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Digital signal propagation in dispersive media

P. M. Jordan and Ashok Puri®
Department of Physics, University of New Orleans, New Orleans, Louisiana 70148

(Received 13 August 1998; accepted for publication 23 October)1998

In this article, the propagation of digital and analog signals through media which, in general, are
both dissipative and dispersive is modeled using the one-dimensional telegraph equation. Input
signals are represented using impulsive, Heaviside unit step, Gaussian, rectangular pulse, and both
unmodulated and modulated sinusoidal pulse type boundary data. Applications to coaxial
transmission lines and freshwater signal propagation, for both digital and analog signals, are
included. The analysis presented here supports the finding that digital transmission in dispersive
media is generally superior to that of analog. The boundary(@gtat signal$ give rise to solutions

of the telegraph equation which contain propagating discontinuities. It is shown that the magnitudes
of these discontinuities, as a function of distance, can be found without the need of solving the
governing equation. Thus, for digital signals in particular, signal strength at a given distance from
the input source can be easily determined. Furthermore, the magnitudes of these discontinuities are
found to be independent of both the dispersion coeffidiemd the elastic coefficiett In addition,

it is shown that, depending on the algebraic sigrkobne of two distinct forms of dispersion is
possible and that for small-time intervals, solutions are approximately independent@f1999
American Institute of Physic§S0021-897@9)03803-7

I. INTRODUCTION wherec, is the speed of light in free spaamy is the parti-
cle’s rest mass, antilis Planck’s constant divided by the
telegraph equation becomes the one-dimensional Klein—
2u 162U au Gordon or relativistic wave equatidf’® It is the correct
e 2o Ya b%u=0, (1.)  wave equation for a spinless relativistic particle and is there-
fore regarded as the governing equation for the scalar meson
wherec is a positive constant ang andb are nonnegative field.*?
constants, was investigated by Heaviside in his research on In this work, we examine the propagation of electromag-
coaxial marine telegraph cableg¢see also Doetséhand  netic waves in media which, in general, are both conducting
Blandf). This equation describes phenomena in a vast arragnd dispersive. In particular, we are interested in developing
of fields. For example, it appears in the theory of supercona deeper understanding of digital transmission in such media.
ducting electrodynamics where it describes the propagatiotnderstanding of how digital signals evolve over time in
of electromagnetic waves in superconducting médi@e  dispersive/conducting media is of much interest because of
telegraph equation also has a central role in the study ohe many diverse applications, e.g., in the fields of medicine,
excitons® The telegraph equation has applications in the bio-electromagnetic wave propagation, and communications. In
logical sciences as well. In cases where linearization of th&ec. Il, we present a model system and solve Edl) for
leakage conductance is justified, the telegraph equation is thebitrary input signals using the Laplace transformation
governing equation for the transmission of electrical im-method. Section IIl contains numerical results for the follow-
pulses in the axons of nerve and muscle celtsgoverns the  ing input signals and various values of the time and solution
propagation of pressure waves which occur in pulsatile bloogharameters: the Heaviside unit step, Gaussian rectangular
flow in arteries The telegraph equation also describes thepulse, and unmodulated sinusoidal pulse. A comparison of
random, one-dimensional motion of insects along a ht@ige analog to digital signal propagation through a semi-infinite
generalization of the random walk probl&mSpecial cases coaxial transmission line, and an infinite conducting me-
of it arise in almost all branches of physics. Takiperb dium, is presented in Sec. IV. In Sec. V, we determine the
=0 gives the classical wave equation with phase velozity magnitudes of the discontinuities using the method of
Takingb=0 gives the damped wave equation. This equatiorBoley** and a connection is made to digital signal strength.
describes the propagation of thermal waves, at finite speed$his sheds new light on how to devise a transmission line
in a thermally conducting mediumby the Maxwell- based on digital signal strength at a given location. Finally,
Cattaneo theofy'9, the propagation of electromagnetic Sec. VI is devoted to a brief discussion and conclusions fol-
waves in an electrically conductinghence absorbing low in Sec. VII.
medium!! and the classic form of the random walk

