Tenth International Conference on Computer Modeling and Simulation

GPU Based Acceleration of Telegraph equation

Véclav Simek, Michal Kraus, Jiff Kunovsky, Jif{ Petiek,
Brno University of Technology
Faculty of Information Technology
Bozetechova 2, 612 66 Brno, Czech Republic
simekv@fit.vutbr.cz (Vaclav Simek)

Abstract

In a matter of just a few years, the programmable
graphics processor unit has evolved into an absolute
computing workhorse. With multiple cores driven by
very high memory bandwidth, today’s GPUs offer in-
credible resources for both graphics and non-graphics
processing.

An original mathematical method “Modern Taylor
Series Method” (MTSM) which uses the Taylor se-
ries method for solving differential equations in a non-
traditional way has been developed and implemented in
TKSL software [3]. Even though this method is not

O

Figure 1. Modelling a small piece of the wire

One small piece of the wire can be decribed by equa-
tions that follow:

much preferred in the literature, experimental calcula- o _ i i uer(0) = 0
tions have shown and theoretical analyses have veri- ol Ch a1 ot

fied that the accuracy and stability of the.Taylor series o l (uer — R +ia) ia(0) =0
method exceeds the currently used algorithms for nu- 2 L

merically solving differential equations. It is the aim
of the paper to illustrate GPU and MTSM for numeri-
cal solutions of a telegraph line.

1. Introduction

The eletricial problem - Telegraph equation models
the behaviour of eletrical signals on a telegraph line.
The first step in building the model is to replace a small
piece of the wire by quadrupole build from resistors,
capacitors and coils Figure 1. Letting the size of this
piece go to zero we obtain a partial differential equation
describing the behaviour of signals on the wire Eq. (1)

2. Modern Taylor Series Method

The main idea behind the Modern Taylor Series
Method is an automatic integration method order set-
ting, i.e. using as many Taylor series terms for com-
puting as needed to achieve the required accuracy.

Simulation of the telegraph line is presented in Fig-
ure 2.

Telegraph line has been modelling using small pieces
of the wire. As an example 10 segments from Figure 1
have been used to show expected time functions (input
function U1, output function U2 and ORD - order of
the Taylor Series Method used) of the telegraph line
(Figure 2).

v R G u (x £ — o2 g(g t) - 0 ' Experimt.ental c'alculatic.)ns can be do'ne theoFetically
52 z(w 0 z (91(1 0 (1) with an arbitrary integration step. For integration step
O %= +(L-G+C-R) + h = 107! (in Figure 2) TKSL automatically sets the
+R G-i(x,t) — M =0 order between 4-11.
A lot of experiments and calculations can be done
with the model of telegraph line.

978-0-7695-3114-4/08 $25.00 © 2008 IEEE 629 @ computer

DOI 10.1109/UKSIM.2008.47 soclety

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on February 16, 2009 at 21:51 from IEEE Xplore. Restrictions apply.

ile dit earch un ompile iew indous rauw

SUPER .GRP

elp

B R S oT 1E-B086

U1 -8.54482111A889366

10 uz -8.267788263786883

1E-881Z2
1E-#811
1E-#826
1E-8868
1E+B8087
168

188
1E+#818
0.8a1

2]
1E-8886

Menu

Run

Figure 2. Time functions U1, U2, ORD

3. The Graphics Processor Unit as a
Data-Parallel Computing Device

It can be expected that number of segments of the
telegraph line may significantly influence the computa-
tion time. That is why, the use of GPU will be analyzed
in our next experiments.

The GPU is especially well-suited to address prob-
lems that can be expressed as data-parallel computa-
tions with high arithmetic intensity. Because the same
program is executed for each data element, there is a
lower requirement for sophisticated flow control; and
because it is executed on many data elements and has
high arithmetic intensity, the memory access latency
can be hidden with calculations instead of big data
caches

Data-parallel processing maps data elements to par-
allel processing threads. Many applications that pro-
cess large data sets such as arrays can use a data-
parallel programming model to speed up the computa-
tions.In fact, many algorithms are accelerated by data-
parallel processing, from general signal processing to
physics simulation or to computational biology.

Up until now, however, accessing all that computa-
tional power packed into the GPU and efficiently lever-
aging it for non-graphics applications remained tricky:

The GPU could only be programmed through a
graphics API, imposing a high learning curve to the
novice and the overhead of an inadequate API to the
non-graphics application.

The GPU DRAM could be read in a general way
- GPU programs can gather data elements from any
part of DRAM - but could not be written in a general
way - GPU programs cannot scatter information to any
part of DRAM -, removing a lot of the programming

630

flexibility readily available on the CPU.

Some applications were bottlenecked by the DRAM
memory bandwidth, under-utilizing the GPU’s compu-
tational power.

This paper describes a novel hardware and program-
ming model and exposes the GPU as a truly data-
parallel computing device.

CUDA (Compute Unified Device Architecture) [1] is
a new hardware and software architecture for issuing
and managing computations on the GPU as a data-
parallel computing device without the need of mapping
them to a graphics API.

The CUDA software stack is composed of several
layers: a hardware driver, an application programming
interface (API) and its runtime, and two higher-level
mathematical libraries of common usage, CUFFT and
CUBLAS. The hardware has been designed to support
lightweight driver and runtime layers, resulting in high
performance.

When programmed through CUDA, the GPU is
viewed as a compute device capable of executing a
very high number of threads in parallel [2]. It oper-
ates as a coprocessor to the main CPU, or host: In
other words, data-parallel, compute-intensive portions
of applications running on the host are off-loaded onto
the device.

4. Summary

Experimental calculations have shown and theoreti-
cal analyses have verified that the accuracy and sta-
bility of the Taylor series method exceeds the cur-
rently used algorithms for numerically solving differen-
tial equations. Calculations can be done theoretically
with arbitrary integration step.

All experiments have been done with TKSL soft-
ware. It can be expected that number of segments of
the telegraph line may significantly influence the com-
putation time. That is why, the use of GPU will be
analyzed in our next experiments.

Details will be presented in the conference.

References

[1] NVIDIA CUDA Compute Unified Device Architecture,
2007. Programming Guide.

[2] S. Che, J. Meng, J. W. Sheaffer, and K. Skadron. A
performance study of general purpose applications on
graphics processors. In First Workshop on General Pur-
pose Processing on Graphics Processing Units, page 10.
J. Kunovsky. Modern Taylor Series Method. FEI-VUT
Brno, 1994. Habilitation work.

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on February 16, 2009 at 21:51 from IEEE Xplore. Restrictions apply.

