Acoustic quality factor and energy losses in cylindrical pipes
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The quality factorQ of a damped oscillator equalsr2imes the ratio of stored energy to the energy
dissipated per cycle. This mak€sa sensitive probe of energy losses. Using modest equipment, we
measured the acoustic@l for a set of cylindrical pipes having the same resonant frequency, but
different diameter®. The graph ofQ vs D could be well fitted with two parameters, one of which
corresponds to energy loss via radiation from the ends of the pipe, and the other to thermal and
viscous losses very close to the pipe wall. The wall loss parameter was quite constant no matter
where the pipes were located, but the radiative loss parameter varied significantly with location
inside a room, suggesting that room reflections affected the sound radiated from the pipe. This study
offers valuable insights at no great expense, and could be the basis of an upper-division
undergraduate laboratory experiment. 2801 American Association of Physics Teachers.
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[. INTRODUCTION energy

. . . Q= :
A driven acoustical resonator was constructed by placing a energy lost per radian
speaker near one end of a PVC pipe, open at both ends, as
shown in Fig. 1, in order to determine its acoustical quality =2 energy - e”,er9y ., (D
factor Q. The response was obtained via a small, inexpensive energy lost per cycle power dissipated

microphone in the center of the pipe, and the ar_nplified signa,L”gh Q means that energy dissipation is low, while I&v
was sent to an .oscnloscope. Three frequencies were Megplies large damping of amplitude and energy. Two impor-
sured to determin€: the “central” frequencyf, of maxi-  tant contexts for the quality facto® are (1) retention of
mum response, and the frequencies on either sidé,of energy in a decaying oscillator, ari@) the response of an
where the response is 0.707 of maximum. oscillator to a sinusoidal driving forcéWe are only inter-
Q was found for a set of pipes of different diameters butested here in lightly damped oscillators, wh@3@alues are
all having the same resonant frequency. The grapQ wér-  greater than 10.
sus diameter for these pipes can be understood in terms of Q of a decaying oscillator is a measure of how long energy
two loss mechanisms sketched in this section and more fullys retained. A certain 349-Hz tuning fork rigidly clamped to
explained later in this paper. a bench take 6 s tohave its amplitude reduced by a factor of
Q is the stored energf divided by the energy loss per e, while the same fork mounted in putty on a benchtop re-
radian. It may also be expressed @&/P, wherew is the  quires ony 4 s for the same reduction in amplitude. Mount-
angular frequency, ani is the dissipated power. In a cylin- ing in putty reduces the energy more quickly and results in a
drical pipe, the stored energy is proportional to the crosstower Q (about 4400 mounted in putty vs 6600 clamped to
sectional area, or tB?, whereD is the pipe inner diameter. the bench
The sound power radiated at low frequencies is proportional
to the square of the “source strengththe volume flow
rate. Since the source strength is proportional to the pipe
cross-sectional area, the rate of energy radiation is propor-
tional toD*. Thus, for losses due to radiation of SOUY,q
is proportional to 1D?. The power dissipated very close to
the pipe walls, however, is proportional to the pipe circum-
ference, which mear®,,,; is proportional taD. Because the
overall loss rate is the sum of loss rates from the two mecha-
nisms, the inverses of the separ@&s add to give the in-
verse of the totalQ: 1/Q=1/Q 1+ 1/Q,q- Figures 2—4 il-
lustrate the behavior d vs D: an almost-linear increase of
Q at smallD, then a maximum, and a steep decrease at large
D. This is due to the competition between the two loss
mechanisms.

Il. THEORY
A. Quality factor Q

. . . . . Fig. 1. Experimental setup for measuriQgf an open-ended tube driven by
The quality fQ-CthQ _Of an oscillator prOV_|deS information 3 joudspeaker. Amplitude of response is registered by a tie-clip microphone
about energy dissipation and may be defined as: centered in the tube, amplified, and sent to an oscilloscope.
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Fig. 2. Indoor data from oscilloscope. The solid curve is @d) with c,, Fig. 4. Outdoor data with signal averaging. The solid curve is(E@. with
=2.01 mm* andcg=4.00X 10° mn?. c,=1.9 mm ! andcg=8.5x10° mn?.

