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Abstract

We present a new technique for achieving blind source separation when given only a single
channel recording. The main idea is based on exploiting the inherent time structure of sound
sources by learning a priori sets of time-domain basis functions that encode the sources in a sta-
tistically efficient manner. We derive a learning algorithm using a maximum likelihood approach
given the observed single channel data and sets of basis functions. For each time point we infer
the source parameters and their contribution factors using a flexible but simple density model.
We show separation results of two music signals as well as the separation of two voice signals.

Index terms—Independent component analysis (ICA), computational auditory scene analysis
(CASA), blind signal separation.
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1 Introduction

Extracting individual sound sources from an additive mixture of different signals has been attractive

to many researchers in computational auditory scene analysis (CASA) [1] and independent compo-

nent analysis (ICA) [2]. In order to formulate the problem, we assume that the observed signal yt is

an addition of P independent source signals

yt = λ1x
t
1 + λ2x

t
2 + . . . + λP xt

P , (1)

where xt
i is the tth observation of the ith source, and λi is the gain of each source which is fixed

over time. Note that superscripts indicate sample indices of time-varying signals and subscripts

indicate the source identification. The gain constants are affected by several factors, such as powers,

locations, directions and many other characteristics of the source generators as well as sensitivities

of the sensors. It is convenient to assume all the sources to have zero mean and unit variance. The

goal is to recover all xt
i given only a single sensor input yt. The problem is too ill-conditioned to be

mathematically tractable since the number of unknowns is PT +P given only T observations. Several

earlier attempts [3, 4, 5, 6] to this problem have been proposed based on the presumed properties of

the individual sounds in the frequency domain.

ICA is a data driven method which relaxes the strong characteristical frequency structure assump-

tions. However, ICA algorithms perform best when the number of the observed signals is greater

than or equal to the number of sources [2]. Although some recent overcomplete representations may

relax this assumption, the problem of separating sources from a single channel observation remains

difficult. ICA has been shown to be highly effective in other aspects such as encoding image patches

[7], natural sounds [8], and speech signals [9]. The basis functions and the coefficients learned by

ICA constitute an efficient representation of the given time-ordered sequences of a sound source by

estimating the maximum likelihood densities, thus reflecting the statistical structures of the sources.

The method presented in this paper aims at exploiting the ICA basis functions for separating

mixed sources from a single channel observation. The basis functions of the source signals are learned

a priori from a training data set and these basis functions are used to separate the unknown test

sound sources. The algorithm recovers the original auditory streams in a number of gradient-ascent

adaptation steps maximizing the log likelihood of the separated signals, calculated using the basis

functions and the probability density functions (pdfs) of their coefficients — the output of the ICA

basis filters. The object function makes use of the ICA basis functions as well as their associated

coefficient pdfs modeled by generalized Gaussian distributions [10] as strong prior information for the

source characteristics. Experimental results showed that the separation of the two different sources

was quite successful in the simulated mixtures of rock and jazz music, and male and female speech

signals.
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Figure 1: Generative models for the observed mixture and original source signals (A) A single channel

observation is generated by a weighted sum of two source signals with different characteristics. (B)

Individual source signals are generated by weighted (st
ik) linear superpositions of basis functions (aik).

(C) Examples of the actual coefficient distributions. They generally have more sharpened summits and

longer tails than a Gaussian distribution, and would be classified as super-Gaussian. The distributions are

modeled by generalized Gaussian density functions in the form of p(st
ik) ∝ exp

(−|st
ik|q

)
, which provide

good matches to the non-Gaussian distributions by varying exponents. From left to right, the exponent

decreases, and the distribution becomes more super-Gaussian.

2 Source Separation Algorithm

The algorithm first involves the learning of the time-domain basis functions of the sound sources that

we are interested in separating. This corresponds to the prior information necessary to successfully

separate the signals. The separation method is motivated by the pdf approximation property of ICA

transformation (Equation 3). The probability of the source signals is computed by the generalized

Gaussian parameters in the transformed domain, and the method performs maximum a posteriori

(MAP) estimation in a number of adaptation steps on the source signals to maximize the data

likelihood. Scaling factors of the generative model are learned as well.