In 1876, the telegraph equation,

problem’ Finally, taking y=0, b?=m3c3/4? and c=c,, |l. MODEL SYSTEM

Consider an initially quiescent, homogeneous and isotro-
dElectronic mail: apuri@uno.edu pic, electrically conducting dispersive medium occupying the
0021-8979/99/85(3)/1273/10/$15.00 1273 © 1999 American Institute of Physics
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half-spacex>0. At the x=0 boundary, a time-dependent d?£(u)

input signal is applied. This system is modeled by the fol- e —(s*+rs+b%)£(u)=0, (2.4
lowing initial-boundary value problerfiBVP) involving the
telegraph equation: where £(-) is the Laplace transform operator asds the

transform parameter. Solving E@.4), we get the transform
domain solution

Ugx— U,,—ru,—b%u=0, x,7>0, (2.2
= —x\(s+r/2)%+ _
u(»,7)=0, u(0,7)=F(r), 7>0, 2.2 AW =T(s)exd —x\(s+r/2)"+K], @9
wherek=b?—r?/4 is known as thelispersion coefficierdand

u(x,0)=u,(x,00=0, x>0, (2.3
whereu=u(x,7) is any component of the electric field vec-  £[U(0,7)]=£[F(7)]=f(s), 2.9

tor, r=cvy is the damping coefficient is the elastic coeffi-

cient, =ct (giving a phase velocity of unijy andF(7) is  and wheref(s) exists. Thus using a table of inverse Laplace

the input signal. transform&® and the inverse Laplace transform convolution
Applying the Laplace transformation with respecttto  theorem:® we find that for all allowabld=(7), the ~domain

Eqg. (2.1) and employing initial data, Eq2.3), we obtain solution is

e*rX’ZF(r—X)—fTF(T— nKy(x,7,k)d7, if k>0,
u(x,n=6(r—x){ € “F(r—x), if k=0, @7

e‘”"zF(T—X)Jrf F(r— 77)K|(X,7],|k|)d7], if k<<O,
X

where 6(-) is the Heaviside unit step function, the presence of the Heaviside function also serves to sup-
press the unbounded growth exhibited Ky as x becomes
iz J1LVK(C 77—x)] large.

K;(x, 7,k) =xvke (2.9

2_X2 !
g . NUMERICAL RESULTS
VIKI(72=x3)] 09 Here we give Mathemati¢& generated graphs of solu-
V2—x2 ' (29 tion (2.7) for the following input signald=(7):

and wherel,(-) is Bessel's function of the first kind of order
one and 4(-) is the modified Bessel function of the first kind
of order one. The solution(x, 7) consists of two terms. The (3 Rectangular pulsé (7)=M[6(7) - 6(7—p)],

first shows that the boundary data are attenuated as they afd Unmedulated  sinusoidal  pulseF(7)=[6(7) - 6(~
propagated into the solution domain. The second term van- ~p)Isin(@p),

ishes fork=0 and represents the effects of dispersibe.,  where the positive constani, m, and p denote the pulse
the dependence of phase velocity on frequénitymay be  magnitude, the decay coefficient, and the pulse width, re-
thought of as a “tail”* following the first term. Observe that spectively. Note that, with the exception of Fig. 4, we have
if u(0,0)=F(0)#0 then the boundary data will be discon- adopted the following convention here in Sec. Ill: a broken
tinuous. This is due to the fact that the initial conditions werecurve corresponds to the dispersion coefficlent0, a bold
taken asu(x,0)=u(x,0)=0. Since the telegraph equation is curve tok<<0, and a thin solid curve tk=0. Finally, Figs. 3
hyperbolic in nature, this discontinuity in boundary data isand 4 were plotted fop=1.50.

propagated into the solution domain. Hengg, 7) is also
discontinuous. The graphs shown in Figé&)land ib) are
those ofK; andK,, respectively, forr=2.00. The broken In Figs. 2a)—2(c) are shown plots for Heaviside, Gauss-
vertical line atx=2.0 in each graph indicates where the dis-ian, and unmodulated sinusoidal pulse inputs#er0.50 and
continuity caused by the Heaviside function multiplying eachall three cases df. Note that in each plot, the curves for all
of the kernels would occur; to the right of ik 7) both  three cases ok lie very close to each other. Furthermore,
plots would be zero. Physically, this shows that causality imote that by inverting the large expansions given in the
satisfied. Why this is so mathematically can be seen by fixind\ppendix, we can obtain smaHexpressions of Eq2.7) for
>0 at 7= and lettingx vary. The Heaviside function the variousF(7). For example, the smait-expressions cor-
0(7o—x) must then be replaced #(x) — 6(x— 7¢). Finally,  responding to Figs.(@—-2(c) are