The theoretical displacement response of three oscillator@MPlitude isB=Bg/v2, so it is natural to designataw
to a sinusoidal driving force is shown in Fig. 5. Each oscil- =2/ as the “resonance width.” Using this in E(B) lets us
lator has the same resonant frequency but different dampingvrite
giving Q values of 10, 20, and 30. The response at resonance w w fo
of each curve is almost exact) times the dc response Q= —=—=—-—, (5)
(unity for each oscillator Ao 2B f— 1y

Another feature of a response curve is its “resonanceyheref, is the frequency of maximum displacement ampli-
width” Aw, the frequency difference between points wherey,de, andf, and f, are frequencies where the oscillator
the response is 12 of the maximum. ASQ increasesAw  gieady.state amplitude is 0.707 of the maximum.

decreases, so the response at higQeis both higher and From Eq.(4), the zero-frequency displacement amplitude

narrower. . _ 2 ; e
The amplitude as a function of time for an underdampeclS BO;Foé(mwo)k Using this withBg and I_Eq.(5) k\]/ve can
oscillator i< see that the peak response at resonancgtimes the zero-

frequency(dc) response of the oscillator. This indicates that
y(t)=Ae Pcog wqt+6). (2 a highQ oscillator will give a large amplitude response, but

(The undamped frequency for this oscillatordg. For light only very close to its resonant frequency.

damping, the oscillation frequency,= \/woz—ﬂz is very B vViscous penetration depthé
close towg.) Using the definition of as in Eq.(1), one may

dilv show f lightly d d illator that There is an e_xponential change of fluid .veI(_)city near a
readily show for a fightly damped osciilator tha solid wall. This is elegantly shovinby considering a flat
Q= w1/2B. (3 plate in thex—z plane that oscillates sinusoidally in tze

For the 349-Hz tuning fork mounted with putty, we find a direction. The fluid lying above the plate moves in parallel
Q of about 4400 from Eq(3) with w=2m(349) s ! and 8 strata in they dlrectlo_n, acted on only by viscous forces. The_
=(1/4) s *. (B was found by fitting a straight line to the log viscous for_ce per unit area acting across a plane boundary in
of microphone response versus timne. afiuid is given by

When a sinusoidal force of amplitudg, drives an oscil- Fuisc v v
lator, the steady-state displacement amplitude is A W@:PU ay’

Fo/m wherev is thez velocity, # is the viscosity coefficientp is
B= \/(wé—w2)2+(2w,8)2' (4) the density, and is the kinematic viscosity. A thin sheet of
fluid (areaA, thicknessAy) has two viscous forces acting on
B is a sharply peaked function af whenS<wy. It reaches it one on the top face at+ Ay and another in the opposite
a maximum of Br=Fqy/(2mwyB) when ow=owg

= \/w02—2,82 (very close towp). And whenw=wy* 3, the

30 1
i ]
o 1007 * ] w20 F :
o 1 ] z
5 80 8
Z eof 7
b @ 10F ]
E 40} :
S ool ] ]
2 20 ]
0 . . ) 0 . . L . :
0 50 100 150 0.4 0.6 08 10 1.2 1.4 1.6
TUBE DIAMETER (mm) w/w,
Fig. 3. Indoor data with signal averaging. The solid curve is @) with Fig. 5. Relative response of driven, damped oscillators @itralues of 10,
cy=1.84 mm* and cg=2.07x 10° mn?. 20, and 30. Response is in arbitrary units with unit response=a.
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direction on the bottom face at heightibove the oscillating pck?’S?

