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Abstract

We discuss an important property called the asymptotic equipartition property on empirical sequences in reinforcement learning. This

states that the typical set of empirical sequences has probability nearly one, that all elements in the typical set are nearly equi-probable, and

that the number of elements in the typical set is an exponential function of the sum of conditional entropies if the number of time steps is

sufficiently large. The sum is referred to as stochastic complexity. Using the property we elucidate the fact that the return maximization

depends on two factors, the stochastic complexity and a quantity depending on the parameters of environment. Here, the return maximization

means that the best sequences in terms of expected return have probability one. We also examine the sensitivity of stochastic complexity,

which is a qualitative guide in tuning the parameters of action-selection strategy, and show a sufficient condition for return maximization in

probability.
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1. Introduction

In information theory the weak law of large numbers is

known as the asymptotic equipartition property (AEP)

which was first stated in Shannon (1948) and then developed

by the type method in Csiszár (1998) and Csiszár and

Körner (1997). When a sequence of random variables is

drawn many times, independently and according to an

identical probability distribution, the AEP states that there

exists the typical set of the sequences with probability

nearly one, that all elements in the typical set are nearly

equi-probable, and that the number of elements in the

typical set is given by an exponential function of the entropy

of the probability distribution. In addition, the number of

elements in the typical set is quite small compared to the

number of possible sequences. If the AEP also holds on
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empirical sequences generated from a Markov decision

process (MDP) in reinforcement learning (RL), it facilitates

the analysis of the learning process since most of our

attention can be focused on the typical set of the empirical

sequences. This leads us to the question of whether or not

the AEP holds for an empirical sequence. The fact is that a

similar AEP holds but it is more complicated than the

original AEP. Using the type method, first we introduce an

information-theoretic formulation for almost stationary

ergodic MDPs in general and then describe the AEP that

holds on the empirical sequences. From the AEP, we

indicate the existence of an important factor called the

stochastic complexity which consists of the sum of

conditional entropies and elucidate that the return max-

imization is characterized by two factors, the stochastic

complexity and a quantity which depends on the parameters

of environment. Here, the return maximization means that

the probability of best sequences that yield the maximal

expected return goes to probability one. Also, useful

knowledge for tuning the parameters of action-selection

strategy is described by examining the sensitivity of the

stochastic complexity. Furthermore, we show that the

stochastic complexity is derived from the algorithmic
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complexity which was explored by Chaitin (Chaitin, 1977,

1987).

The organization of this paper is as follows. We

introduce some notation and the type of empirical sequence

in Section 2. Section 3 shows the main theorems associated

with the AEP. Using the AEP we analyze the RL process in

Section 4. Finally, we give some conclusions in Section 5.

Appendices A and B are the related theorems to the AEP

and those proofs, respectively.
2. Preliminaries

We concentrate on the discrete-time MDP with discrete

states and actions in this paper. Let SZ
def
fs1; s2;.; sIg be the

finite set of states of the environment, AZ
def
fa1; a2;.; aJg be

the finite set of actions, and R0Z
def
fr1; r2;.; rKg3R be the

finite set of rewards which are discrete real numbers. Notice

that jSjZ I, jAjZJ, and jR0jZK. We assume that

elements in these sets are recognized without error by the

learner, hereinafter called the agent. We denote a time step

by t. The stochastic variables of state, action, and reward at

time step t (tZ1,2,.) are written as s(t), a(t), and r(t),

respectively. The agent improves the policy by observing

one-by-one each element of the empirical sequence that is

generated by the interactions between the agent and the

environment, as shown in Fig. 1.

Now let us consider the empirical sequence of n time

steps,

sð1Þ; að1Þ; sð2Þ; rð2Þ; að2Þ;.; sðnÞ; rðnÞ; aðnÞ; rðn C1Þ:

Let r(nC1)Zr(1) for notational convenience and let xZ
fsðtÞ; aðtÞ; rðtÞgn

tZ1 denote the empirical sequence of n time

steps. The state sequence, action sequence, and reward

sequence of the empirical sequence x2ðS!A!R0Þ
n are

denoted by sZ fsðtÞgn
tZ1, aZ faðtÞgn

tZ1, and rZ frðtÞgn
tZ1,

respectively. We use the term return to express the sum of

rewards.

Let qiZ
def

Prðsð1ÞZsiÞ be the initial probability distri-

bution and qZ
def
fq1; q2;.; qIg where qiO0 for all i. The

empirical sequence is drawn according to an ergodic MDP

specified by the following two conditional probability

distribution matrices. Henceforth, the conditional
Fig. 1. Interactions between the agent and the environment.
probability distribution matrix is simply called the matrix.

The policy matrix which the agent determines is an I!J

matrix defined by

Gp Z
def

p11 p12 / p1J

p21 p22 / p2J

« « 1 «

pI1 pI2 / pIJ

0
BBB@

1
CCCAZ

Pð1Þ

Pð2Þ

«

PðIÞ

0
BBBB@

1
CCCCA; (1)

where pijZ
def

PrðaðtÞZajjsðtÞZsiÞ. According to this matrix,

the agent selects an action in a state at each time step. Note

that Gp is actually time-varying because the agent improves

the policy in the process of RL. However, Gp tends to be

constant as the policy goes to be optimal by the learning.

The state transition matrix of the environment is an IJ!IK

matrix defined by

GT Z
def

p1111 p1112 . p11IK

p1211 p1212 . p12IK

« « 1 «

pIJ11 pIJ12 . pIJIK

0
BBB@

1
CCCAZ

Pð11Þ

Pð12Þ

«

PðIJÞ

0
BBBB@

1
CCCCA; (2)

where

piji0kZ
def

PrðsðtC1ÞZsi0 ; rðtC1ÞZrkjsðtÞZsi; aðtÞZajÞ.

The agent does not know the matrix GT of the environment

but can estimate it by observing the results for an action. We

assume that GT is constant and that for simplicity of analysis

Gp is temporarily fixed for n time steps where n is

sufficiently large. For notational simplicity we define

GZ
def
ðGp;GTÞ. Since MDPs are characterized by the finite

sets, the initial probability distribution, and the matrices, we

denote the MDP by MðS;A;R0;q;GÞ.
2.1. Type of empirical sequence

Let ni (ni%n) denote the number of times that a

state si 2S occurs in the empirical sequence of n time

steps, xZ ðs; a; rÞ2ðS!A!R0Þ
n. In a similar manner,

let nij (nij%ni) be the number of occurrences of t

such that ðsðtÞ; aðtÞÞZ ðsi; ajÞ2S!A in the empirical

sequence. With an additional ‘cyclic’ convention that s(n),

a(n), and r(nC1)Zr(1) precede s(1), a(1), and r(2), let

niji 0k (niji 0k%nij) denote the number of occurrences of t

such that ðsðtÞ; aðtÞ; sðtC1Þ; rðtC1ÞÞZ ðsi; aj; si0 ; rkÞ2S!
A!S!R0 in the empirical sequence. Note that the

cyclic convention is for simplicity of development. The

discussions in this paper strictly hold even if we do not

assume this convention. The relationship among the non-

negative numbers n, ni, nij, and niji 0k is expressed as

n Z
XI

iZ1

ni Z
XI

iZ1

XJ

jZ1

nij Z
XI

iZ1

XJ

jZ1

XI

i0Z1

XK

kZ1

niji0k: (3)



Fig. 2. Structure of the F-shell.