2.1 Generative Models for Mixture and Source Signals

We assume two different types of generative models in the observed single channel mixture as well

as in the original sources. The first one is depicted in Figure 1-A. As described in Equation 1, at

every t ∈ [1, T ] the observed instance is assumed to be a weighted sum of different sources. In our
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approach only the case of P = 2 is regarded. This corresponds to the situation defined in Section 1:

two different signals are mixed and observed in a single sensor.

For the individual source signals, we adopt a decomposition based approach as another generative

model. This approach was employed formerly in analyzing sound sources [8, 9] by expressing a fixed-

length segment drawn from a time-varying signal as a linear superposition of a number of elementary

patterns, called basis functions, with scalar multiples (Figure 1-B). Continuous samples of length

N with N ¿ T are chopped out of a source, from t to t + N − 1, and the subsequent segment is

denoted as an N -dimensional column vector in a boldface letter, xt
i = [xt

i xt+1
i . . . xt+N−1

i ]′, attaching

the lead-off sample index for the superscript and representing the transpose operator with ′. The

constructed column vector is then expressed as a linear combination of the basis functions such that

xt
i =

M∑

k=1

aiks
t
ik = Aist

i, (2)

where M is the number of basis functions, aik is the kth basis function of ith source denoted by an

N -dimensional column vector, st
ik its coefficient (weight) and st

i = [st
i1 st

i2 . . . st
iM ]′. The r.h.s. is the

matrix-vector notation. The second subscript k followed by the source index i in st
ik represents the

component number of the coefficient vector st
i. We assume that M = N and A has full rank so that

the transforms between xt
i and st

i be reversible in both directions. The inverse of the basis matrix,

Wi = A−1
i , refers to the ICA filters that generate the coefficient vector: st

i = Wixt
i. The purpose of

this decomposition is to model the multivariate distribution of xt
i in a statistically efficient manner.

The ICA learning algorithm is equivalent to searching for the linear transformation that make the

components as statistically independent as possible, as well as maximizing the marginal densities of

the transformed coordinates for the given training data [11],

W∗
i = arg max

Wi

∏

t

Pr(xt
i;Wi)

= arg max
Wi

∏

t

∏

k

Pr(st
ik), (3)

where Pr(a) denotes the probability of a variable a. Independence between the components and

over time samples factorizes the joint probabilities of the coefficients into the product of marginal

ones. What matters is therefore how well matched the model distribution is to the true underlying

distribution Pr(st
ik). The coefficient histogram of real data reveals that the distribution has a highly

sharpened point at the peak with a long tail (Figure 1-C). Therefore we use a generalized Gaussian

prior [10] that provides an accurate estimate for symmetric non-Gaussian distributions by fitting the

exponent q of the parameter set θ in its simplest form

p(s|θ) ∝ exp
[
−

∣∣∣∣
s− µ

σ

∣∣∣∣
q]

, θ = {µ, σ, q} (4)

where µ = E[s], σ =
√

V [s], and p(a) is a realized pdf of a variable a and should be noted distinctively

with Pr(a). With the generalized Gaussian ICA learning algorithm [10], the basis functions and their
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individual parameter set θik are obtained beforehand and used as prior information for the following

source separation algorithm.

2.2 MAP estimation of Source Signals

We have demonstrated that the learned basis filters maximize the likelihood of the given data.

Suppose we know what kind of sound sources have been mixed and we were given the set of basis

filters from a training set. Could we infer the learning data? The answer is generally “no” when

N < T and no other information is given. In our problem of single channel separation, half of the

solution is already given by the constraint yt = λ1x
t
1 + λ2x

t
2, where xt

i constitutes the basis learning

data xt
i (Figure 1-B). Essentially, the goal of the source inferring algorithm presented in this paper is

to complement the remaining half with the statistical information given by a set of coefficient density

parameters θik. If the model parameters are given, we can perform maximum a posteriori (MAP)

estimation simply by optimizing the data likelihood computed by the model parameters.

