended exhalation [27]. However, trills in other species
may not involve such vocalisation-correlated respiratory movements, for instance
those of rhesus macaques may involve tongue and lip movements [28].

The very limited evidence indicates that air is breathed in and out from lateral
ventricular sacs during extended vocalisation sequences in apes [3]. Most authors
state that the sacs of apes are filled with expired air (e.g. Negus [11]) and radiologi-
cal analyses in chimps, gorillas and orang-utans confirmed reports based on casual
observations that air enters the air sacs during exhalation and leaves during inhala-
tion in these species [6]. Sac inflation was also described as taking place on exhal a-
tionsin the siamang [29]. It seems that air sacs in apes can either be filled and emp-
tied on each breathing cycle, or they are filled on a series of exhalations until the
sac is fully extended [3, 21]. This paper presents a preliminary examination of a
speculative new hypothesis, that re-breathing expired air from air sacs has a func-
tion that is related to the production of the long, varied infout vocalisation se-
guences, such as those of apes and gibbons (and perhaps of some other species?).
That they might re-breathe air from their air sacs for reasons other than those of
gaining an additional supply of oxygen does not seem to have been considered pre-
viously. Nor have possible relationships between the pattern of emptying and filling
of sacs and breathing patterns during vocalisations been studied.

It might be expected that vocalisation parameters that are dependent on the
rate of breathing should scale to body weight with negative allometry in primates,
following the scaling pattern of resting breathing rate to body weight in mammals
[30]. These could include the rate at which sequences of discrete, varied calls are
given on a series of inhalations and exhalations (call rate). Conversely, the duration
of calls given on an exhalation (call duration) might be expected to scale with posi-
tive allometry to body weight. That is, larger animals should call at a relatively
slower rate where calls involve sequences of inhalations and exhalations and give
relatively longer vocalisations on a single exhalation than smaller animals. The
hypothesis to be tested here is that breathing air in and out of air sacs while calling
could modify such relationships between call rate, call duration and body weight.

Neither the pattern of distribution and evolution of air sacs in relation to body
size in primates nor the interrelationships between call parameters, body size and
distribution of air sacs have been considered before. Three studies have shown that
other parameters of calls, such as fundamental frequency, are constrained by body
size in arange of primates, with larger species giving lower pitched calls [31-33].
Fitch and Hauser [5] also suggested that body size could affect the bandwidth, am-
plitude and duration of call sequences. Nobody has examined the relationship be-
tween call rate and body size in detail, although Zimmerman [34] did suggest that
smaller nocturnal primates may call at a faster rate than larger ones. Therefore, the
distribution of air sacs among primate species is explored here in relation to body
size variation and vocalisation parameters. The main questions focus around the
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distribution and pattern of evolution of air sacs in primates, particularly in the
Hominoidea, the pattern of evolution of air sacsin relation to evolutionary changes
in body weight, the scaling relationships between call duration, call rate and body
weight in all primates and the possible role of air sacs in modifying these relation-
ships.

Methods

Call Rate and Call Duration

In this preliminary study, data on adult call rates (the rate at which loud sequences of
discrete units of sound are given on a series of inhalations and exhalations) and call duration
(the length of individual calls given on a single, extended exhalation) were collated or calcu-
lated from quantitative data in published papers, or extracted by the analysis of suitable
published spectrograms. The aim was to include only call sequences where the ‘species’
breathing patterns were described by the authors or observed personally in captive primates
using video (31 species — identified in Appendix 1) but relatively few researchers have fo-
cused on relationships between breathing patterns and vocalisations in nhon-human primates.
A number of compromises were therefore made in order to increase the data set. Data were
included if the definitions for calls used in the published papers were derived from studies
that reported breathing patterns in relation to calls or if breathing patterns had been de-
scribed for related species (11 species). In other species (in particular, the nocturnal bushba-
bies, the macaques and the cercopithecines), spectrograms were analysed assuming that the
pattern of call division into inhalations and exhalations was the same as for spectrograms
with similar profiles from other species, or, on a similar basis, that the spectrogram repre-
sented a single exhalation.