1 For Markov type, see Davisson, Longo, and Sgarro (1981).
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Now we define the type of si 2S by

fi Z
ni

n
: (4)

The type is generally called the empirical distribution

(Han and Kobayashi, 2002, p. 42) because we can regard

each sequence as a sample from a stochastic process.

Also, the joint-type of ðsi; ajÞ2S!A is defined as

fij Z
nij

n
: (5)

Let us denote all the types and the joint-types by

FS Z
def
ðf1; f2;.; fIÞ; (6)

and

FSA Z
def

f11 f12 . f1J

f21 f22 . f2J

« « 1 «

fI1 fI2 . fIJ

0
BBBB@

1
CCCCA; (7)

respectively. In this case we say that the state sequence s
and the state-action sequence (s, a) have the type FS and

the joint-type FSA, respectively.

Conditional type relative to policy. If niO0 for all i, then

the conditional type gij of ðsi; ajÞ2S!A given a state

sequence s2Sn is defined as

nij Z
def

gijni: (8)

However, if there exists i such that niZ0, then we cannot

uniquely determine the conditional type (see Example 2.1).

To avoid such a case, we consider the set of action

sequences given any state sequence s having the type FS and

an I!J matrix Fp : S/A expressed as

Fp Z
def

g11 g12 . g1J

g21 g22 . g2J

« « 1 «

gI1 gI2 . gIJ

0
BBB@

1
CCCAZ

Gð1Þ

Gð2Þ

«

GðIÞ

0
BBBB@

1
CCCCA: (9)

In short, nij is decided by ni and gij for every i and j. The

set of action sequences, which is uniquely determined in this

way, is referred to as Fp-shell (Csiszár and Körner, 1997,

p. 31) of s and denoted by CnðFp; sÞ. The entire set of

possible matrices Fp for any state sequence with the type

FS is simply written as Lp
n .

Example 2.1. Let IZJZ2, the state sequence

sZ ðs1; s1; s1; s1Þ2S4, and the action sequence aZ ða1; a1;

a2; a2Þ2A4. Then, from the definition of (8) we obtain

g11Zg12Z1/2. Also, because of n2Z0, letting g21Zu

where 0%u%1 we have g21Zu and g22Z1Ku. Therefore,

we cannot uniquely determine the conditional type.

Example 2.2 (Fp-shell). Let IZJZ2, again. For the

state sequence sZ ðs1; s1; s1; s2Þ2S4 with the type FS Z
ð3=4; 1=4Þ and the matrix,

Fp Z
g11 g12

g21 g22

� 	
Z

2=3 1=3

0 1

 !
; (10)

the Fp-shell of s is C4ðFp; sÞZ fða1; a1; a2; a2Þ; ða1; a2;

a1; a2Þ; ða2; a1; a1; a2Þg.

Conditional Markov type relative to state transition. In a

slightly different manner we need to deal with the

conditional Markov type1. We consider the set of state-

reward sequences such that the joint-type is FSA given any

action sequence and an IJ!IK matrix: FT : S!A/S!
R0 designated by

FT Z
def

g1111 g1112 . g11IK

g1211 g1212 . g12IK

« « 1 «

gIJ11 gIJ12 . gIJIK

0
BBB@

1
CCCAZ

Gð11Þ

Gð12Þ

«

GðIJÞ

0
BBBB@

1
CCCCA: (11)

The set of state-reward sequences is referred to as FT-

shell and denoted by CnðFT;FSAÞ. The entire set of possible

matrices FT such that the joint type is FSA for any action

sequence is simply written as LT
n .

For simplicity, we define FZdef
ðFp;FTÞ and

LnZdef
Lp

n !LT
n . The set of empirical sequences that

consists of the Fp-shell and FT-shell is called the F-shell

and denoted by CnðF;FS;FSAÞ. The structure of the F-

shell is depicted in Fig. 2. When a joint-type FSA and a

matrix FT are given, the FT-shell having the type FS is

uniquely determined and then the combination of each

element in the FT-shell and a matrix Fp produces the Fp-

shell. Therefore, the F-shell is uniquely determined. Notice

that

jCnðF;FS;FSAÞj Z
X

ðs0;r0Þ2CnðFT;FSAÞ

jCnðFp; s0Þj: (12)

In this case we write that the empirical sequence has the

conditional type matrix F.
2.2. V-typical and W-typical sequences

In order to prove the AEP on empirical sequences, we

have to introduce the V-typical sequence with respect to



Fig. 3. G-typical set and G-typical sequence.
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the state sequences and the W-typical sequences with

respect to the state-action sequences.

Definition 2.1 (V-typical and W-typical sequences). We

assume the existence of the following two unique stationary

probability distributions,

V Z
def
ðv1; v2;.; vIÞ; (13)

W Z
def

w11 w12 . w1J

w21 w22 . w2J

« « 1 «

wI1 wI2 . wIJ

0
BBB@

1
CCCA; (14)

and assume that FS and FSA tend to V and W as n/N,

respectively. The stationary probability distributions are

uniquely determined by the MDP, MðS;A;R0;q;GÞ. In this

case, there exists a sequence of positive kn such that kn/N
as n/N, and if the type FS of a state sequence s2Sn

satisfies

DðFSjjVÞ Z
XI

iZ1

filog
fi
vi

%kn; (15)

then we call the state sequence a V-typical sequence. The set

of V-typical sequences is denoted by

Cn
kn
ðVÞZdef

fs2SnjDðFSjjVÞ%kng. In a similar manner,

there exists a sequence of positive xn such that xn/0 as

n/N, and if

DðFSAjjWÞ Z
XI

iZ1

XJ

jZ1

fijlog
fij

wij

%xn (16)

holds, then the state-action sequences ðs; aÞ2ðS!AÞn

are referred to as W-typical sequences. We define the set of

W-typical sequences as Cn
xn
ðWÞZdef

fðs; aÞ2ðS!AÞn

jDðFSAjjWÞ%xng.

In the rest of this section, we will introduce a few basic

conventions in information theory (Cover and Thomas,

1991, Chapter 2). Let us use the convention that 0 log 0Z0

henceforth. The function H indicates the entropy. For

instance, we write the entropy of P(i) in (1) for any i as

HðPðiÞÞ ZK
XJ

jZ1

pijlog pij; (17)

and describe its conditional entropy given V as

HðGpjVÞ Z
XI

iZ1

viHðPðiÞÞ: (18)

Also, as used in (15) and (16), the divergence is

designated by the function D. The divergence between Fp

and Gp given FS is denoted as

DðFpjjGpjFSÞ Z
XI

iZ1

fiDðGðiÞjjPðiÞÞ; (19)
where

DðGðiÞjjPðiÞÞ Z
XJ

jZ1

gijlog
gij

pij

: (20)
3. Asymptotic equipartition property

In this section, it is elucidated that the empirical

sequences generated from almost stationary ergodic MDPs

have the AEP. Now we are in a position to give the

definitions of the typical sequence and the typical set of

empirical sequences, which will lead us to show that the

AEP holds on empirical sequences.