At every time point a segment xt
1 = [xt

1 . . . xt+N−1
1 ]′ generates the independent coefficient vector

st
1 = W1xt

1 and st
2 = W2xt

2 respectively. The pdf of xt
1 is approximated by W1 and the pdf of the

coefficient vector, which is given by [11]:

Pr(xt
1) ∼= p(st

1|Θ1)| detW1| , (5)

where p(·) is the generalized Gaussian density function, and Θ1 = θ1,1...M — parameter group of all

the coefficients, with the notation ‘i . . . j’ meaning an ordered set of the elements from index i to j.

The term | detW1| gives the change in volume produced by the linear transformation [12]. Assuming

the independence over time, the probability of the whole signal x1...T
1 is obtained from the marginal

ones of all the possible segments,

Pr(x1...T
1 ) ∼=

TN∏

t=1

p(st
1|Θ1)| detW1| , (6)

where, for convenience, TN = T − N + 1. The objective function is the multiplication of the data

likelihoods of both sound sources, and we denote its log by L:

L = log Pr(x1...T
1 ) Pr(x1...T

2 )

∼=
TN∑

t=1

[
log p(st

1|Θ1) + log p(st
2|Θ2)

]

+TN log |detW1||detW2| . (7)

Our interest is in adapting xt
1 and xt

2 for ∀t ∈ [1, T ], toward the maximum of L. We introduce a new

variable zt
i = λix

t
i, a scaled value of xt

i with the contribution factor, and adapt zt
i instead of xt

i in

order to infer the sound sources and their contribution factors simultaneously. The initial constraint,

Equation 2, is useful in rewriting L with unknowns zt
1 only, since

λ2x
t
2 = yt − λ1x

t
1 ⇔ zt

2 = yt − zt
1 , (8)
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or equivalently in the differential equation

∂zt
2 = ∂(yt − zt

1) = −∂zt
1 . (9)

The learning rule is derived in a gradient-ascent manner by summing up the gradients of all the

segments where zt
1 lies with zt

2 rewritten by Equations 8 and 9:

∂L
∂zt

1

=
N∑

n=1

[
∂

∂zt
1

log p(stn
1 |Θ1) +

∂

∂zt
1

log p(stn
2 |Θ2)

]

=
N∑

n=1

[
N∑

k=1

{
ϕ(stn

1k)
w1kn

λ1

}
−

N∑

k=1

{
ϕ(stn

2k)
w2kn

λ2

}]

∝
N∑

n=1

[
λ2

N∑

k=1

ϕ(stn
1k)w1kn − λ1

N∑

k=1

ϕ(stn
2k)w2kn

]
, (10)

which is derived by the fact that

∂stn
ik

∂zt
i

=
∂(wikx

tn
i )

∂xt
i

∂xt
i

∂zt
i

=
wikn

λi
, (11)

where tn = t − n + 1, ϕ(s) = ∂ log p(s)
∂s , and wikn = Wi(k, n). Note that the gradient of L w.r.t. z2,

∂L/∂z2 = −∂L/∂z1, always makes the condition y = z1 + z2 satisfy, so learning rule on either z1 or

z2 subsumes the other counterpart. The overall process of the proposed method is summarized as 4

stages in Figure 2. The figure shows one adaptation step of each sample.

2.3 Estimating λ1 and λ2

Updating the contribution factors λi can be accomplished by simply finding the maximum a posteriori

values. To simplify inferring steps, we force the sum of the factors to be constant: e.g. λ1 + λ2 = 1.