Where several different call types were published, the most complex call sequences
given by a species were analysed. These were mostly long-distance contact calls although
alarm calls and other long sequences were also used if the species did not give loud contact
cals or if high-quality spectrograms were not available for the latter (the call type analysed
is detailed in Appendix 1). Only close calls of gorillas were included, because data on loud
cals have not yet been published. Data on the breathing patterns of smaller nocturnal pri-
mates have not been reported in the literature. However, the spectrograms of their calls were
analysed because tape recordings and sonograms of calls of African galagos made available
by Paul Honess [pers. commun.] suggested that the calls could be interpreted as being given
on repeated inhalation and exhalation sequences. The fastest rate of repetition of sounds
within a 0.5-second period (the duration of some published spectrograms) was assessed if
the call rate varied within a sequence. Average values for call rate and call duration were
calculated where multiple data sets were available. The data sets used for the analyses are
summarised in Appendix 1. They contain 55 species for call rate analyses and 36 species for
duration analyses.

Air Sac Distribution

Data on the presence or absence of laryngeal air sacs were taken from the published
literature. Species were categorised as possessing or lacking air sacs. The four main types of
air sac were not distinguished in analyses because of the small sample size for each type and
the lack of complete agreement about their distribution.

Body Weight

Mean species body weights were obtained from an unpublished data set collated by
Martin and MacLarnon [pers. commun.], using data from wild-caught specimens where
possible. Some gibbon body weights were taken from Geissman [35].
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Resting Breathing Rate Estimates

Resting breathing rates of 25 species of primate were recorded by direct observation of
available primates in zoos in London, Twycross, Paris and New York. Adult individuals
were observed until their breathing rhythm could be identified. Activity levels were noted
[1 = eyes shut, lying still possibly sleeping; 2 = eyes open, lying still or sitting with eyes
closed; 3 = eyes open, sitting (included being groomed); 4 = as for 3 but individual moved
during observation]. The number of cyclesin 1 min was extrapolated from the number of in/
out breathing cycles recorded in 10 s. Observations were repeated until at least 3 had been
made at activity level 1. These were averaged for the individual. Observations were made
from as many individuals of a species as were available, and mean levels were calculated for
the species.

Analyses of Data Points from Closely Related Species

Data points from closely related species cannot necessarily be treated as independent
points for statistical analyses because they may share associations among the characteristics
of interest by descent from common ancestors rather than indepenent evolution [36]. How-
ever, the best method of controlling for such potential phylogenetic inertiais currently under
debate [37, 38]. Therefore analyses were carried out on both the ‘raw’ species data and the
phylogenetically independent contrasts derived from transformation of the species data using
the comparative analysis by independent contrasts (CAIC) package [39]. Analyses by both
methods are presented, and significance levels were only considered to be robust where their
results are in agreement. A composite phylogeny for primate species with known branch
lengths was used [40]. All variables were logy transformed prior to analysis. Least-squares
regression was used to estimate the relationship between call rate contrasts, call duration
contrasts and body weight (forced through the origin for contrasts [41]). The adequacy of the
contrast standardisation was checked prior to analysis by independent contrasts [41]. Mac-
Clade analysis (version 3.04) [42] (fig. 2) was used to map the distribution of air sacs in
extant primate species onto the composite primate phylogeny [40].

Results

Observed and Estimated Resting Breathing Rates

The relationship between observed log resting breathing rate and log body
weight was checked in 28 species using linear regression (fig. 3). A strong, nega-
tive relationship was found between log body weight and log resting breathing rate
in these species, with a scaling slope almost identical to that in Stahl’s formula
(r>=0.8, b = —0.263, p = 0.0001; breathing rate [cycles per second] = 53.5 x body
weight [kg] % [30]). Therefore Stahl’s formula was used to calculate additional
estimates of resting breathing rates from body weight in order to allow the vocalisa-
tions of more species to be included in the data sets. Surprisingly, given that it was
not possible to be certain that the animals were resting, few observed breathing
rates were higher than the estimated rate for that species. In the main, the observed
values that fell below the regression line for estimated breathing rates were those
for the same species that have been described previously as having observed basal
metabolic rates that were lower than predicted [43]. They included prosimians

Fig. 2. Distribution of air sacs in primates mapped onto the primate phylogeny [40] with
estimation of evolution of air sacs using MacClade analysis [42].