Definition 3.1 (G-typical sequence and G-typical set). If

the matrix F2Ln of the conditional types with respect to

an empirical sequence xZ ðs; a; rÞ2ðS!A!R0Þ
n

satisfies

DðFpjjGpjFSÞCDðFTjjGTjFSAÞ%ln; (21)

for any matrix G and positive number ln, then the empirical

sequence is called a G-typical sequence. The set of such

empirical sequences is also called the G-typical set and

denoted by Cn
ln
ðGÞ. That is, Cn

ln
ðGÞ is given by

Cn
ln
ðGÞZ

def
g

DðFpjjGpjFSÞCDðFTjjGTjFSAÞ%ln

F2Ln :
CnðF;FS;FSAÞ: (22)

Fig. 3 illustrates the concept of Definition 3.1. The matrix

F of the G-typical sequence exists in the neighborhood

of G, shown by the shaded circle on the manifold spanned

by G.

From the theorems, presented in Appendix A, we can

derive the following three theorems regarding the AEP on

empirical sequences. We begin with the theorem similar to

Wolfowitz (1978).

Theorem 3.1 (Probability of the G-typical set). If ln/0

as n/N and ln satisfies

ln K
ðIJ C I2JKÞlogðn C1ÞC log I K log n

n
O0; (23)
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where

n Z
def

min
1%i;i0%I;1%j%J;1%k%K:piji0kO0

piji0k; (24)

there exists a sequence {3n(I, J, K, ln)} such that 3n(I, J, K,

ln)/0 and then

PrðCn
ln
ðGÞÞ Z 1 K3nðI; J;K; lnÞ: (25)

Note that nln/N because of Eq. (23). The proof is

given in Appendix B.4. This theorem implies that the

probability of the G-typical set asymptotically goes to one

independently of the underlying probabilistic structures, Gp

and GT. Next, the following theorem indicates the fact that

all elements in the G-typical set are nearly equi-probable.

Theorem 3.2 (equi-probability of the G-typical sequence)
. If s2Cn

kn
ðVÞ, ðs; aÞ2Cn

xn
ðWÞ, x2Cn

ln
ðGÞ such that kn/0,

xn/0, ln/0, as n/N, then there exists a sequence

{rn(I, J, K, kn, xn, ln)} such that

rnðI; J;K; kn; xn; lnÞ/0:

Then,

log n

n
Krn%K

1

n
log PrðxÞK fHðGpjVÞ

CHðGTjWÞg%K
log m

n
Cln Crn; (26)

where n is given in (24) and

m Z
def

min
1%i%I:qiO0

qi: (27)

This theorem is proved in Appendix B.5. Finally, we

present the theorem which implies that the number of

elements in the G-typical set is written as an exponential

function of the sum of the conditional entropies.

Theorem 3.3 (Bound of the number of the

G-typicalsequences). If s2Cn
kn
ðVÞ, ðs; aÞ2Cn

xn
ðWÞ, x2

Cn
ln
ðGÞ such that kn/0, xn/0, ln/0, as n/N, then there

exist two sequences, {(zn(I, J, K, kn, xn, ln)} and {hn(I, J, K,

kn, xn, ln)}, such that

znðI; J;K; kn; xn; lnÞ/0; hnðI; J;K; kn; xn; lnÞ/0;

respectively. Then, the number of elements in the G-typical

set is bounded by

exp½nfHðGpjVÞCHðGTjWÞKzng�% jCn
ln
ðGÞj

%exp½nfHðGpjVÞCHðGTjWÞChng�: (28)

The proof is given in Appendix B.6. The ratio of the

number of G-typical sequences to that of all empirical

sequences x2ðS!A!R0Þ
n of n time steps is

jCn
ln
ðGÞj

ðIJKÞn
%exp½nfHðGpjVÞCHðGTjWÞChn

K log I K log J K log Kg�/0; (29)
as n/N, when the probability distributions of Gp and GT

are not uniform distributions, that is,

HðGpjVÞ! log I; (30)

HðGTjWÞ! log J C log K: (31)

Hence, we can say that the G-typical set is quite small in

comparison to the set of all empirical sequences. None-

theless, their existence is important enough because the total

probability is almost one.

Remark 3.1. The equation (28) shows

jCn
ln
ðGÞj _Zexp½nfHðGpjVÞCHðGTjWÞg�; (32)

where the notation _Z indicates that both sides are equal to

the first order in the exponent, namely,

lim
n/N

1

n
logjCn

ln
ðGÞj

Z lim
n/N

1

n
log exp½nfHðGpjVÞCHðGTjWÞg�; (33)

(Cover and Thomas, 1991, p. 55).
4. The role of stochastic complexity in reinforcement

learning

The agent learns the optimal policy via return max-

imization (RM) in RL. A number of studies have been made

on the analysis of the process of RM (Jaakkola, Jordan, and

Singh, 1994; Kushner and Yin, 1997; Singh, Jaakkola,

Littman, and Szepesvári, 2000), but most of the studies

focus on concrete stochastic approximation methods such as

temporal difference (TD) learning. The aim here is to

explore a more general mechanism of RM, how the

probability of the subset of best sequences in terms of

expected return is maximized, from a viewpoint of

Shannon’s ideas. In this section, we state the existence

of an important factor called the stochastic complexity and

show new insights about the role of the stochastic

complexity in RM. We also discuss a sensitivity helpful in

tuning the parameters of action-selection (AS) strategy and

exhibit a sufficient condition for RM. We first give a review

of the TD learning and typical AS strategies.

4.1. Temporal difference learning and action

selection strategy

Let Qij denote the estimate of an action-value function

(Sutton and Barto, 1998, Chapter 3) with respect to a state-

action pair ðsi; ajÞ2S!A. Let Ai be the set of indices of

actions available in a state si 2S. The TD learning is an

iterative approximation method to directly update the

estimate of the action-value function from an observed

event, without explicitly treating the matrix GT of



Fig. 4. Matrix G on the information manifold. (a) illustrates the trajectory,

drawn by updating the estimates of the action-value function using TD

methods. (b) shows the changes of ln with n.
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the environment. We introduce the one-step version of

Q-learning (Watkins and Dayan, 1992), here. At each time

step t, for an observed one-step event ðsðtÞ; aðtÞ; sðtC1Þ;

rðtC1ÞÞZ ðsi; aj; si0 ; rkÞ, the estimate Qij is updated by

Qij)Qij CatdQiji0 ; (34)

where at is a learning rate at time step t and

dQiji0 Z rk Cg max
j02Ai0

Qi0j0 KQij; (35)

where g denotes the discount factor that controls the relative

importance of an immediate reward and delayed rewards.

The learning rate at, where 0%at%1, is gradually decreased

with respect to t such that the trajectory of the mean ordinary

differential equation of Qij has a limit point. Under certain

conditions (Dayan, 1992), it was proved that all Qij

converge to the expected values with probability one. The

convergence theorem was extended to more general

versions using the stochastic approximation method in

Jaakkola et al. (1994) and Tsitsiklis (1994).

