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Abstract

In this paper, we systematically study the stability of a class of generalized Additive Increase and Multiplicative
Decrease/Random Early Detection (AIMD/RED) system. Sufficient conditions are obtained for asymptotic stability of
both homogeneous-flow system and heterogeneous-flow system with or without feedback delay by using indirect Lyapu-
nov and Lyapunov–Razumikhin method. Our study reveals the relationship between the AIMD parameters and the aver-
age window size of competing AIMD flows. Consequently, the Transmission Control Protocol (TCP)-friendly condition is
derived. Numerical results with Matlab and simulation results with NS-2 are given to validate the theorems and analytical
results. The analysis and the stability conditions derived can be used as a guideline to set up the AIMD/RED system
parameters in order to maintain network stability and integrity, and to enhance system performance.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The proliferation and universal adoption of the
Internet have escalated it as the key information
transport platform. As a decentralized system, net-
work stability and integrity rely on the end-to-end
congestion control algorithm, which is deployed in

the dominant transport layer protocol, Transmis-
sion Control Protocol (TCP). A TCP sender inter-
prets packet losses as congestion indicators and
throttles the traffic load once a packet loss is
detected, using an Additive Increase and Multiplica-
tive Decrease (AIMD) [1] congestion control mech-
anism, aiming to avoid network congestion
collapse. Specifically, a sender additively increases
the sending rate to probe for available bandwidth
when no congestion occurs and exponentially (mul-
tiplicatively) decreases its sending rate in response
to network congestion. The additive increase rate
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of TCP is one packet per round-trip time (rtt) and
the multiplicative decrease ratio of TCP is 1/2. To
support heterogeneous traffic, the general AIMD
congestion control uses a pair of parameters (a,b)
to set the increase rate and the decrease ratio [4–
6]. On the other hand, to distribute the network
congestion indicators fairly to all on-going flows,
active queue management (AQM) [8,22], e.g., the
Random Early Detection (RED) queue manage-
ment scheme, has been proposed to be deployed in
the intermediate nodes. With the RED schemes
[10,11], the intermediate nodes discard packets of
all on-going flows randomly when the queue length
exceeds a pre-defined threshold; therefore, the
packet loss rate of each flow is roughly proportional
to the flow sending rate. The AIMD congestion con-
trol, coupled with the RED queue in the core net-
work, has been acknowledged as one of the key
factors to the overwhelming success of the Internet.

With the rapid advances in optical and wireless
communications, the Internet is becoming a more
heterogeneous and diverse system: link capacity var-
ies from several Kbps to several Gbps, with six
orders of magnitude; transmission bit error rates
vary from <10�9 to 10�3, also with about six orders
of magnitude; and end-to-end delay varies from sev-
eral milliseconds to several seconds. A critical and
immediate question is whether the AIMD/RED
system is a stable, fair, and efficient system, indepen-
dent of the heterogeneity of the link capacity,
end-to-end delay, and network topology. In other
words, should we re-design the Internet congestion
control mechanism to accommodate future killer
applications over the ever-diversified Internet, or
can we take an incremental approach of engineering
the existing congestion control mechanism and rou-
ters’ queue management parameters to achieve the
same objective?

Stability problems of TCP flows with RED
queues have been extensively investigated in [17–
22]. New control mechanisms based on control the-
ory and game theory have also been proposed [2].
Instead of proposing a new control mechanism, we
focus on the stability and performance of the domi-
nant AIMD congestion control mechanism with
RED queues. In [22], using a fluid model, the global
asymptotic stability of TCP/RED is proved, neglect-
ing the feedback delay. The dynamics of TCP/RED
with feedback delay has been studied using a fre-
quency domain approach in [3]. Because of the het-
erogeneity of the Internet, understanding the
stability conditions of the general AIMD/RED sys-

tem with heterogeneous flows and feedback delays is
critical for future network planning and design.

In this paper, we systematically study the stabil-
ity of the AIMD/RED system, considering hetero-
geneous flows with different AIMD parameters in
both delay-free marking and delayed marking sce-
narios. The definitions of stability and asymptotic
stability follow that in [24]. Consider dynamic sys-
tems with time delay of the following form:

dx
dt
¼ f ðt; xðtÞ; xðt � s1ðtÞÞ; . . . ; xðt � smðtÞÞÞ;

where x 2 Rn, f : I · Rn · Rn · � � � · Rn! Rn is con-
tinuous. Let s = supi = 1, . . . , msi(t).