Editor’s note: Petterus, used here as in Purvis taxonomy, is more commonly called Eule-
mur.
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Fig. 3. Relationships of observed resting breathing rate and body weight.

(e.g. Varecia variegata) some callitrichids (e.g. Callithrix jacchus), Aotus trivirga-
tus, Alouatta sp. and Colobus guereza. This helps to confirm measurement of rest-
ing breathing rate by observation as a useful technique (fig. 2).

Distribution and Pattern of Evolution of Air Sacsin Primates

Air sacs appear to have evolved and been lost at several points during primate
evolution. Figure 2a—d illustrates the distribution of air sacs in extant primates and
the most probable evolutionary history of air sacs in the major primate groups as
calculated by MacClade analysis. The possession of lateral ventricular air sacs is
shown as the ancestral state for the Hominoidea and Colobinae and the lack of such
sacs in the smaller gibbons and humans is shown as a derived feature. Repeat
analyses using alternative phylogenies [35] gave the same results in 7 out of 8
cases. Gibbons with air sacs (the siamang, the concolor group and H. hoolock) split
off from the main stem before the rest of the gibbons (the only exception was for a
phylogeny in which the hoolock gibbon is placed with the lar group). Presence of
subhyoid air sacs also appears to be an ancestral feature in cercopithecines. Mac-
Clade analysis identified the pattern of evolution of sacs in the Cebidae and Cal-
litrichidae as ambiguous and the dorsal sacs of the Strepsirhini as having evolved a
number of times.

Interpretation is problematic in all taxa because the soft tissue of air sacs
leaves little trace in the fossil record, and therefore evolutionary directionality can-
not be stated with certainty. Even the patterns identified in apes and humans must
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be considered preliminary until more precise descriptions of the morphology, rela-
tive size and positive reports of absence of sacs are available, both from more spe-
cies and from more individuals of species. Consequently, the interpretation of the
results of analyses of independent contrasts using CAIC discussed below can only
be tentative, because CAIC relies on the phylogenetic patterning and uncertainty
reduces its robustness.

Evolution of Air Sacsin Relation to Body Weight in Primates

The relationship between presence or absence of air sacs and body weight in
primates was tested using the BRUNCH option of CAIC to examine whether evolu-
tion of air sacs was associated with a corresponding increase in body weight (or vice
versa). Of 18 phylogenetically independent contrasts, or evolutionary points at which
air sacs seem to have evolved or been lost, 14 show a positive association between
the evolution of air sacs and an increase in body weight, or between the loss of air
sacs and a decrease in body weight. A one-sample t test confirmed that evolution of
air sacs was significantly associated with an increase in body weight or loss of sacs
was associated with a reduction in body weight (t = 2.72, d.f. = 17, p = 0.014). The
exceptions were the evolution of Microcebus murinus, A. trivirgatus, Callicebus mol-
loch and Homo sapiens, the first 3 species having evolved sacs without an increase in
body weight (2 negative contrasts and 1 zero contrast) and human evolution involved
anincrease in body weight and the loss of air sacs (negative contrast).
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Relationships between Call Rate, Call Duration, Air Sac Distribution and

Body Weight

The relationships between call rate and duration and body weight were exam-
ined. Resting breathing rate scales with negative allometry to body weight in mam-
mals [30] and call parameters that are dependent on breathing patterns such as call
rate and duration would be expected to reflect this, call rate scaling negatively and
call duration positively. Species data were plotted for log call rate against log body
weight (fig. 4) and log call duration against log body weight (fig. 5). First, the rela-
tionships between log call rate, log call duration and log body weight were exam-
ined in the total samples using both species and independent contrast data. For call
rate, a very weak, negative relationship with body weight was found with the spe-
cies data, but this was not significant when 48 contrasts for call rate and body
weight were analysed. For call duration data, positive (but weak) significant rela-
tionships with body weight were found in the analyses of both species and contrast
data. These results are summarised in table 2.