Next, we review the following two AS strategies that

have been employed in many cases.

4.1.1. Softmax method

The softmax method (Sutton and Barto, 1998, Chapter 2)

is the most popular strategy and is also termed the

Boltzmann method when the exponential function is used.

Recall that pij denotes the probability that the agent chooses

an action aj in a state si. The policy probability is defined as

pij Z
def

pðb;QijÞ Z
expðbQijÞ

ZiðbÞ
; (36)

where the partition function is

ZiðbÞZ
def
X
j02Ai

expðbQij0 Þ: (37)

The parameter b is gradually increased as n/N to

promote the acceptance of actions which may produce a

good return. Let us denote the value of b at time step n by bn.

4.1.2. e-greedy method

In the e-greedy method (Sutton and Barto, 1998,

Chapter 2), with probability e, the agent randomly chooses

an action from the possible ones. On the other hand, the

agent chooses the best action with the largest estimated

value with probability 1Ke. That is, pij is given by

pij Z
def

pðe;QijÞ Z
e

Ji

C ð1 KeÞqij; (38)

where JiZ
def

jAij and

qij Z
def 1 if j Z arg maxj02Ai

Qij0

0 if jsarg maxj02Ai
Qij0

:

(
(39)

The parameter e is gradually decreased such that e/0 as

n/N. We denote the value of e at time step n by en.
Whether the softmax AS or the e-greedy AS is better is

unclear and it may depend on the task and on human factors

(Sutton and Barto, 1998, p. 31). Added to this, the explicit

role of the parameters b and e is also unknown. In the rest of

this section, we elucidate the mathematical role of the

parameters and the difference between the two strategies by

studying their effect in RM.
4.2. Stochastic complexity

We assume that the policy is improved sufficiently

slowly such that the AEP holds. Fig. 4 illustrates an RL

process on the manifold spanned by G. This manifold is

called the information manifold (IM) (Amari and Han,

1989). Fuller explanation about the figure will be described

in the following section. We use Q*
ij to denote the expected

value of Qij for all i,j, henceforth. Let p*
ij Zpðb;Q*

ijÞ in the

softmax method and p*
ij Zpð3;Q*

ijÞ in the e-greedy method.

Let Gp*
be the policy matrix whose components are given

by p*
ij . We define G*Z

def
ðGp*

;GTÞ and write the set of G* as

UZ
def
fGjGpZGp*

g for notational convenience. The set U is

given by changing the parameter of AS strategy, such as b

and e. The optimal policy matrix is denoted by Gp†

whose
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components are

p†
ij Z

1 if j Z arg maxj02Ai
Q*

ij0

0 if jsarg maxj02Ai
Q*

ij0

:

(
(40)

For example, in the softmax method we can write it as

Gp†

Z fp†
ij ZpðN;Q*

ijÞg, and in the e-greedy method we can

also write it as Gp†

Z fp†
ij Zpð0;Q*

ijÞg. Also, we define

G†Z
def
ðGp†

;GTÞ. Fig. 5 shows U in each method. As shown in

Fig. 5(a) and (b) the set of matrices F such that (21) holds,

designated by the shaded circle, depends on n but not on b or

e. Note that the number of elements in Cn
ln
ðGÞ depends on b

or e because the parameter affects the value of H(GpjV),

while the set of such matrices does not depend. We assume

that the neighborhood of the optimal matrix on the IM is

smooth (differentiable) for the parameters of the AS

strategy, such as b and e.
Fig. 5. Set U in the softmax and 3-greedy methods. The matrix Gp* varies

with the changes of the parameter of the AS strategy, so that the set U is

drawn as shown here.
According to Lemma A.1, the number of possible

conditional type matrices on the IM is determined by n, I,

J, and K. As n increases we can create empirical sequences

with arbitrarily close conditional type matrices to G*. If the

environment, or specifically, the state transition matrix GT is

constant, G varies only with the changes of Gp. Hence the

area of possible F on the IM is actually restricted. Now we

define a stochastic complexity that will play an important

role in the later discussion.

Definition 4.1 (Stochastic complexity). The stochastic

complexity (SC) is defined by

jðGÞZ
def

HðGpjVÞCHðGTjWÞ: (41)

This is referred to as complexity because the value of j(G)

is closely related to the algorithmic complexity as will be

discussed in Section 4.4.

To understand the role of the SC in RL, it is worth to

mention that the SC has a relationship to exploration (or

exploitation) (Sutton and Barto, 1998, Chapter 2) in some

cases. In short, the SC expresses the randomness of the

agent’s policy. Exploration is, in general, to search for

policies better than the current one, instead of the simple

randomness. One efficient way for such exploratory search

is to give a randomness to the policy as is done in the

softmax and e-greedy methods. In this case, a policy for

exploration is to enlarge the set of possible empirical

sequences, that is, the G-typical set in order to widely

explore the environment. This is because the G-typical set

has probability almost one according to Theorem 3.1. On

the other hand, using estimates of the action-value function

the agent has to select the best action with the largest

estimate of the action-value function to maximize the future

return. Such a policy for exploitation is to make the G-

typical set smaller, so that only few empirical sequences

which yield high return are allowed to be generated in

practice. Thus, when the agent performs randomized

exploration in AS strategy, if the value of j(G) is large,

then the policy is exploratory, and analogously if the value

is small, then the policy is exploitative. Of course, since the

SC does not assess the rewards of empirical sequence, we

have to consider both the SC and the rewards when we argue

the original sense of exploration in RL. In Iwata, Ikeda, and

Sakai, (2004) the estimated entropy (like the SC) of return

with respect to each state-action was formulated and a novel

criterion for AS strategy was proposed by combining the

estimated entropy with the estimates of the action-value

function.
4.3. Stochastic complexity and return maximization

We will show the relationship between the SC and RM in

RL. We use the term RM to maximize the probability that

the best sequences appear, but does not mean a lucky case in

which the best sequences appear unexpectedly.
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Definition 4.2 (Return maximization). We denote a proper

subset of best sequences by

c†
n Z

def
fx2ðS!A!R0Þ

njFp Z Gp†

where Fp 2Lp
n g:

(42)

Then, RM means that the subset of best sequences

asymptotically has probability one, that is, Cn
ln
ðGÞZc†

n as

n/N.

The following theorem states that RM can be performed

under a proper AS strategy so that the estimates of the value

function eventually converge to the expected values.

Theorem 4.1 (RM near the end of process). If the agent’s

policy tends to be optimal, then c†
n 3Cn

ln
ðGÞ holds and the

probability Prðc†
nÞ of RM satisfies

Prðc†
nÞ/

jc†
nj

jCn
ln
ðGÞj

; (43)

for sufficient large n. Then, as n/N and G/G†,

Prðc†
nÞ/1.

The proof is given in Appendix B.7.