The trivial solution of the system is said to be

stable if for every � > 0 and t0 2 Rþ, there exists
some d = d(t0,�) > 0 such that for any n(t) 2
C[[t0 � s,t0],Rn], knk < d implies kx(t, t0,n)k < �
for all t P t0;
asymptotically stable if the system is stable and for
every t0 2 Rþ, there exists some g = g(t0) > 0 such
that limt!1kx(t, t0,n)k = 0 whenever knk < g.

Based on the fluid model of the generalized
AIMD/RED system, we apply the methods of
Lyapunov functional and Lyapunov function with
Lyapunov–Razumikhin condition to study the sta-
bility properties of the system. Different sufficient
conditions are derived for the local asymptotic sta-
bility of the system with feedback delays. Since the
fluid model captures the ensemble averages of the
system parameters, with the sufficient conditions
derived, the ensemble averages or the time averages
(over a round) of the AIMD/RED system can be
locally asymptotically stable, even with heteroge-
neous feedback and propagation delays, so the
AIMD/RED system can be marginally stable. A
round is defined as the time interval between two
instants at which the sender reduces its window size
consecutively. The analysis also reveals the relation-
ship between AIMD parameters and the average
window size of competing AIMD flows, and the
TCP-friendly condition is also derived. Numerical
results are given to validate the analysis. Extensive
simulations with NS-2 [7] are performed to study
the system performance with realistic protocols
and network topologies. The analytical and simula-
tion results can help to better understand the stabil-
ity and performance of AIMD/RED system, and
the theoretical results can be used as a guideline
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for the setting of system parameters to maintain net-
work stability and enhance system performance.

The remainder of the paper is organized as fol-
lows. Section 2 briefly introduces the related work.
Section 3 proposes the model of the generalized
AIMD/RED system. Section 4 studies the stability
property of the generalized AIMD/RED system
with delay-free marking, and derives the TCP-
friendly condition and average queuing delay. The
stability and fairness analysis of AIMD/RED sys-
tem with heterogeneous feedback delays are given
in Section 5. Numerical results with MATLAB
and simulation results with NS-2 are presented in
Section 6, followed by concluding remarks and fur-
ther research issues in Section 7.

2. Related work

Congestion control mechanisms and AQM
schemes for the Internet have been extensively stud-
ied, aiming to achieve quick convergence to effi-
ciency, stability, fair bandwidth sharing, and low
packet loss rate.

Internet stability properties and fairness issues in
the presence of feedback delay have received much
attention recently. The original work of proposing
the congestion controller using utility optimization
has been done in [12]. Since then, lots of work have
been conducted for the TCP/Random Exponential
Marking (REM) system. For example, for the case
of a single node and a single source in the TCP/
REM system, the design of congestion controllers
and the stability problems with delays are studied
in [2,13,14], and the sufficient conditions for global
stability are given as well. Recently, a discrete con-
gestion control system has been proposed in [15] to
maintain both stability and fairness under heteroge-
neous delayed feedback. The boundedness and sta-
bility for the TCP/REM system are discussed in [16].

In the design of congestion controllers, one of the
important criteria is asymptotic stability, i.e., the
capability of the network to avoid oscillations in
the steady state and to properly respond to other
external perturbations. AQM schemes recently dis-
cussed include RED, REM, Proportional–Integral
(PI) control and Loss Ratio-based RED (LRED).
For TCP/RED system, the sufficient conditions
for global stability in the absence of feedback delay
are given in [22]; the conditions for the stability of
TCP/RED system in the frequency domain are
given in [3] by Nyquist stability criterion. The design
and analysis of the PI controller for RED routers

are discussed in [19]. Newly proposed AQM scheme,
LRED in [9], measures the latest packet loss ratio,
and uses it as a complement to queue length for
adaptively adjusting the packet drop probability.
To the best of our knowledge, the stability proper-
ties of AIMD/RED systems in the presence of
heterogeneous AIMD and TCP flows with heteroge-
neous feedback delays have not been studied, and
they are the main focus of this paper.