|
Ky (7, ) = xy T2 2L

(1) Heaviside unit stef-(7) = 6(7),
(2) GaussiarF(7)=6(r)e ™",

A. Small-time behavior
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_ A X2 kx ZXZ 2

(@ u(x,m)=e 0(7—X) 1—7(T—x)+1—6(r—x) —, 3.1
kx

(b) U(X,T)Ze_rX/ZG(T—X)(l—?(T—X)—mz(T—X)Z‘F"'), (3.2

_ T 2 kx 2 x°k? 3
(c) U(X,T)—Ee 0(T—X) (T_X)_Z(T_X) + 4_8_6_pz (7—Xx)°+---

T =2 kx o, XK @ 3
& PO X)) (7 X=p) = 5 (7 X p) | G | (7o x =), 3.3

From Egs.(3.1)—(3.3), one can clearly see th&tdoes not C. Effects of elastic and damping coefficients

appear in the firs(dominanl term of any of any O_f these Figures 4a) and 4b) show, respectively, the effects of
SEries. Ij[|e|nc_eafor srgaﬂt(g{me), we conclude thaii is ap- varying the elastic coefficiertt and damping coefficient,
proximately independent . with k= —1.03 fixed, for a rectangular pulse. In Figa¥r is
fixed at 2.85 and we use the following convention for the
plotted curves: brokeab=0.50, bold&=b=1.00, and

B. Effects of dispersion on pulse-type inputs ! - X '
solid=b=1.25. In Fig. 4a) observe that increasinfde-

In Figs. 3a), and 3b) with 7=2.00 M=1.00, andp
=1.50, we can clearly see the dispersive tail in the plots of
both the rectangular pulse and the unmodulated sinusoidal
pulse, respectively. Note that f& 0, the tail lies above the
x axis while fork>0, it lies below(for k=0, the tail does not
exist. In addition, we see that tHe=0 curve lies above the
k>0 curve and below th&<0 curve. Furthermore, while
the rectangular pulse is clearly discontinuous, the unmodu-
lated sinusoidal pulse is continuous everywhere. The devel-
opment of the dispersive taffor k<<0) as a function ofr,
for both rectangular and modulated sinusoidal pulse data,
will be demonstrated in Sec. IV.
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FIG. 2. uvs x for 7=0.50 andr =2.85. Bold line:k=—1.03; solid line:k
FIG. 1. For 7=2.0 andr=2.85: (@) K; vs x, k=0.44; (b) K, vs X, =0; broken line:k=0.44. (a) Heaviside;(b) Gaussian withm=1.00; (c)
k=—1.03. unmodulated sinusoidal pulse wigh=1.50.
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creasing b decreasesincreasesthe area under the disper- J2u J2u Ju

sive tail, the area under the pulse, and the magnitude of the -2~ LC —z—(LG+RC) —-—RGu=0. (4.2)
trailing edge of the pulse. Note, however, that varying the

elastic coefficient has little or no effect on the leading edgeln terms of the electrical parameters, the dispersion coeffi-
For Fig. 4b), b is fixed at 1.00 and the convention for the cientk is given by
plotted curves is as follows: brokerr=2.25, bold=r (RC—LG)?
=2.85, and soliebr=3.35. As would be expected, increas- k=— —
ing (decreasingr decreasesincreasespulse magnitude, at 4LC
both trailing and leading edges, and the area under the pul$¢ence for a coaxial transmission line, we h&we0 always.
while increasing(decreasingthe area bounded by the dis- This was also shown by Doetschnd by Bland® Thus Eq.

4.3

persive tail. (4.2) admits, at most, only one form of dispersion. In his
research, Heaviside found that by designing a marine cable
IV. PHYSICAL APPLICATIONS such thaRC=LG, he could produce a “distortionless” ma-

) _ o rine transmission line. Over the years, such lines came to be

We now consider two physical applications. In both of ynown as Heavified lines. Thus k=0 corresponds to a
these examples we will focus on the casekef0. The case  Heqyified transmission line. As can be seen from solution
of k<0 is of much interest as it occurs in transmission Iine(2_7), an input signal propagating down such a line is attenu-
applications and has the potential for the greatest impact ofteq, hut experiences no dispersive effétes, it is reduced
digital transmission in dispersive media. in magnitude but maintains its fonrin contrast, fok<0 an
A. Coaxial transmission line input signal is not only attenuated, but also suffers from dis-
persion. This dispersive effect is represented by the corre-
sponding integral term given in solutid@.7).