Hence, we consider that c†
n 3Cn

ln
ðGÞ and then reduce the

G-typical set such that Cn
ln
ðGÞxc†

n as n/N. Here the key

points are that

† by updating the estimates the agent has to improve the

policy matrix Gp as quickly as possible such that the G-

typical set includes the empirical sequence having the

conditional type matrix Gp*
, that is,

DðGp*

jjGpjFSÞ%ln; (44)

(see Fig. 4(a)), and then

† the agent is required to shut out empirical sequences

except the best sequences from the G-typical set in

order to assign high probability to the best sequences

(see Fig. 4(b)).

The algorithm for the former is simply TD learning.

Fig. 4(a) illustrates that G on the IM is refined by a TD

learning such that the G-typical set includes the empirical

sequences having the matrix G* of the conditional types,

that is, (44) holds. It is known that the convergence order of

TD learning is at most 1=
ffiffiffi
n

p
(Kushner and Yin, 1997). After

satisfying (44) the agent has to allot higher probability to the

G-typical set. The goal of the latter is to make the number of

elements in the G-typical set small while satisfying (44).

This leads to the result that the subset of the best sequences

occurs with high probability because according to Theorem

3.2 all the G-typical sequences of n time steps have the same

probability for sufficiently large n. From Theorem 3.3 we

see that the number of elements in the G-typical set is

dependent on the SC j(G) and the quantity ln, and that the

smaller each value is, the smaller the number of elements.

Recall that by tuning the parameters of the AS strategy
the agent can control only the SC. This leads us to the

question of how sensitive the parameters such as b and e are

for controlling the SC. The following theorems answer this

question.

Theorem 4.2 (Relationship between b and SC). The value

of j(G) decreases as b increases. The derivative of j(G)

with respect to b is

djðGÞ

db
Z
XI

iZ1

vi

Kb

2ðZiðbÞÞ
2

XJ

jZ1

XJ

j0Z1

ðQij KQij0 Þ
2

8<
:

!expðbðQij CQij0 ÞÞ

9=
;: (45)

In particular, if b/N, then

jðGÞ/HðGTjWÞ: (46)

Theorem 4.3 (Relationship between e and SC). The value

of j(G) decreases as e/0. The derivative of j(G) with

respect to e is

K
djðGÞ

de
Z
XI

iZ1

vi 1 K
1

Ji

� 	�

! log
e

Ji

�
K log

e

Ji

C1 Ke

� 		�
: ð47Þ

In particular, if e/0, then j(G) coincides with (46).

Theorems 4.2 and 4.3 are proved in Appendices B.8 and

B.9, respectively. The equations (45) and (47) denote the

sensitivity for the randomness of the policy. The main

difference between the two methods is that the estimates of

the action-value function affect the derivative of the SC

directly in the softmax method but not in the e-greedy

method. Theorems 4.2 and 4.3 draw an attention to the

important dependence, often overlooked in tuning the

parameter. In general, it is difficult to tune b and e well

and the tuning forms depend only on n in the literatures. For

example, bnZcn or enZc=n is adopted and then c is

optimized by trial-and-errors, although the result of the

tuning strongly depends on the values of vi, Qij, and Ji for

every i and j, as explicitly shown in Theorems 4.2 and 4.3. In

other words, one of the causes of the difficulty is that the

sensitivity cannot be considered on the above tuning. In fact,

since all the values of Qij and Ji are available for the agent

and all the value of vi can be approximated by the values of

the type, the agent can calculate the sensitivity asymptoti-

cally. Accordingly, the sensitivity may be a guide for tuning

the parameters appropriately. The importance of knowing

the sensitivity has been also pointed out in Dearden,

Friedman, and Russell, (1998), first.

Example 4.1 (A guide of RM). The sensitivity is not

something like a quantitative criterion to be directly used by

itself in practical issues because of its generality. However,
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it can be used as a qualitative guide in choosing a tuning

which depends on each case. Here, we calculate the

sensitivity approximately to gain an insight into the RM

speed. Let c be an arbitrary constant value. When we choose

enZc=n, there exists a non-negative value c 0 such that

K
djðGÞ

de
ZK

XI

iZ1

vi 1 K
1

Ji

� 	
log

Ji

c
n C1 KJi

� 	� �

zKc0log n;

(48)

where n is sufficiently large. The value of c 0 can be

computed by ffi; Jig
I
iZ1. Due to jCn

ln
ðGÞjzexpðnjðGÞÞ for

sufficient large n,

K
d

d3

1

jCn
ln
ðGÞj

Z
n

jCn
ln
ðGÞj

djðGÞ

de
zc00

nlog n

expðnj Gð ÞÞ
; (49)

where c 00 is a non-negative value which depends on j(G)

and c 0. This is a qualitative guide for checking the RM

speed, dPrðcnÞ=d3, near the optimal policy because from

Theorem 4.1

PrðX†Þ/
jX†

x j

jCn
ln
ðGÞj

; (50)

for sufficient large n. Thus, we can estimate the RM speed

near the end of learning process and can select a tuning

referring to it. If we think that the estimated speed is too fast

for a given environment, choose more slower tuning such as

enZc=log n. Of course, this is a rough utility but have an

interesting potential by combining it with other criteria. In

the case of the softmax method, similarly, when bZcn, there

exists a non-negative value c 0 such that

djðGÞ

db
zKc0cn; (51)

where n is sufficiently large. Then, we have

d

db

1

jCn
ln
ðGÞj

zc00
ncn

expðnj Gð ÞÞ
; (52)

for sufficient large n.

Next, we consider another important factor ln for

making the number of elements in the G-typical set

smaller. Fig. 4(b) shows the changes of ln with n where

the lower bound of ln is given by (23). There may be a

tighter bound in various situations such that MDPs have a

deterministic rule because the bound was derived under

the condition that G has no constraint. In other words,

the bound means a sufficient condition for RM. Hence, the

first order of the bound is tightest and valid only when the

agent takes ‘randomized’ AS strategies2 such that pijO0

for every i and j in the environments where piji 0kO0 for
2 For example, the softmax and e-greedy methods with the parameters

b!N and eO0, respectively.
every i, j, i 0 and k. In such cases, the bound suggests that

the convergence rate of D FnkG
� �

going to zero is at most

log n
� �

=n and its coefficient is (IJCI2JK). The conver-

gence rate indicates how fast the policy reflects on the

structure of empirical sequence. The coefficient also

implies that in applications a lot of time steps are

required for agreement between the current matrix G and

the matrix F of the conditional types regarding the

empirical sequence when the state, action, and reward sets

are large.
4.4. Stochastic complexity and Kolmogorov complexity

In this section we show the relationship between the SC

and the Kolmogorov complexity (KC) (Cover and Thomas,

1991; Li and Vitányi, 1997). The SC is also reasonable from

the point of view of algorithmic complexity. Let l(x) denote

the length of the sequence x. Let UðqÞ be the output of a

universal computer U when presented with a program q.

The KC of a sequence x is defined as the minimal

description length of q (Cover and Thomas, 1991,

pp. 147–148).

Definition 4.3 (KC and conditional KC). The KC KUðxÞ of

a sequence x with respect to a universal computer U is

defined as

KUðxÞZ
def

min
q:UðqÞZx

lðqÞ; (53)

the minimum length over all programs that print x and halt.