3. A fluid-flow model of generalized AIMD/RED
system

A stochastic model of TCP behavior was devel-
oped using fluid-flow and stochastic differential
equation analysis [18]. Simulation results have dem-
onstrated that this model accurately captures the
dynamics of TCP. We extend the fluid-flow model
for general AIMD(a,b) congestion control: the win-
dow size is increased by a packet per rtt if no packet
loss occurs; otherwise, it is reduced to b times its
current value.

We first consider the case that all AIMD-con-
trolled flows have the same (a,b) parameter pair
and round-trip delay. The AIMD/RED fluid model
relates to the ensemble averages of key network vari-
ables, and it is described by the following coupled,
nonlinear differential equations:

dW ðtÞ
dt
¼ a

RðtÞ�
2ð1�bÞ

1þb
W ðtÞW ðt�RðtÞÞ

Rðt�RðtÞÞ pðt�RðtÞÞ;

dqðtÞ
dt
¼

NðtÞ�W ðtÞ
RðtÞ �C; q> 0;

NðtÞ�W ðtÞ
RðtÞ �C

n oþ
; q¼ 0;

8<:
ð1Þ

where {a}+ = max{a, 0},a > 0, b 2 [0,1], W 2 [1,
Wmax] is the ensemble average of AIMD window
size (packets); q 2 [0, qmax] is the ensemble average
of queue length (packets); R is the round-trip time
with RðtÞ ¼ qðtÞ

C þ T p (s), where C is the queue capac-
ity (packets/s) and Tp is the deterministic delay
(including propagation, processing, and transmis-
sion delay). N is the number of AIMD flows and
p is the probability of a packet being marked (or
dropped).

The first differential equation of system (1)
describes the AIMD(a,b) window control dynamic.
Roughly speaking, a/R represents the window’s addi-
tive increase, while 2ð1�bÞ

1þb W represents the window’s
multiplicative decrease in response to packet marking
(or dropping) probability p. This is because the flow’s
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window size always oscillates between bWmax to
Wmax, the average window size over a round is
(1 + b)Wmax/2. Each time, the window size is cut by
(1 � b)Wmax = 2(1 � b)W/(1 + b). The second equa-
tion models the bottleneck queue length as simply an
accumulated difference between packet arrival rate
NW/R and link capacity C. {Æ}+ in the model guaran-
tees queue length is a non-negative number.

With RED, the packet marking probability
is proportional to the average queue length:
p = Kp(qact � minth) with Kp > 0 and p 2 [0,1].
When the actual queue length is less than or equal
to the minimum threshold, i.e. qact 6 minth, the
marking probability is zero. Therefore, dW ðtÞ

dt ¼ a
R,

that is, the window size will keep increasing and
not converge. In the following, we will discuss the
stability property of this model when qact > minth.
Without loss of generality, let q(t) = qact(t) � minth.
Since the system behaves the same as a Drop-Tail
queue once the queue length exceeds the maximum
threshold maxth, to focus on the behavior of
AIMD/RED, we choose maxth to be sufficiently
large such that pmax = 1.

It should be noted that, (1) is a generalized
AIMD/RED congestion control model, which
includes the model studied in [18–23]. If we choose
a = 1, b = 0.5, (1) is equivalent to the traditional
TCP/RED model. We will also show in the next sec-
tion that the stability properties of the specific model
in the literature is compatible with the corresponding
properties of this generalized model as well.

4. Stability and fairness analysis with delay-free

marking

4.1. Stability of homogeneous AIMD/RED system

With the fluid-flow model (1), we assume that the
traffic load (N AIMD flows) is time-invariant, i.e.,
N(t) = N, and the round-trip time of each flow is a
constant, R(t) = R. In the case of delay-free mark-
ing, i.e., p = Kpq(t), the original delay-free marking
model (1) can be written as a closed-loop dynamics:

dW ðtÞ
dt
¼ a

R
� 2ð1� bÞ

1þ b
W ðtÞW ðtÞ

RðtÞ KpqðtÞ;

dqðtÞ
dt
¼

N �W ðtÞ
R � C; q > 0;

N �W ðtÞ
R � C

n oþ
; q ¼ 0:

8<:
ð2Þ

For a single-bottleneck system, the equilibrium
point ðW �

0; q
�
0Þ for (2) is given by

W �
0 ¼

RC
N

; q�0 ¼
að1þ bÞN 2

2ð1� bÞR2C2Kp
: ð3Þ

At equilibrium, the RED queue length is inversely
proportional to Kp. Thus, we should choose Kp

according to the delay budget.
With the transformed variables eW :¼ W�

W �
0; ~q :¼ q� q�0, (2) becomes

_eW ðtÞ ¼ � 2ð1� bÞ
1þ b

ð eW ðtÞ þ W �
0Þ

2

R
Kp~qðtÞ

� 2ð1� bÞ
1þ b

eW 2ðtÞ þ 2 eW ðtÞW �
0

R
Kpq�0;

_~qðtÞ ¼ N
R
� eW ðtÞ:

ð4Þ

The equilibrium point of (4) is ð eW �; ~q�Þ ¼ ð0; 0Þ.
We construct the positive-definite Lyapunov

function,

V ð eW ; ~qÞ ¼ ð1þ bÞN 3

2ð1� bÞR2C2
� eW 2ðtÞ þ 1

2
Kp~q2ðtÞ;

which is used to derive the following theorem.

Theorem 1. The equilibrium point of (2) is asymp-

totically stable for all Kp > 0.

The proof of Theorem 1 is omitted, and we will
prove a more general theorem (Theorem 2) in the
next subsection.

From the viewpoint of control theory, the block
diagram of the AIMD/RED system is depicted in
Fig. 1 [22]. By a suitable control law, we relate the
output q with the input p, which makes the original
open loop systems into a closed-loop control system
to achieve asymptotic stability.

4.2. Stability of heterogeneous AIMD/RED system

In the previous subsection, we discussed the sta-
bility property of the homogeneous-flow system

R

1

)1(2

__

__

R

1

R

1

Fig. 1. Block diagram of generalized AIMD/RED system.
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when there is only one type of flows with the param-
eter pair (a,b). To support heterogeneous multime-
dia applications, we study the system with
heterogeneous flows, i.e., there are two or more
types of flows with the parameter pairs (a1,b1),
(a2,b2), . . . , (am,bm). First, we consider the case
when there are two different heterogeneous flows:
WI whose rtt is R1, and WII whose rtt is R2, with
the parameters (a1,b1), (a2,b2), respectively. The
number of WI flows is N1, and that of WII flows is
N2. Then the corresponding mathematical model
has the following form,

dW IðtÞ
dt

¼ a1

R1

� 2ð1� b1Þ
1þ b1

� W
2
I ðtÞ
R1

� KpqðtÞ;

dW IIðtÞ
dt

¼ a2

R2

� 2ð1� b2Þ
1þ b2

� W
2
IIðtÞ
R2

� KpqðtÞ;

dqðtÞ
dt
¼

N1W IðtÞ
R1
þ N2W IIðtÞ

R2
� C; q > 0;

N1W IðtÞ
R1
þ N2W IIðtÞ

R2
� C

n oþ
; q ¼ 0:

8<:
ð5Þ

The equilibrium points ðW �
I ;W

�
II; q

�
0Þ of (5) can be

obtained as

W �
I ¼

R1R2C

R2N 1 þ a2ð1�b1Þð1þb2Þ
a1ð1þb1Þð1�b2Þ

� �1=2

� R1N 2

;

W �
II ¼

R1R2C

a1ð1þb1Þð1�b2Þ
a2ð1�b1Þð1þb2Þ

� �1=2

� R2N 1 þ R1N 2

;

q�0 ¼
a1ð1þ b1Þ R2N 1 þ a2ð1�b1Þð1þb2Þ

a1ð1þb1Þð1�b2Þ

� �1=2

R1N 2

� �2

2R2
1R2

2C2Kpð1� b1Þ
:

ð6Þ

With the transformed variables eW IðtÞ :¼ W IðtÞ�
W �

I , eW IIðtÞ :¼ W IIðtÞ � W �
II and ~qðtÞ :¼ qðtÞ � q�0,

(5) becomes

_eW IðtÞ ¼ �
2ð1� b1Þ

1þ b1

ð eW IðtÞ þ W �
I Þ

2

R1

Kp~qðtÞ

� 2ð1� b1Þ
1þ b1

eW 2
I ðtÞ þ 2W �

I
eW IðtÞ

R1

Kpq�0;