Figures 5 and 6 illustrate, respectively, thevolution of
solution (2.7) for the rectangular and modulated sinusoidal
pulses,

F(7.p)=M[0(r)—6(7—p)],

Consider a simplified model of a coaxial transmission
line. Equation(1.1) is the governing equation for both cur-
rent and voltage in such a line with no external driving.
Expressing the constants y, andb in Eq. (1.1) in terms of
the electrical parametets R, C andG we find

c=(LC) 2 y=LG+RC, b?=RG, 4.2

where, per unit length, we have inductarice 0, resistance
R=0, capacitanc&€C>0, andG=0 is the leakage conduc-
tance between the two wires. Thus, Efj.1) becomes
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FIG. 4. u vs x for a rectangular pulse withr=2.00, M=1.00, and
FIG. 3. uvsx for 7=2.00,r =2.85, andp=1.50. Bold:k=—1.03; solid: p=1.50. (a) r=2.85 (fixed). Broken: b=0.50; bold: b=1.00; solid:
k=0; broken:k=0.44.(a) Rectangular pulse witiv =1.00; (b) unmodu- b=1.25. (b) b=1.00 (fixed). Broken: r=2.25; bold: r=2.85; solid:
lated sinusoidal pulse. r=3.35.
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and wheren, u, ando are the refractive index, permeability, and
_ . . conductivity, respectively, of the medium, gads the pulse
F(m.p)=[0(n) = 6(r=p)]sin(wr)sinq), (4.9 width of the input signal. Equatio4.5) isalfnown as the
where w>q are positive constants. Figuresab-5€) and  spherically symmetric damped wave equation. A derivation
6(a)—6(e) correspond tor=0.50, 1.50, 2.00, 3.00, and 4.00 of the general case of E¢4.5) is given by Born and Wolt!
while Figs. 5f) and &f) are magnified views of Figs.(§)  Let us solve IBVP Eqs(4.5—(4.7) for both digital and ana-
and Ge), respectively. Clearly Figs. 5 and 6 could, respec-log signal inputsF. Substitutingu=U/p, r=vt, wherev
tively, represent a digital pulse and a short modulated analog:c,/n, andr=ouv IBVP Egs.(4.5—(4.7) become
signal, with carrier frequency and modulation frequenay, —u

. P ) o U,—U,—ru,.=0, p>a, 7>0, (4.9
propagating down a semi-infinite coaxial transmission line
with electrical parameters, R, G and G chosen in such a U(a,7)=aF(r,p), U(»,7)=0, 7>0, (4.9
way that Eq.(4.3) yieldsk=—2.02. In Figs. 5 and 6, we see U(p,0)=U(p,00=0, p>a, (4.10

that upon entering the medium both inputs suffer heavy at- _ .
tenuation. Byr=2.00, a tail has developed on each signaI.WEerep_U/”' (Elearlzy Eq.(4.8) corresponds to Ed2.1) with

C . ) . . . =. 'b=0. Hencek= —r</4 and the solution follows using tHe
Observe in Fig. &) how a discernible digital signal is still

_ - : . <0 case of Eq(2.7).
present atr=4.00, whereas at=4.00 the analog signal is . . .
. . ) o . ) (i) Rectangular(digital) pulse propagation. Fdf(7,p)
almost imbedded in the noise of its dispersive [t&if. 6(e)]. _
=[0(7)— 6(7—p)], we have
- . . a
B. Infinite conducting medium U(p,7)= 2 & P~ g(7— p+a)— B(7—p—p+a)]
Consider a conducting medium of infinite extent which p

is both homogeneous and isotropic, for example, a large deep ar(p—a)
freshwater lake. Somewhere in this medium is a spherical T
cavity of radiusa. Starting at timé=0 and ending at=, an
electromagnetic pulsé(t, ») is transmitted from the surface 7
of the cavity p=a), into the medium(e.g., from a deeply Xf

O(t—p+a)

K(p—a,n,r)dn—6(r—p+a—p)

submerged radio transmitjeiVe wish to describe the pulse pa
at any later time. Let us place the origin of a spherical coor- =P
dinate system at the center of this cavity. The IBVP we must X ,a K(p—a,n.r)dn|, (4.1

solve is
where K(p—a, #,r), the kernel of the Laplace transform

19 au\ n? U au convolution integral, is given b
Ta—(Pza—)—gW—ﬁwﬁ=0, p>a, t>0, gral 18 g y
p-op Pl Co —ral2 Li[(r/2)V 7= (p—a)?]