If we assume that the computer already knows the length of

the sequence, then we can define the conditional KC

knowing l(x) as

KUðxjlðxÞÞZ
def

min
q:Uðq;lðxÞÞZx

lðqÞ: (54)

This is the shortest possible description length if the length

of x is made available to the computer U.

Since the length l(x) of an empirical sequence x2ðS!
A!R0Þ

n is 3n, consider

KUðxj3nÞ Z min
q:Uðq;3nÞZx

lðqÞ: (55)

Note that KUðxj3nÞ denotes the algorithmic complexity to

print x and halt. The following theorem shows that the

expected value of KUðxj3nÞ is asymptotically equal to the

SC.

Theorem 4.4 (Relationship between KC and SC). If

s2Cn
kn
ðVÞ, ðs; aÞ2Cn

xn
ðWÞ, and x2Cn

ln
ðGÞ, then there

exists a constant value c such that

log n

n
Krn%

1

n
EG½KUðxj3nÞ�KjðGÞ%rn C

log I

n

C ðIJ C I2JKÞ
log ðn C1Þ

n
C

c

n
; (56)
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for a computer U and all n. In particular, if G/G* as

n/N, then

lim
n/N

1

n
EG* ½KUðxj3nÞ� Z jðG*Þ: (57)

The proof is given in Appendix B.10. The SC is so called

because of this relationship.
5. Conclusions

In this paper, we have formulated almost stationary

ergodic MDPs by the type method and shown that the AEP

holds on empirical sequences in such processes. Under a

proper AS strategy which guarantees the convergence of the

estimates, the RM is characterized by the SC j(G) and the

quantity ln. We examined the role of these factors on RM

and then derived the sensitivity of the SC, which is a

qualitative guide in tuning the parameters of AS strategy.

Also, we showed the bound of the convergence speed of the

empirical sequences tending to the best sequence in the

worst cases. Using the results of Merhav (1991) and Merhav

and Neuhoff (1992) the discussions in this paper can be

readily extend to the more general case where the source of

empirical sequences is a unifilar source (Han and

Kobayashi, 2002, p. 77) in a similar manner.
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Appendix A. Related theorems

We will show a number of theorems related to the AEP.

Obviously, from (Csiszár and Körner, 1997, Lemma 2.2) we

obtain the following lemma which plays a major role in

determining the AEP.

Lemma A.1 (Number of elements in the set of possible F)

. The size of Lp
n is upper bounded by

jLp
n j% ðn C1ÞIJ : (A1)

Analogously,

jLT
n j% ðn C1ÞI

2JK : (A2)

Accordingly, the number of elements in the set of possible

F is upper bounded at most by a polynomial order of n,
that is,

jLnj% ðn C1ÞIJCI2JK : (A3)

The following lemma states the fact that the discrepancy

between the empirical entropy and the entropy asymptoti-

cally goes to zero.

Lemma A.2. Let F2Ln denote the matrix of the

conditional types with respect to the empirical sequence

which satisfies s2Cn
kn
ðVÞ, ðs; aÞ2Cn

xn
ðWÞ, and x2Cn

ln
ðGÞ.

Then, if ln%1/8, we obtain

jHðFpjFSÞKHðGpjVÞj%
ffiffiffiffiffiffiffi
2kn

p
log J K

ffiffiffiffiffiffiffi
2ln

p
log

ffiffiffiffiffiffiffi
2ln

p

IJ
;

(A4)

jHðFTjFSAÞKHðGTjWÞj%
ffiffiffiffiffiffiffi
2xn

p
log I

C
ffiffiffiffiffiffiffi
2xn

p
log K K

ffiffiffiffiffiffiffi
2ln

p
log

ffiffiffiffiffiffiffi
2ln

p

I2JK
: (A5)

For the proof of this lemma, see Appendix B.1.

Now we show that the number of sequences with the

same conditional type matrix increases exponentially for n.

Theorem A.1 (Bound of jCnðF;FS;FSAÞj). For every state

sequence s2Sn with the type FS and matrix Fp : S/A

such that CnðFp; sÞ is not empty,

expfnHðFpjFSÞg

ðn C1ÞIJ
% jCnðFp; sÞj%expfnHðFpjFSÞg: (A6)

Also, for every action sequence a2An and matrix FT :
S!A/S!R0 such that CnðFT;FSAÞ is not empty and

the joint-type is FSA,

expfnHðFTjFSAÞg

nIJðn C1ÞI
2JK

% jCnðFT;FSAÞj% IexpfnHðFTjFSAÞg:

(A7)

Therefore, for every x2ðS!A!R0Þ
n with the type FS

and the joint-type FSA and for the matrix F,

exp½nfHðFpjFSÞCHðFTjFSAÞg�

nIJðn C1ÞIJCI2JK
% jCnðF;FS;FSAÞj

% Iexp½nfHðFpjFSÞCHðFTjFSAÞg�: ðA8)

The proof is given in Appendix B.2. There also exist the

following bounds on the probability of the F-shell.

Theorem A.2 (Bound on probability of CnðF;FS;FSAÞ).
For every matrix F such that CnðF;FS;FSAÞ is not empty,

PrðCnðF;FS;FSAÞÞ is bounded by

mexp½KnfDðFpjjGpjFSÞCCDðFTjjGTjFSAÞg�

nIJðn C1ÞIJCI2JK

%PrðCnðF;FS;FSAÞÞ%nK1Iexp½KnfDðFpjjGpjFSÞ

CDðFTjjGTjFSAÞg�; ðA9)
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where n and m are defined by (24) and (27),

respectively.

The proof is given in Appendix B.3. This theorem

implies that empirical sequences with conditional type

matrix F far from G are not likely to be generated

in practice. The term ‘far’ here means that the

divergence between F and G is large. We have

mentioned the theorems to be used in the proofs of

Theorem 3.1–3.3.
Appendix B. Proofs
Appendix B.1. Proof of Lemma A.2

From Kullback (1967), if s2Cn
kn
ðVÞ, then

XI

iZ1

jfi Kvij%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðFSjjVÞ

p
: (B1)

Hence, by H Pi

� �
% log J and (15),

jHðGpjFSÞKHðGpjVÞjZ
XI

iZ1

ðfi KviÞHðPðiÞÞ

�����
�����%

ffiffiffiffiffiffiffi
2kn

p
log J

(B2)

is satisfied. In the same way as Csiszár and Körner (1997),

Lemma 2.7, if ln%1/8, then

jHðFpjFSÞKHðGpjFSÞj

Z jHðFp;FSÞKHðGp;FSÞj%K
ffiffiffiffiffiffiffi
2ln

p
log

ffiffiffiffiffiffiffi
2ln

p

IJ
: (B3)

From

jHðFpjFSÞKHðGpjVÞj% jHðFpjFSÞKHðGpjFSÞj

C jHðGpjFSÞKHðGpjVÞj; (B4)

we have (A4). The equation (A5) can be derived

similarly.
Appendix B.2. Proof of Theorem A.1

First, we define

jCni ðGp
ðiÞÞjZ

def ni!QJ
jZ1 nij!