_eW IIðtÞ ¼ �
2ð1� b2Þ

1þ b2

ð eW IIðtÞ þ W �
IIÞ

2

R2

Kp~qðtÞ

� 2ð1� b2Þ
1þ b2

eW 2
IIðtÞ þ 2W �

II
eW IIðtÞ

R2

Kpq�0;

_~qðtÞ ¼ N 1 � eW IðtÞ
R1

þ N 2 � eW IIðtÞ
R2

:

ð7Þ

The equilibrium point of (7) is then ð eW �
I ;
eW �

II;
~q�0Þ ¼ ð0; 0; 0Þ.

With (7), choose the following positive-definite
Lyapunov function,

V ð eW IðtÞ; eW IIðtÞ;~qðtÞÞ

¼ ð1þb1ÞN 1

2ð1�b1ÞW �2
I

� eW 2
I ðtÞþ

ð1þb2ÞN 2

2ð1�b2ÞW �2
II

� eW 2
IIðtÞþKp~q2ðtÞ:

Then,

_V ¼ ð1þ b1ÞN 1

ð1� b1ÞW �2
I

eW IðtÞ _eW IðtÞ

þ ð1þ b2ÞN 2

ð1� b2ÞW �2
II

eW IIðtÞ _eW IIðtÞ þ 2Kp~qðtÞ _~qðtÞ

¼ � 2N 1Kp

W �2
I R1

eW 2
I ðtÞð eW IðtÞ þ 2W �

I Þð~qðtÞ þ q�0Þ

� 2N 2Kp

W �2
II R2

eW 2
IIðtÞð eW IIðtÞ þ 2W �

IIÞð~qðtÞ þ q�0Þ 6 0:

From the physics constraint point of view, the posi-
tive-definite Lyapunov function emulates the total
energy function of the system, i.e., the sum of
kinetic and potential energy. Here _V 6 0, sinceeW IðtÞ þ 2W �

I > 0, eW IIðtÞ þ 2W �
II > 0 and ~qðtÞþ

q�0 P 0, which means the energy of the system is
non-increasing. Thus, we prove that the equilibrium
point is stable. To conclude asymptotic stability, we
first consider the set of states where _V ¼ 0,

M :¼ fð eW I; eW II; ~qÞ : _V ¼ 0g
¼ fð eW I; eW II; ~qÞ : eW I ¼ eW II ¼ 0 or ~q ¼ �q�0g:

By LaSalle’s Invariance Principle [24], trajectories of
(7) converge to the largest invariant set contained in
M. We will then prove that the only invariant set
contained in M is the equilibrium point (0,0,0). If
ð eW I; eW II; ~qÞ is equal to ð0; 0; ~qÞ or ð eW I; eW II;�q�0Þ,
by using (7), we can conclude that ð eW IðtþÞ;eW IIðtþÞ; ~qðtþÞÞ is not in M, which implies that no
trajectory can stay in M, other than the point
(0,0,0). Therefore, asymptotic stability is obtained,
which we summarize as follows:

Theorem 2. For any Kp > 0, the equilibrium point of

(7) is asymptotically stable for any positive pairs

(a1,b1), (a2,b2) and any positive R1 and R2.

We can also extend our results to the case when
more than two heterogeneous flows exist in the same
system. Suppose that there are M different heteroge-
neous flows (a1,b1), (a2,b2), . . . , (am,bm) sharing the

L. Wang et al. / Computer Networks 51 (2007) 4475–4491 4479
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resources, with the number N1,N2, . . . ,Nm, and dif-
ferent rtts R1,R2, . . . ,Rm respectively, then those
flows can be mathematically modeled as

dW IðtÞ
dt

¼ a1

R1

� 2ð1� b1Þ
1þ b1

� W IðtÞ2

R1

� KpqðtÞ;

dW IIðtÞ
dt

¼ a2

R2

� 2ð1� b2Þ
1þ b2

� W IIðtÞ2

R2

� KpqðtÞ;

� � �
dW MðtÞ

dt
¼ am

Rm
� 2ð1� bmÞ

1þ bm
� W MðtÞ2

Rm
� KpqðtÞ;

dqðtÞ
dt
¼

Pm
i¼1

NiW iðtÞ
Ri
� C; q > 0;