λ2 is then completely dependent on λ1 since λ2 = 1 − λ1, or equivalently ∂λ2 = −∂λ1. Therefore

we need to consider λ1 only. Given the basis functions Wi and the current estimates of the sources

x1...T
i , the posterior probability of λ1 is

Pr(λ1|x1...T
1 , x1...T

2 ) ∝ Pr(x1...T
1 ) Pr(x1...T

2 )pλ(λ1), (12)

where pλ(·) is the prior density function of λ1. The value of λ1 maximizing the posterior probability

also maximizes its log,

λ∗1 = arg max
λ1

{log Pr(x1...T
1 ) Pr(x1...T

2 ) + log pλ(λ1)}
= arg max

λ1

{L+ log pλ(λ1)} , (13)

where L is the log likelihood of the estimated sources defined in Equation 7. Assuming that λ1 is

uniformly distributed, ∂{L+ log pλ(λ1)}/∂λ1 = ∂L/∂λ1, which is calculated as

∂L
∂λ1

= −ψ1

λ2
1

+
ψ2

λ2
2

, where ψi =
TN∑

t=1

N∑

k=1

ϕ(st
ik)wikzt

i (14)
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Figure 2: The overall structure and the data flow of the proposed method. In the beginning, we are given

single channel data yt, and we have the estimates of the source signals, x̂t
i, at every adaptation step. (A)

xt
i ⇒ st

ik: At each timepoint, the current estimates of the source signals are passed through basis filters

Wi, generating N sparse codes st
ik that are statistically independent. (B) st

ik ⇒ ∆st
ik: The stochastic

gradient for each code is obtained by taking derivative of the log likelihood. (C) ∆st
ik ⇒ ∆xt

i: The

gradients are transformed to the source domain. (D) The individual gradients are combined and modified

to satisfy the constraint λ1x
t
1 + λ2x

t
2 = yt.

derived by ∂λ2/∂λ1 = −1 and the chain rule

∂ log p(st
ik)

∂λi
=

∂ log p(st
ik)

∂st
ik

∂st
ik

∂λi
= ϕ(st

ik) ·
(
−wikzt

i

λ2
i

)
. (15)

Solving equation ∂L/∂λ1 = 0 subject to λ1 + λ2 = 1 and λ1, λ2 ∈ [0, 1] gives

λ∗1 =
√|ψ1|√|ψ1|+

√|ψ2|
, λ∗2 =

√|ψ2|√|ψ1|+
√|ψ2|

. (16)

These values guarantee the local maxima of L w.r.t. the current estimates of source signals. The

algorithm updates the contribution factors periodically during the inferring steps.

3 Experimental Results

We have tested the performance of the proposed method on the single channel mixtures of four

different sound types. They were monaural signals of rock and jazz music, male and female speech.

We used different sets of speech signals for learning basis functions and for generating the mixtures.

For the mixture generation, two sentences of the target speakers ‘mcpm0’ and ‘fdaw0’, one for each,



“Single channel signal separation using time-domain basis functions,” Gil-Jin Jang et. al. 8
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Figure 3: Characteristics of four sound source. In (a)-(d), the first rows are actual waveforms of the source

signals, the second rows are the adapted basis functions ai, and the third rows shows the distributions

of the coefficients p(st
ik) modeled by generalized Gaussians. Only 5 basis functions were chosen out of

complete sets of 64. The full set of basis functions is available at the website also.

were selected from TIMIT speech database. The training sets were designed to have 21 sentences

for each gender, 3 for each of randomly chosen 7 males (or females) except the 2 target speakers

from the same database. Rock music was mainly composed of guitar and drum sounds, and jazz was

generated by a wind instrument. Vocal parts of both music sounds were excluded. Half of a music

sound is used for training, half for generating mixtures. All signals were downsampled to 8kHz, from

original 44.1kHz (music) and 16kHz (speech). The training data were segmented in 64 samples (8ms)

starting at every sample. Audio files for all the experiments are accessible at the website1.