@9 K(p—a,pr)=e 4.12
u(a,t)=F(t, ») u(e,t)=0, t>0 (46) v 7 : \/772_(P_a)2
, . ’ ’ ' ' (i) Analog pulse propagation. Taking(r,p)=[6(7)
u(p,0)=ui(p,00=0, p>a, (4.7 —6(r—p)lsin(w7)sin(wr) we obtain

U(p.7)= = & g7 pa)sinw(r— p+ &)ISia(7—p+ &)1~ 67— p—p-+ &)sirfw(r—p+ ) Jsinla(7— p+ )]

ar(p—a) T .
+T O(t—p+a) - sifw(7—»)]sing(7—»)]K(p—a,n,r)dnp—6(7—p+a—p)
7—7p - .
Xf sinw(7—n)]sinq(7—n)1K(p—a,n,rdny|. (4.13
p—a

We note that Eq(4.13 is valid for all w,q>0. The plots in X108 s. Again we see attenuation quickly reduces the
Figs. 7 and 8 show vs p—a. They illustrate ther evolution  magnitude of both the digital and analog inputs. In addition
of Egs. (4.11) and (4.13, respectively, forr=0.84, a  we note that while the digital pulse develops a (&ig. 7), it
=0.50,p=1.50,g=27/3, and w=5q. The corresponding is apparent from Fig. 8 that the tail associated with the ana-
medium parameters used are for freshwater mr€9.00 log pulse is not noticeable. Initially, this seems to be due to
[=v=(1/3)X10° m/g], and ¢=0.02 mho/m. Furthermore the fact thatw is an odd-integer multiple of.. However,

we havew corresponding to a carrier frequency of 55.50 numerical work carried out but not presented here suggests
MHz, q corresponding to a modulation frequency of 11.10that this is also true wheaw is an even-integer multiple af.
MHz, and we have taken a pulse width of=4.50 Hence, it appears that whenis an integer multiple of, the
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two integrals appearing in E¢4.13 are nearly equal, result- discontinuous wave forms. As already noted, a rectangular
ing in a near cancellation of the dispersive part of the soludigital input pulse of magnitud® and widthp can be rep-
tion for 7> (p—a)+p. Last, it is clear that for both digital resented mathematically by
and analog inputs there exist critical distances past which
both become lost in the background noise and tail. F(r)=M[6(7)=0(7=p)]. (5.9)
Figures 5 and 6 support the notion that digital transmis-Qbviously Eq.(5.1) is a function with a jump discontinuity.
sion is generally preferred over analog in dispersive mediaphysically, the magnitude of the discontinuitgr saltus,
Whereas a digital detector will sense only a high low signakvhich in this case is a constam, indicates the signal
input, and will therefore “miss” the dispersive tail, an ana- strength of the pulse. However, as a digital pulse propagates
log detector, by its very nature, will sense both the intendedn a absorbing/dispersive medium the signal strength of the
wave form and its dispersive tail which, inevitably, will ap- pulse is reduced over distance.
pear as degraded output. However, Fig. 8 indicates that for Here in Sec. V, the method of Bo¥y(see also Puri and
the example considered here dispersive effects on an analgg/the!”) is used to determine the magnitudes of the propa-
signal can be reduced by picking the carrier frequency to bgating discontinuities present im The power of this ap-

an integer multiple of the modulation frequency. proach is that the magnitude of a discontinuity present in a
solution can be found without having to perform the often
V. DISCONTINUITIES difficult tasks of first obtaining the time-domain solution

K led f di finuities i " Wi ant t and then taking the appropriate limits. Let us now give the
nowledge of discontinuities 15 extremely Important 10 e cise statement of Boley*criterion. Denote byS[g(xo)]
researchers in many areas of physics. For example, in dlglt%}
0

) ) e saltus of a functiog(x) at a pointx,, i.e.,
systems we often encounter signals composed of a series

rectangular pulses. Clearly such signals can be regarded as S[g(Xgy)]=0(Xg+0)—g(Xxe—0). (5.2
0. 0.3

(a) (b)

-0.3 FIG. 8. u vs p—a for a modulated sinu-
soidal pulse witha=0.50, r=0.84, p
=150, q=27/3, and w=104/3. (a)
7=1.50; (b) 7=2.00; (c) 7=3.00; (d)

' /\ /\ FaN
TAN ->p - a ->p-a
2 3 4
-O.l V v 2 3 4 -0.1 \7 V
2

u u 7=4.00.