plate. The net viscous force on the sheet, the sum of these radiated powes e 9)
forces, causes the sheet to accelerate: &
dv P where p is the density andt is the velocity of sound. In
Fuiscnet™ PAAyE:AP”a—)ﬂAy' simple harmonic motion, the total energy may be written as
the maximum kinetic energy. Then the total energy in a cy-
or lindrical pipe containing a standing sinusoidal wave with
Pv v maximum velocityu, at one end is readily found to e
VW:E- (6) =%puSwR2Lpipe. The energy radiated per cycle is power

) o ) ) ) divided by frequency, so we may use Ed) to determine
The z velocity of the sheet is sinusoidal, varying wighand Qrad:

is given byv (y,t)=a€ “'f(y). Usingv(y,t) in Eq.(6) gives
vd?f(y)ldy?>=iwf(y), which has a solutiorf(y)=Ae ™ L oo
+Be™™Y, wherem=\iw/v=(1+i)/6 and 6= 2v/ . _ 2mflap mRUGL pipel

We may think ofs as a “penetration depth” for viscous ° pek?S?(8m)
effects similar to the “skin depth” for electromagnetic fields
in a conductor. The value of for air at 20°C is 1.5 A pipe open at one end and closed at the other may be
X 10" 5m?s, soéis quite small(at a frequency of 190 Hz, regarded as a simple source whose streng8+srR?ug, so
5=0.16 mm). the expression for Q,,q (Ref. 7 becomes Q,uq
=L pipel/ mR2f. Using c=3.44x 10° mm/s, L pe=430 mm,
andf=190Hz, we find

C. Q from viscous and thermal effects pipe
A wave being attenuated as it travelsamay be written

asy(t)=Ae “*cos(,t+6), wherea is the absorption coef- Q,aq=9.91x 10°/D?

ficient as a function of distance. When the absorption is

viewed as occurring while the wave travels back and forth ingith D in millimeters.

the pipe,z may be replaced byt (c is the speed of sound

This gives the quivale_nt of EqR) with 8= «ac. open at both ends that has twice the length of the pipe closed
The effect of viscosity and thermal losses close to they; 5e end and open at the othéhe Q for a closed—open
walls of a cylindrical pipe of radiuR is given as an absorp- pipe is very slightly lower than for the equivalent open—open

These expressions f@),,4 and Q,,,; also apply to a pipe

; 7 276
tion coefficient pipe due to losses at the end wall.
Sw \ﬁ Cp
*=3Re[ 1T VY c_,,_l)’ @

where v is the kinematic viscosityC, and C, are specific Il EXPERIMENTAL ARRANGEMENT
heat capacities at constant pressure and volume, respectively

and x is the thermometric conductivity, defined by A PVC pipe open at both ends with a speaker near one end

was used as a driven acoustical resonator, measured in its

= (thermal conductivity (densityCy). _ lowest mode only. A tie-clip microphofien a long cord was
Using B=ac, and Eq.(7) in Eq. (3), we find Q due to  positioned at the center of the pipe by inserting it from one
wall effects end. This eliminated the need for drilling a hole through the

pipe wall at the middle of the pipe to allow microphone
(8) placement. Leaks around such a hole were found to seriously

affect theQ value. The microphone output went to an audio

amplifier (an inexpensive microphone and audio ampfifier
) ] ] worked very well in this experimeptand then to an oscil-

Numerical values from Refs. 4 and 5 in E®) give for  |gscope(One might also use a true rms voltmeter to measure

300 K Q1= (447.R\/f)/(1+0.476), wherd is frequency  the amplified output, although this does not let one see if the
in hertz andR is in meters. This shows that thermal effects amplified signal is clipped or nonsinusoidaAll pipes reso-
represent an additional 48% loss at the wall beyond viscougated close to 190 Hz, with a typical length around 85 cm.
losses. WritingR=D/2 and using a frequency of 190 Hz, we Because of the end correctibat each open end, lengths
find varied somewhat, with larger diameter pipes being shorter.
Frequencied,, f;, andf, were measured, as mentioned

R

N

v

Quwal=
)

Quia=2.0D, earlier.Q was then calculated using E@). We estimate an

whereD is in millimeters. uncertainty of up to 10% in th@ values, due to the difficulty
of determining the 0.707 response frequencies.