Figure 3 displays the actual sources, adapted basis functions, and their coefficient distributions.

Music basis functions exhibit consistent amplitudes with harmonics, and the speech basis functions

are similar to Gabor wavelets. Figure 4 compares four sources by the average spectra. Each covers

all the frequency bands, although they are different in amplitude. One might expect that simple

filtering or masking cannot separate the mixed sources clearly.

Before actual separation, the source signals were initialized to the values of mixture signal: xt
i =

1 http://speech.kaist.ac.kr/~jangbal/ch1bss/
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Figure 4: Average powerspectra of the 4 sound sources. Frequency scale ranges in 0∼4kHz (x-axis), since

all the signals are sampled at 8kHz. The powerspectra are averaged and represented in the y-axis.

yt, and the initial λi were all 0.5 to satisfy λ1 + λ2 = 1. The adaptation step was repeated on each

sample, and the scaling factors were updated every 10 steps. The separation converged roughly after

100 steps, depending on the learning rate and other various system parameters. The procedures of

the separation algorithm —traversing all the data and computing gradients— are similar to those of

the basis learning algorithm, so their time complexities are likewise the same order. The measured

Table 1: SNR results. {R, J, M, F} stand for rock, jazz music, male, and female speech. All the

values are measured in dB. ‘Mix’ columns are the sources that are mixed to y, and ‘snrzi ’s are the

calculated SNR of mixed signal (y) and recovered sources (ẑi) with the original sources (zi = λixi).

Mix snrs1 snrs2 Total

m y1 m y2 inc.

R + J -3.7 3.3 3.7 7.0 10.3

R + M -3.7 3.1 3.7 6.8 9.9

R + F -3.9 2.2 3.9 6.1 8.3

J + M 0.1 5.6 -0.1 5.5 11.1

J + F -0.1 5.1 0.1 5.3 10.4

M + F -0.2 2.5 0.2 2.7 5.2
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Figure 5: Separation result for the mixture of jazz music and male speech. In the vertical order: original

sources (z1 and z2), mixed signal (z1 + z2), and the recovered signals.

separation time on a 1.0GHz Pentium PC was roughly 10 minutes for a 8 seconds long mixture.

Table 1 reports the signal-to-noise ratios (SNRs) of the mixed signal (yt) and the recovered results

(ẑt
i) with the original sources (zt

i = λix
t
i). In terms of total SNR increase the mixtures containing

music were recovered more cleanly than the male-female mixture. Separation of jazz music and male

speech was the best, and the waveforms are illustrated in Figure 5. We conjecture that the demixing

performance is related to the shape of the basis functions and the coefficient distribution, which are

shown in the second and the third rows of Figure 3. Speech basis functions vary in amplitudes in

the time domain, but music basis functions change less and cover the whole range. The coefficient

distributions of speech basis functions are peakier than those of music basis functions. Also in

Figure 4, there exists plenty of spectral overlap between jazz and speech. These factors account for

the good SNR result of the jazz and speech mixture. However rock music exhibits scattered average

spectra and less characteristical structure in the time domain. This explains the relatively poorer

performances of rock mixtures.

It is very difficult to compare a separation method with other CASA techniques, because their

approaches are so different in many ways that an optimal tuning of their parameters would be beyond

the scope of this paper. However, we compared our method with Wiener filtering [4], that provides
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optimal masking filters in the frequency domain if true spectrogram is given. So, we assumed that

the other source was completely known. The filters were computed every block of 8 ms (64 samples),

0.5 sec, and 1.0 sec. In this case, our blind results were comparable in SNR with results obtained

when the Wiener filters were computed at 0.5 sec.