The regression analyses for species and contrast data were repeated separating
species with and without air sacs, because movement of air in and out of air sacs
during call production could modify the relationships between call parameters and
body weight. As can be seen in figure 3, smaller primates without air sacs call at a
faster rate than the larger ones. A significant negative relationship was found be-
tween call rate and body weight in primates without air sacs using both species data
and independent contrasts (table 3). No such relationship was found between call
rate and body weight in primates with air sacs. All except 4 of the primate species
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Table 2. Statistics for relationships between log call rate, log maximum call duration and

log body weight

Statistic ~ Call rate/body weight (log/log)

Call duration/body weight (log/log)

contrasts (n = 48) species (n = 36)

contrasts (n = 35)

species (n = 55)
b —0.094
r -0.297
r? -0.088
F -5.14
d.f. -1, 53
p -0.028*

—0.195
—0.237
—0.056

—2.72
-1, 46

-0.105n.s.

0.189
0.367
0.135

5.29
1,34

0.0277*

0.370
0.476
0.226

9.64
1,33

0.004**

*p<0.05; ** p<0.01.

Table 3. Statistics for relationships between log call rate and log body weight in primates

with and without air sacs

Statistic  Primates without air sacs

Primates with air sacs

species (n = 24) contrasts (n = 20) species (n=31) contrasts (n = 28)
b -0.264 -0.344 0.097 0.133
r -0.712 -0.714 0.248 0.103
re -0.508 -0.510 0.062 0.011
F 22.72 18.71 1.895 0.289
d.f. -1,22 1,18 1,29 1, 26
—0.0001** —0.0004** 0.0277* 0.595 n.s.

* p<0.05; ** p<0.001.

Table 4. Statistics for relationships between log maximum call duration and log body

weight in primates with and without air sacs

Statistic  Primates without air sacs

Primates with air sacs

species (n=14)  contrasts (n = 14) species (N =22)  contrasts (n = 22)
b 0.480 0.306 0.021 0.478
r 0.865 0.588 0.032 0.442
r? 0.747 0.346 0.001 0.195
F 35.57 6.34 0.02 4.85
d.f. 1,12 1,12 1,20 1,20
p 0.0001** 0.027* 0.888 n.s. 0.04*

* p < 0.05; ** p < 0.001.
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with air sacs fall above the regression line for the primates without air sacs in fig-
ure 4, indicating that species with air sacs tend to call faster than would be pre-
dicted for sacless species of the same body weight.

Similar analyses of species data for call duration (fig. 5) indicated a positive,
significant relationship with body weight in primates without air sacs, whichever
method of analysisis used (table 4). The analyses of species data found no relation-
ship between call duration and body weight in primates with air sacs whereas
analysis of contrast datayielded a weak positive relationship. Primates with air sacs
do not generally extend call duration beyond that which would be predicted from
body weight. More data points for species with air sacs fall below the regression
line for primates without air sacs in figure 4 than aboveit.

Differences between Primates with and without Air Sacsin Relative Call Rate

and Relative Call Duration

The residuals for both independent contrasts and species data derived from the
regression analyses of log call rate versus log body weight were compared for the
species with and without air sacs using an independent t test. Analyses of both spe-
cies data and independent contrast data showed that primate species with air sacs
had significantly larger residuals, i.e. on average they call at arelatively faster rate
than sacless species (species data, t = 2.25, p = 0.029, p < 0.05, and independent
contrasts, t = 3.43, p = 0.0008, p < 0.05). Similar analyses were carried out on call
duration data, where no significant differences between the residuals of primates
with and without air sacs were found for either species or contrast data (species
data, t = 1.07, p = 0.285, p > 0.05, and contrasts, t = 0.507, p = 0.616, p > 0.05).

Raw call rates in species with and without air sacs are very similar, averaging
around 4 units per second. However, the mean call rate of primates with air sacs
was almost 9 times their resting breathing rate, double the rate of species without
air sacs. In contrast, all primates increased the duration of exhalations when calling
to approximately twice that of aresting exhalation.

Discussion

Analyses of the most probable evolutionary history of air sacs in the Homi-
noidea, Colobinae and the Cercopithecinae (as calculated by MacClade analysis)
indicate that the possession of air sacs is the ancestral state for these groups. The
evidence about the presence of subhyoid sacs in the Old World monkeys and lateral
ventricular sacs in apes and gibbons is relatively robust and, although there is some
disagreement about sac type in the Colobinae, both Presbytis spp. and Colobus spp.
have been described as possessing lateral ventricular sacs by some authors [2, 3,
11, 44]. Therefore, the fact that the different types of air sac were not distinguished
in this analysis (because of uncertainty about sac embryology, morphology and
distribution in primates as a whole) is perhaps less important here than in other
primate groups. For example, all four sac types have been identified in New World
primates (summarised in table 1).