: (B5)

Since the actions given by si have the type G(i), from Dueck

and Körner (1979) we have

expfniHðGðiÞÞg

ðni C1ÞJ
% jCniðGp

ðiÞÞj%expfniHðGðiÞÞg: (B6)
By jCnðFp; sÞjZ
QI

iZ1 jC
ni ðGðiÞÞj, jC

nðFp; sÞj is bounded by

expfnHðFpjFSÞgQI
iZ1ðni C1ÞJ

% jCnðFp; sÞj%expfnHðFpjFSÞg: (B7)

Therefore, by
QI

iZ1ðniC1ÞJ % ðnC1ÞIJ we obtain (A6).

The proof of (A7) is different from the above proof

because CnðFT;FSAÞ is not only dependent on FSA but also

on the initial state s(1) because of Markov property. So for

any i and j we define

j ~C
nij ðGðijÞÞjZ

def nij!QI
i0Z1

QK
kZ1 niji0k!

: (B8)

By following along the same lines as the proof of (A6)

above, we have

expfnHðFTjFSAÞg

ðn C1ÞI
2JK

% j ~C
n
ðFT;FSAÞj%expfnHðFTjFSAÞg:

(B9)

The set ~C
n
ðFT;FSAÞ allows a unique reconstruction of

empirical sequence with CnðFp; sÞ only when the initial

state s(1) is known. Then, from Davisson et al. (1981), the

upper bound of CnðFT;FSAÞ is

jCnðFT;FSAÞj% Ij ~C
n
ðFT;FSAÞj% IexpfnHðFTjFSAÞg;

(B10)

because s(1) is not specified by the I sequences. Next, in the

same manner as Davisson et al. (1981), we obtain the lower

bound,

jCnðFT;FSAÞjR
YI

iZ1

YJ

jZ1

ðnij K1Þ!QI
i0Z1

QK
kZ1 niji0k!

R
1

nIJ
j ~C

n
ðFT;FSAÞjR

expfnHðFTjFSAÞg

nIJðn C1ÞI
2JK

: (B11)

Thus we have proved that (A7) holds. Consequently, from

(12) we obtain (A8).
Appendix B.3. Proof of Theorem A.2

The probability of x2ðS!A!R0Þ
n is

PrðxÞ Z
Prðsð1ÞÞ

Prðsð1ÞjsðnÞ; aðnÞÞ

Yn

tZ1

fPrðaðtÞjsðtÞÞ

Prðsðt C1Þ; rðt C1ÞjsðtÞ; aðtÞÞg; (B12)

Z
Prðsð1ÞÞ

Prðsð1ÞjsðnÞ; aðnÞÞ

YI

iZ1

YJ

jZ1

p
nij

ij

 !

!
YI

iZ1

YJ

jZ1

YI

i0Z1

YK
kZ1

p
niji0k

iji0k

 !
;

(B13)
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Z
Prðsð1ÞÞ

Prðsð1ÞjsðnÞ; aðnÞÞ
exp½KnfDðFpjjGpjFSÞ

CDðFTjjGTjFSAÞCHðFpjFSÞCHðFTjFSAÞg�;

(B14)

where Pr sðnC1ÞjsðnÞ; aðnÞ
� �

ZPr sð1ÞjsðnÞ; aðnÞ
� �

by the

cyclic convention. With the definitions of (24) and (27),

the probability of x is bounded by

mexp½KnfDðFpjjGpjFSÞCDðFTjjGTjFSAÞ

CHðFpjFSÞCHðFTjFSAÞg�%PrðxÞ

%nK1exp½KnfDðFpjjGpjFSÞ

CDðFTjjGTjFSAÞCHðFpjFSÞCHðFTjFSAÞg�:

(B15)

Using (A8) and

min
x2CnðF;FS ;FSAÞ

jCnðF;FS;FSAÞjPrðxÞ%PrðCnðF;FS;FSAÞÞ

% max
x2CnðF;FS ;FSAÞ

jCnðF;FS;FSAÞjPrðxÞ; ðB16)

we obtain (A9).
Appendix B.4. Proof of Theorem 3.1

Let us define the set of the matrix F whose empirical

sequence does not belong to the set of the G-typical

sequences as

L0n Z fF2LnjDðFpjjGpjFSÞCDðFTjjGTjFSAÞOlng:

(B17)

Then,

PrðCn
ln
ðGÞÞ Z 1 KPr g

F2L0n

CnðF;FS;FSAÞ

� 	
: (B18)

Following along the same lines as Csiszár and Körner

(1997) Theorem 2.15, with (A9) we have

Pr g
F2L0n

CnðF;FS;FSAÞ

� 	
%nK1Iðn C1ÞIJCI2JK

!exp Kn min
F2L0n

DðFpjjGpjFSÞCDðFTjjGTjFSAÞ
� �� �

:

ðB19)

Since DðFpjjGpjFSÞCDðFTjjGTjFSAÞOln when

F2L0n, substituting ln for the minimum value we obtain

Pr g
F2L

CnðF;FS;FSAÞ

� 	
%nK1Iðn C1ÞIJCI2JKexpðKnlnÞ;

(B20)
Zexp Kn ln K
ðIJ CI2JKÞlogðnC1ÞClog I Klogn

n

� �� �
:

(B21)

We define

3nðI; J;K; lnÞZ
def

!exp Kn ln K
ðIJ C I2JKÞlogðn C1ÞC log I K log n

n

� �� �
;

ðB22)

and hence en/0 as n/N if (23) is satisfied. Also, by (B18)

Theorem 3.1 holds.
Appendix B.5. Proof of Theorem 3.2

First, let us derive the lower bound. We define

rnðI; J;K; kn; xn; lnÞ def
Z

ffiffiffiffiffiffiffi
2kn

p
log J C

ffiffiffiffiffiffiffi
2xn

p
log K

C
ffiffiffiffiffiffiffi
2xn

p
log I K

ffiffiffiffiffiffiffi
2ln

p
log

ffiffiffiffiffiffiffi
2ln

p

IJ
K

ffiffiffiffiffiffiffi
2ln

p
log

ffiffiffiffiffiffiffi
2ln

p

I2JK
:

(B23)

By (B15) we have

K log PrðxÞR log n CnfDðFpjjGpjFSÞCDðFTjjGTjFSAÞ

CHðFpjFSÞCHðFTjFSAÞg; ðB24)

Rlog n CnfHðFpjFSÞCHðFTjFSAÞg; (B25)

Rlog n CnfHðGpjVÞCHðGTjWÞKrng; (B26)

where (B25) is obtained by the non-negativity of the

divergence and (B26) follows from Lemma A.2. Analo-

gously, the upper bound is obtained as follows:

Klog PrðxÞ%Klog m CnfDðFpjjGpjFSÞ

CDðFTjjGTjFSAÞCHðFpjFSÞCHðFTjFSAÞg;

(B27)

%K log m CnfHðFpjFSÞCHðFTjFSAÞClng; (B28)

%K log m CnfHðGpjVÞCHðGTjWÞCln Crng: (B29)