4 Discussions

Traditional approaches to signal separation are involved with either spectral techniques [5, 6] or time-

domain nonlinear filtering methods [3, 4]. Spectral techniques assume that sources are disjoint in

the spectrogram, which frequently result in audible distortions of the signal in the regions where the

assumption mismatches. Roweis [5] presented a refiltering technique which estimates λi in Equation 1

as time-varying masking filters that localize sound streams in a spectro-temporal region. In his work

sound sources are supposedly disjoint in the spectrogram and there exists a “mask” that divides

the mixed multiple streams completely. A similar but somewhat different technique is proposed

by Rickard and Balan [6]. They did not try to obtain the “exact” mask but an estimate by ML-

based gradient search. However being based on the strong assumption in the spectral domain, these

methods also suffer from the overlapped spectrogram.

To overcome the limit of the spectral methods, a number of time-domain filtering techniques are

introduced. They are based on splitting the whole signal space into several disjoint and orthogonal

subspaces that suppress overlaps. Several kinds of criteria have been adopted to find such subspaces.

The use of AR (autoregressive) models on the sources has been successful. In Balan et. al. [13] the

source signals are assumed to be AR(p) processes, and they are inferred from a monaural input by

a least square estimation method. Wan and Nelson [3] used AR Kalman filters to enhance the noisy

speech signals, and the filters were obtained from the neural networks trained on the specific noisy

speech. The criteria employed by these methods are mostly based second-order statistics; e.g. least

square estimation [13], minimum mean square estimation [3], and Wiener filtering derived from the

autocorrelation functions [4].

Our method is a time-domain technique but avoids these strong assumptions by utilizing a prior

set of basis functions that captures the inherent statistical structures of the source signal. This

generative model therefore makes use of spectral and temporal structures at the same time. The

constraints are dictated by the ICA algorithm that forces the basis functions to result in an efficient

representation, i.e. the linearly independent source coefficients; and both, the basis functions and

their corresponding pdfs are key to obtaining a faithful MAP based inference algorithm. The major

advantage over the other time-domain filtering techniques is that the ICA filters utilize higher-order

statistics, and there is no longer orthogonality constraint of the subspaces, for the basis functions

obtained by the ICA algorithm are not needed to be orthogonal. An important question is how well

the training data has to match the test data. We have also performed experiments with the set of

basis functions learned from the test sounds and the SNR decreased on average by 1dB.
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The method can be extended to the case when P > 2. We should decompose the whole problem

into P = 2 subproblems, because the algorithm presented in Section 2 is defined only in that case.

One possible example is a sequential extraction of the sources: if there is a basis that characterizes a

generic sound, i.e. which subsumes all kinds of sound sources, then we use this basis and the basis of

the target sound that we are at present interested in extracting. The separation results are expected

to be the target source and the mixture of the rest P − 1 sources. Repeating this extraction P − 1

times yields the final results. Another example is merging bases: if there is a method to merge a

number of bases and we have all the individual bases, we can construct a basis for Q sources and the

other for the rest P −Q sources. Then we can split the mixture into the two submixtures. Likewise

repeating the split yields the final separation. In summary, the case P > 2 can be handled but the

additional research such as building a generic basis or merging different bases is required.

5 Conclusions

We presented a technique for single channel source separation utilizing the time-domain ICA basis

functions. Instead of traditional prior knowledge of the sources, we exploited the statistical struc-

tures of the sources that are inherently captured by the basis and its coefficients from a training set.

The algorithm recovers original sound streams through gradient-ascent adaptation steps pursuing

the maximum likelihood estimate, contraint by the parameters of the basis filters and the general-

ized Gaussian distributions of the filter coefficients. With the separation results, we demonstrated

that the proposed method is applicable to the real world problems such as blind source separation,

denoising, and restoration of corrupted or lost data. Our current research includes the extension of

this framework to perform model comparision to estimate which set of basis functions to use given

a dictionary of basis functions. This is achieved by applying a variational Bayes method to compare

different basis function models to select the most likely source. This method also allows us to cope

with other unknown parameters such the as the number of sources. Future work will address the op-

timization of the learning rules towards real-time processing and the evaluation of this methodology

with speech recognition tasks in noisy environments, such as the AURORA database.
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