D. Q from radiation of sound A PASCO PI-9587C digital function genera“t%was used

. . . . . to drive the speaker. It has excellent low-impedance drive,
A sphere of radiui that oscillates radially with maximum - can pe dialed to the desired frequency, and also offers square
velocity up is said to have a source strengdigiven by S ave outpufused when we did signal averaging on the com-
=4mR2uy, which is just the maximum flow rate of fluid at putep. The ease of dialing to 0.01 Hz was a great help in this
the source radius. This sphere is regarded as a “simplexperiment.(A conventional function generator and fre-
source” whose radiated power whé&a<1 (k=2m/\) is  quency meter, found in most physics labs, would do the
given by same job as the PI-9587C, but would not be as convehient.
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Table I. A comparison of theoretical and measured loss parameters. thermal effects, but values for the radiative loss parameter,
Cr, range from less than half the theoretical value to more
than twice this value, measured indoors at different loca-
tions. Only the data series taken outdoors where room effects
Cr (mm?) 9.9x10°  4.0x10°0  21x10°  8.5x10° are removed yields a value af; close to the theoretical
Cy (mm™Y) 2.09 2.01 1.84 1.90 value.

We believe reflections from nearby surfaces indoors are
responsible for the variation in indoog values. Such reflec-

PVC pipe of various diameters ranging from 0.5 to 4 in.,tions create pressure waves near each end of the resonating
as well & a 6 in. cardboard mailing tube were used for ourtube, the phase of which will influence the amount of energy
measurements. Each pipe was placed at some moderdfdiated, either enhancing or reducing it. ltems such as
height(10—-50 cn off a tabletop, with the speaker at roughly tables, desks, supporting columns, etc., in the room make
a 45° angle from the axis of the pipe, 25—30 cm or so fromthese effects complicated. Our studies so far have not clari-
one end of the pipe. fied this effect.

The initial data were taken using an oscilloscope display
to measure the response amplitude of the microphone. Latg§f cONCLUSION
we used a computer to average response amplitude data

Figure 2 Figure 3 Figure 4
Theory (indoorg (indoorg (outdoor$

(typically, 200 samples would be averagdém the micro- Acoustic Q values were measured for sets of eight to ten
phone, using the square wave output of the PASCO signalipes of various diameters, all at the same frequency. Only
generator as a trigger. two parameters were needed to fit these data, one for losses

Indoor reflections had an effect on radiated sound from theear pipe walls and the other for losses from the pipes due to
pipes, which we attempted to remove by making several setsound radiation. The graphs Qfversus pipe diameter nicely
of measurements outdoors. Outdoor data were taken at lealustrate the competition between energy losses close to the
40 ft from the nearest building, and 6 ft or more above awall and energy losses due to sound radiated from the ends
grassy surface. Although working outdoors effectively re-of the pipes.
moved the wall and floor effects, it had its own drawbacks. It For data taken outdoors, both parameters are in good
was necessary to cope with transient environmental noiseagreement with theory. Indoors there is disagreement be-
so quite a bit of repetition was required to make sure theséween the theoretical and experimental sound radiation pa-

sounds had not adversely affected the measurements. rameter. This is apparently due to the phase of reflections
from nearby surfaces, either enhancing or reducing the radia-
IV. INTERPRETATION OF RESULTS tion of sound.

) ) ) ) o This experiment offers insight into several important
Q values for the various pipe sizes are displayed in Figsphysical effects, and requires only moderate equipment. It

2—4. Figure 2 shows data taken indoors on the oscilloscopgyould be a valuable addition to an upper-level undergraduate
Figure 3 also shows data taken indoors but with computefaporatory.

signal averaging, while Fig. 4 shows data taken outdoors

with computer signal averaging. y . o
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