0.3 0.3
(d)
0.2 (e) 0.2
0.1 0.1
AN\ A NN\ - -
T V V3 e 1 2 N e
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TABLE |. Discontinuities inu: Impulsive, Heaviside, and Gaussian inputs. case the magnitude of the discontinuity is independerit of

F) 30 ") y— Furthermore, in the case of recta_ngular pulse signal, we see
thatS[u] at rand7— p gives the signal strength of the pulse
Wave front X=r X=r X=r at the leading and trailing edges, respectively, without hav-
S[u] % e ™ e ™? ing to solve for the time-domain solution of the problem.
g[”f] * i * Finally note that, with the exception &(7)= (), all the
[u:d ” ” ” boundary data considered resulted in strong discontintiities
in u. For the telegraph equation, which is of second order,
strong discontinuities are jump discontinuities which occur
Suppose that inu, oru, andu,.

a+ion

1
= QO h —SKX] ST, )
QX n=o L,ix [Qxs)hGge=Terds, 5.3y, biscussion
where()(x,s) is an infinite series in powers ofdl/the func- (1) If dispersion is present in any solution of the tele-
tion h(x)#0 is real valued and bounded fa=0, « is a  graph equation, it can occur in only one of the two possible
positive constant, and is a constant chosen in the standardforms corresponding tck=#0. Furthermore, for smallr
manner of the inverse Laplace transfoftiThen the saltus of ~ (time), the solutioru(x, 7) is approximately independent kf

the functionQ is given by the following criterion: (Fig. 2.
If (2) In every case of boundary data considered, khe
1 =0 curve was found to lie above the>0 curve and below
lim sN Q(x,s)— —n} =0, n=0, N=1, (5.4  thek<O curve, with thek<<O curve having the greatest de-
s S viation from the nondispersivek& 0) curve(Fig. 3). Thus it
then is clear that the presence of dispersion influences the magni-
tude of u(x,7) and that these influences are opposite and
0 for kx—7#0, unequal for the two forms of dispersion.
0 if n>1, (3) For pulse-type boundary data dispersion causes a tail,
SQx,n]= h(x) if n=1, for xx—r=0. extending fromx=0 to the trailing edge of the pulse, to form
o if n<1, (see Figs. 3—B Thus, dispersion causes overall pulse width

(5.5 to increase with propagation distance.

. , o (4) Decreasingincreasing the elastic coefficienb in-
We illustrate the use of Bpley s method by applying it to the creasegdecreasesthe area under the dispersive tail and the
larges e€xpansions given in the Appen_(ﬂEqs_. (A_l_)_(A6)]; ._area under the pulse. In contrast, decreagimgreasing the
we can determine the propagating discontinuities occumngjamping coefficient decreasesincreasesthe area under

in uand its derivatives for the variouS(7) considered. We o 5 ‘and increase@ecreasdsthe area under the pulse
give these results, up to first derivatives, in Tables | and “'(see Fig. 4

Table | contains the following input signalboundary data
impulsive, Heaviside unit step, and Gaussian, respectively
In Table Il we have rectangular and unmodulated sinusoid
pulse input signals. Heré(-) is the Dirac deltaimpulse

function and the quantitys [u,] corresponding to the sinu-
soidal pulse input was determined using Hadamard’s letnm

(5) For rectangular pulse data, the leading edge of the
ulse suffers greater attenuation than the trailing @
). Hence depending on the detector, the initial pulse mag-
nitude, and the propagation distance involved, a rectangular
pulse could appear to arrive later than it would if dispersive
%ffects were not present and thetectedpulse width may

D appear less than the initiihput) pulse width.

D7 (STuD=S[ux]+S[u.], (5.6) (6) Figures 5—8 show that, fdt<0, there is no signifi-

] o ] cant qualitative difference between transmission line propa-
where the oper_atoD/Dr denotes dlﬁerentlatlon vv_lth re- gation of analog and digital pulses and the propagation of
spect tor following the wave front, and the continuity of  theses pulses in an infinite, homogeneous and isotropic con-
(i.e., S[u]=0). Observe from Tables | and Il that in every ducting medium.