Thus dividing (B26) and (B29) by n we have (26).
Appendix B.6. Proof of Theorem 3.3

We first prove the lower bound. Using the fact that

Cn
ln
ðGÞJCnðF;FS;FSAÞ and (A8), we get

jCn
ln
ðGÞjR jCnðF;FS;FSAÞj; (B30)

jCn
ln
ðGÞjR

exp½nfHðFpjFSÞCHðFTjFSAg

nIJðn C1ÞIJCI2JK
; (B31)
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jCn
ln
ðGÞj Zexp n HðFpjFSÞCHðFTjFSAÞ

��

K
ðIJ C I2JKÞlogðn C1ÞC IJlog n

n

��
; ðB32)

jCn
ln
ðGÞjRexp½nfHðGpjVÞCHðGTjWÞKzng�; (B33)

where (B33) is derived from Lemma A.2 and

znðI; J;K; kn; xn; lnÞZ
def

rnðI; J;K; kn; xn; lnÞ

C
ðIJ C I2JKÞlogðn C1ÞC IJlog n

n
: (B34)

Next, we consider the upper bound. By (A8) and (22), we

have

jCn
ln
ðGÞj% g

DðFpjjGpjFSÞCDðFTjjGTjFSAÞ%ln

F2Ln :
jCnðF;FS;FSAÞj;

(B35)

jCn
ln
ðGÞj% Iðn C1ÞIJCI2JKexp½nfHðFpjFSÞCHðFTjFSAÞg�;

(B36)

jCn
ln
ðGÞj%exp½nfHðGpjVÞCHðGTjWÞChng�; (B37)

where (B37) is derived from Lemma A.2 and

hnðI; J;K; kn; xn; lnÞZ
def

rnðI; J;K; kn; xn; lnÞ

C
ðIJ C I2JKÞlogðn C1ÞC log I

n
: (B38)

Thus we have proved the upper and lower bounds in

Theorem 3.3.

Appendix B.7. Proof of Theorem 4.1

When the agent’s return is maximized, obviously

the subset of best sequences has to be included within the

G-typical set. Hence, c†
n 3Cn

ln
ðGÞ holds and then

Prðc†
nÞ Z PrðCn

ln
ðGÞÞPrðc†

njC
n
ln
ðGÞÞ: (B39)

From Theorem 3.1, for sufficient large n,

PrðCn
ln
ðGÞÞz1: (B40)

Since from Theorem 3.2 every element in Cn
ln
ðGÞ has the

same probability for sufficient large n, we have

Prðc†
njC

n
ln
ðGÞÞ/

jc†
nj

jCn
ln
ðGÞj

: (B41)

Therefore, (43) holds. Then, from the definition of c†
n, as

n/N and G/G† clearly we obtain Prðc†
nÞ/1.

Appendix B.8. Proof of Theorem 4.2

Differentiating (36) with respect to b, we have
dpðb;QijÞ

db
Z

expðbQijÞ QijZiðbÞK
PJ

jZ1fQijexpðbQijÞg
� �

ðZiðbÞÞ
2

:

(B42)

Using (B42) we get

d

db
HðGðiÞÞ ZK

XJ

jZ1

d

db
pðb;QijÞlog pðb;QijÞ
� �

; (B43)

d

db
HðGðiÞÞ ZK

XJ

jZ1

ðlog pðb;QijÞC1Þ
dpðb;QijÞ

db
; (B44)

d

db
HðGðiÞÞ Z

b

ðZiðbÞÞ
2

XJ

jZ1

QijexpðbQijÞ

 !2(

KZiðbÞ
XJ

jZ1

Q2
ijexpðbQijÞ

 !)
; ðB45)

d

db
HðGðiÞÞ ZK

b

2ðZiðbÞÞ
2

XJ

jZ1

XJ

j0Z1

ðQij KQij0 Þ
2

!expðbðQij CQij0 ÞÞ; ðB46)

d

db
HðGðiÞÞ%0: (B47)

Therefore, by dHðGpjVÞ=dbZ
PI

iZ1 viðdHðGðiÞÞ=dbÞ we

obtain (45). Also, on the limit b/N, H(P(i))Z0 holds for

all i. Hence we obtain (46).
Appendix B.9. Proof of Theorem 4.3

Differentiating (38) with respect to e, we have

dpð3;QijÞ

d3
Z

1

Ji

Kqij: (B48)

By (B48) we have

K
d

d3
HðGðiÞÞ Z

XJ

jZ1

d

d3
ðpð3;QijÞlog pð3;QijÞÞ; (B49)

K
d

d3
HðGðiÞÞ Z

XJ

jZ1

ðlog pð3;QijÞC1Þ
dpð3;QijÞ

d3
; (B50)

K
d

d3
HðGðiÞÞZ

1

Ji

XJ

jZ1

log
3

Ji

Cð1K3Þqij

� 	

K
XJ

jZ1

qijlog
3

Ji

Cð1K3Þqij

� 	
K
XJ

jZ1

qij C1;

(B51)

K
d

d3
HðGðiÞÞ Z 1 K

1

Ji

� 	
log

3

Ji

K log
3

Ji

C1 K3

� 	� 	
;

(B52)

K
d

d3
HðGðiÞÞ%0: (B53)
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Accordingly, using dHðGpjVÞ=d3Z
PI

iZ1 viðdHðGðiÞÞ=d3Þ we

obtain (47). Also, on the limit b/N, H(P(i))Z0 holds for

all i. Therefore we have (46).

Appendix B.10. Proof of Theorem 4.4

First, let us consider the lower bound. Since the length

l(q) of the program q satisfies the Kraft inequality (Cover

and Thomas, 1991, p. 154), we haveX
q:UðqÞhalts

expðKlðqÞÞ%1: (B54)

We assign to each x the length of the shortest program q

such that Uðq; 3nÞZx2Cn
ln
ðGÞ. These shortest programs

also satisfy the Kraft inequality. Since the expected

codeword length must be greater than the entropy, we

obtain the following lower bound,

EG½KUðxj3nÞ�REG½Klog PrðxÞ�; (B55)

EG½KUðxj3nÞ�R log n CnfjðGÞKrng; (B56)

by (B26).

Next we consider the upper bound. Let c denote a

constant value. We describe the matrix (F2Ln with respect

to the empirical sequence using logjLnj bits. Also, to

describe the index of the empirical sequence within the set

of all sequences having the same matrix of conditional

types, log jCnðF;FS;FSAÞj bits are required because the set

has less than jCnðF;FS;FSAÞj elements. Hence,

KUðxj3nÞ% logjCnðF;FS;FSAÞjC logjLnjCc; (B57)

KUðxj3nÞ%nfHðFpjFSÞCHðFTjFSAÞgC log I

C ðIJ C I2JKÞlog ðn C1ÞCc; (B58)

KUðxj3nÞ%nfjðGÞCrng

C log ICðIJ C I2JKÞlogðn C1ÞCc; (B59)

where (B58) follows from Lemma A.1 and (A8), and (B59)

follows from Lemma A.2. Again, taking the expectation and

dividing (B56) and (B59) by n yields the upper bound of (56).
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