The pattern of air sac evolution identified in the Hominoidea supports previous
suggestions that the lack of such sacs in humans and the smaller gibbons is proba-
bly a derived feature [6, 10, 23]. This interpretation is consistent with the scanty
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evidence about the size of fossil hylobatids, such as Dendropithecus macinnesi,
which were probably of similar size to a siamang (10-11 kg [12]), implying that the
evolution of smaller body size is a derived feature among gibbons.

The analysis of the relationship between the presence or absence of air sacs
and body weight showed that the evolution of air sacs was associated with an in-
crease in body weight and loss of air sacs with a decrease in body weight in all ex-
cept 4 out of 18 evolutionary events. Humans were identified as one of the excep-
tions, a negative contrast suggesting that they lost air sacs though their body weight
increased. As mentioned previously, this interpretation can only be speculative be-
cause the phylogeny used here was based on living species only and therefore evo-
lutionary directionality cannot be stated with certainty. However, it would seem
sensible that hypotheses concerning the functions of lateral ventricular air sacs in
gibbons and apes should also account for the probable loss of air sacs in humans
during their evolutionary history, despite their larger size.

It was hypothesised that re-breathing expired air from air sacs might in some
way assist apes and gibbons in giving their long, loud, varied vocalisations, perhaps
by modifying typical relationships between resting breathing rates (and body
weight) and vocalisation parameters such as call rate and call duration. In order to
examine this contention, the scaling patterns of call rate and call duration with body
weight (and therefore with resting breathing rates) were explored. The predicted
scaling patterns, based on the assumption that call parameters would be constrained
by breathing rates, were only confirmed in species without air sacs. The results
suggest that body size (and therefore breathing rates) could be imposing a con-
straint on call rate and call duration in these species, as has been reported for other
parameters of calls such as fundamental frequency [31-33]. Call rates in primates
without air sacs have a significant inverse relationship with body weight while call
duration has a significant positive relationship with body weight. The present re-
sults show that these relationships are probably not an artefact resulting from the
lack of independence of data points because results of the analyses of species’ data
and contrast data were in agreement. The relationships are also surprisingly strong
(at least 50% of the variance shared) given the numerous assumptions that were
made during the data collection about breathing patterns during calling and the var-
ied functions of the calls analysed.

The prediction that the evolution of air sacs might uncouple the relationship
between body size and call parameters was also supported. The call rates and call
durations of species without air sacs do not fit the relationships established for pri-
mate species with air sacs. However, the results for call rate and call duration did
not show the same pattern. Larger primates with air sacs achieve a similar mean
absolute call rate to those without air sacs which tend to be smaller, despite the fact
that the former are larger and call faster than would be expected for species of their
body weight without air sacs. In contrast, the loss of relationship between call dura-
tion and body weight in primates with air sacs does not seem to be related to the
fact that air sacs help to extend the maximum duration of calls on single exhala-
tions. Most larger primates with air sacs give calls of shorter duration than expected
for species without air sacs of similar body weight.

Air sacs therefore do not appear to allow most smaller primates to sound like
larger ones by extending call duration as Fitch and Hauser [5] proposed. However,
only the duration of calls on single, extended exhalations were analysed here. A
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possible role of air sacs in extending the total length of call sequences given on
series of inhalations and exhalations was not examined because of lack of suitable
published data. Duration data were harder to find in the literature than call rate
data, and further study of first hand data would be needed in order to draw firm
conclusions. Additionally, the results for both call rate and call duration can only be
considered as preliminary because the evidence about call rates and duration was
derived from published sources rather than from first-hand data. More importantly,
the assumptions about breathing patterns during calling and the involvement of air
sacs in these calls need to be confirmed by simultaneous recordings of breathing
patterns and calls.