(7) Due to the formation of the dispersive tail and the
different detection methods used in digital and analog sys-

TABLE Il. Discontinuities inu: Rectangular and sinusoidal pulse inputs. A
tems, the analysis presented here generally supports the no-

F(7) M[6(7)— (7~ p)] [6(7) — 6(7—p)]sin(m/p) tion that digital transmission techniques are preferred over
those of analog in a dispersive media. However, our analysis
Wave front  x=r  x=7-p X=T X=7-p suggests that the dispersive tail can reduced if the carrier
S[ul Me ™2 Me ™" 0 0 frequency is an integer multiple of the modulation frequency
S[u.] ® w T o2 T o2 (Fig. 8).
p p (8) With the exception of-(7)= (1), all the boundary
P data considered produced strong discontinuitiesu,in.e.,
S[uyd ® ® p p jump discontinuities iru, or in u, andu, as given in Tables

I and Il. These discontinuities propagate at the phase velocity
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and decay exponentially overwith attenuation coefficient APPENDIX: Large s expansions of transform domain
r/2. solutions

(9) The magnitude of the discontinuity occurring in the
solution(or its derivative$ of the telegraph equation is inde-
pendent of both the dispersion coefficiémnd elastic coef- [ kx  k2x?
ficientb; the discontinuity for both cases k-0 occurs only £(u)=ex —sx—rx/2]| 1= 5+ g7 (A1)
in the first(nonintegral part of the solution. ]

For impulsive data:

For Heaviside unit step data:

(1 kx k2
VIl. CONCLUSIONS £U)=exf —sx=rxl2] c= 5o+ 5| (A2
Our analysis demonstrates that the tail produced by the For Gaussian data:
dispersive part of the solution is a major reason why digital 1 kx om?
transmission is generally preferred over conventional analog 2 (y)=exg — sx—rx/2]| =— =—5— =5 (A3)
transmission. Digital detectors employ a threshold value to s 2s° 8s
determine high and low signal strengifoltage. Thus, as- For rectangular pulse data:
suming the setting of the digital detector’s threshold value
allows for attenuation of the leading edge of the pulse and 1 kx k2
the presence of the dispersive tail, they are far less suscep- £(U)=M ex —sx=rx/2] 5= 55+ g
tible to the effects of dispersion. Analog detectors, however,
sense an arriving wave form in a continuous manner; disper- —M exd —s(x+p)—rx/2]
sive effects are incorporated with the input wave form in 1 kx K22
producing the output. The result, of course, is degradation of 37 232 + T (A4)

the reproduced signdl.e., degraded outputHowever, our
work suggests that for special values of the carrier and For sinusoidal pulse data:
modulation frequencies the tail associated with an analog

: . . T 1 kx x°k? w1
signal can be reduced. Furthermore, when small-time inter- £(u)= — exf — sx—rx/2]| — _3+(__ _2) =
vals are considered, our findings show that dispersion has P s° 2s 8 p=/ s
little influence on the propagating signal. -
We have showrisee Tables | and Jthat the criterion of +-- |+ —exd —s(x+p) —rx/2]

Boley* permits the determination of the propagating jumps, P

at a given location, without having to obtain the time-domain 1 kx [x2k? #2\ 1

solution of the governing equation. This could prove useful v —3+<—— | =zt | (A5)

. . . . . s° 2s 8 pc/ s

to designers of digital systems which operate in dispersive

media. The signal strength at both the leading and trailingand

edges of rectangular pulse data aadeivedpulse width can - 1 kx  [x22 72\ 1

be determined easily using Boley’s method, and withoutany £y )= — exqf —sx—rx/2]| =— s— + <__ _2) —

knowledge of the time-domain solution. p s 2s 8 p/s
Although electrical signal propagation down copper -

transmission cables may, due to the advent of optical fibers, +ooo |+ —exd —s(x+p)—rx/2]

soon become a thing of the past, there is still a great deal to P

be learned in the area of bioelectromagnetic theory. The ax- 1 kx [x3k® 2\ 1

ons or long tendril portions of nerve and muscle cells behave Xl 227" (?— o2 St (A6)

much like marine cablesAn important difference, however,
is that the leakage conductance in nerve axons is nonlineatwhere Eq.(A6) was determined from EqAS5) using the
Nevertheless, in cases where the leakage conductance canreation

linearized, an analysis similar to the one presented here _

could provide much insight into the workings of such bio- £(uy)=sE(u). (A7)

logical “transmission lines.”
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