However, given all these caveats, the results suggest that air sacs allow larger
primates to call faster than similar-sized species without air sacs. Why this should be
and therefore the functional role of air sacs can only be a matter of conjecture. One
explanation for the latter could be that re-breathing exhaled air from lateral ventricu-
lar sacs during sequences of vocalisations in apes and some gibbons helps to prevent
or reduce hyperventilation when calls are given on fast in/out sequences [22]. These
long sequences of varied discrete sounds in apes and gibbons tend to be given at
rates 10-15 times faster than their resting breathing rates (e.g. chimpanzees — pant
hoot sequences up to 5 breath cycles per second, i.e. 300 cycles/min; resting breath-
ing rate 20 cycles/min). Breathing in and out at this rate for even a short length of
time, without an accompanying increase in energy expenditure, would be expected
to result in hyperventilation. Certainly, it would cause seated humans, with similar
or dightly lower resting breathing rates than chimpanzees, to hyperventilate and feel
dizzy. Re-breathing air during vocalisations from air sacs filled with expired air
could help to prevent larger apes hyperventilating. This could be viewed as equiva-
lent to humans re-breathing exhaled air from a brown paper bag during a panic at-
tack. Air sacs could be used as a reservoir, equivalent to the bag of bagpipes, which
can be topped up by breathing into it at intervals that do not have to relate to the rate
of sound production [G. Grimble, pers. commun.] (aform of circular breathing?).

Loss of air sacs during the evolution of the smaller extant species of gibbon
(less than 6 kg) can aso be explained by this hypothesis. The reduction in body
weight and related increase in resting breathing rate would allow them to call at
higher rates for short periods without hyperventilating. Air sacs can be the site of
infection, and their evolutionary loss would be an advantage.

An explanation is al'so needed for the loss of air sacs during human evolution-
ary history, despite their increase in body weight. Fitch [23] speculated that air sacs
in other primates may play some role in loud calls but may not be required for rela-
tively quiet human speech. It may be that in apes and gibbons, it is not just loud
callsthat require air sacs, but loud and varied calls given on fast sequences of inha-
lations and exhalations that could result in hyperventilation. Hyperventilation is
normally not a problem for humans when speaking quietly. Enhanced speech
breathing control enables humans to produce phrases equivalent to call sequences
on single, extended exhalations rather than requiring cycles of inhalations and ex-
halations [22]. In addition, humans may have lost air sacs despite their increase in
body weight, because they do not need to give such long, loud hyperventilation-
inducing call sequences in order to communicate with others of their group at a
distance. Quiet speech allows them to discuss the foraging pattern for a day and
plan meetings in advance.
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Of course, air sacs may not be the only way of reducing a tendency to hyper-
ventilate. Other mechanisms could include physiological solutions to the problem
such as development of the ability to withstand carbon dioxide levels fluctuating
well outside the usual range or the undergoing of periods of apnoea after calling for
any length of time. Physical exertion such as increased locomotor activity could
also counteract a tendency to hyperventilate by using up oxygen and increasing
carbon dioxide levels. This could be one function of the increase in brachiation
activity during the fastest part of the calls of smaller gibbons, as described by a
number of authors [29, 45-48, 50]. In contrast, apes and gibbons with large air sacs
may be able to remain stationary while calling, only becoming active towards the
later stages of long, loud, repeated call sequences when re-breathing exhaled air
from air sacsisinsufficient to counteract hyperventilation.

In conclusion, the proposed ‘reduction in ventilation' hypothesis for the func-
tion of air sacs in apes and some gibbons is speculative. Much further study is
needed in order to test the assumptions made in this paper and consideration also
needs to be given to why larger primates with air sacs should call faster than ex-
pected. In addition, call parameters such as duration, amplitude, frequency and rate
of unit production are interrelated and it is difficult to separate an amplification
function for air sacs from a role in reducing hyperventilation. A smaller animal,
which gives very loud sequences of sounds on a series of inhalations and exhala-
tions, may be more likely to hyperventilate than an animal of similar size that calls
more quietly (a possible explanation for the presence of air sacs in Callicebus and
Aotus?). The relationships between all these parameters and the presence and ab-
sence of air sacs need to be investigated directly, particularly in gibbons and apes,
in order to assess their relative importance. However, the evidence is at least con-
gruent with the suggestion that air sacs may have evolved in some primate lineages
to enable fast call sequences in larger-bodied species.
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