Pm
i¼1

NiW iðtÞ
Ri
� C

� �þ
; q ¼ 0:

8>>><>>>:

ð8Þ

With (8), we choose a positive-definite Lyapunov
function as

V ð eW IðtÞ; eW IIðtÞ; . . . ; eW MðtÞ; ~qðtÞÞ

¼ ð1þ b1ÞN 1

2ð1� b1ÞW �2
I

� eW 2
I ðtÞ þ

ð1þ b2ÞN 1

2ð1� b2ÞW �2
II

� eW 2
IIðtÞ

þ � � � þ ð1þ bmÞN m

2ð1� bmÞW �2
M

� eW 2
MðtÞ þ Kp~q2ðtÞ;

where eW iðtÞ; i ¼ 1; 2; . . . ;m, and ~qðtÞ have the same
meaning as in (7). Then,

_V ¼ ð1þ b1ÞN 1

ð1� b1ÞW �2
I

eW I
_eW I þ

ð1þ b2ÞN 2

ð1� b2ÞW �2
II

eW II
_eW II

þ � � � þ ð1þ bmÞN M

ð1� bmÞW �2
M

eW M
_eW M þ 2Kp~q _~q

¼ � 2N 1Kp

W �2
I R1

eW 2
I ð eW I þ 2W �

I Þð~qþ q�0Þ � � � �

� 2N mKp

W �2
M Rm

eW 2
Mð eW M þ 2W �

MÞð~qþ q�0Þ 6 0:

We can obtain its asymptotic stability by applying
LaSalle’s Invariance Principle, and thus have the
following theorem,

Theorem 3. For any Kp > 0, the equilibrium point of

system (8) is asymptotically stable for any positive

pairs (a1,b1), (a2,b2), . . . , (am,bm) and any positive

R1,R2, . . . ,Rm.

4.3. TCP-friendliness and differentiated services

For two competing AIMD flows, from (6), we
can also get the relationship between W �

I and W �
II

as follows:

W �
I

W �
II

¼ a1ð1þ b1Þð1� b2Þ
a2ð1� b1Þð1þ b2Þ

� �1=2

: ð9Þ

This means that the ratio of W �
I and W �

II depends
only on the choices of (a1,b1) and (a2,b2), and
regardless of the traffic loads in the network and
their initial states. Therefore, by choosing suitable
(a1,b1) and (a2,b2), we can guarantee the fair share
of bottleneck bandwidth for each flow. Conse-
quently, for AIMD(a,b) flows to be TCP-friendly,
i.e., co-existing TCP and AIMD flows obtain the
same share of bottleneck bandwidth, the necessary
and sufficient condition is

a ¼ 3ð1� bÞ
1þ b

: ð10Þ

A large value of b can be chosen for applications
that cannot tolerate drastic changes of the through-
put, and a can be set according to the TCP-friendly
condition.

In the Internet, different types of multimedia ser-
vices are provided with different resource require-
ments. To provide differentiate services, we can
assign different traffic a different weight. Eq. (9)
indicates that we can easily adjust the AIMD
parameters of the end systems to provide differenti-
ated services according to different QoS require-
ments. For instance, let the throughput of an
AIMD(a1,b1) flow be k times that of an AIM-
D(a2,b2) flow, the AIMD parameter pairs should
satisfy

a1

a2

¼ k2ð1� b1Þð1þ b2Þ
ð1þ b1Þð1� b2Þ

: ð11Þ

4.4. Numeric results

The traces of average window size and queue
length of 100 TCP (a = 1, b = 0.5) flows and 100
AIMD(0.2,0.875) flows are given in Figs. 2 and 3,
respectively. The parameters used are C =
100,000 packet/s, R = 100 ms, Kp = 0.0001, and
minth = 200 packets. For the TCP-friendliness, let
100 TCP flows and 24 AIMD(0.2,0.875) flows share
the bottleneck, and the numeric results with Matlab
are shown in Fig. 4. It can be seen that when the
flows in the network possess the same (a,b) param-
eter pair, the ensemble averages of window size and
the bottleneck queue length converge to some cer-
tain values, i.e., the equilibrium points we derived
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in the previous analysis. When TCP and
AIMD(0.2,0.875) flows co-exist, they will fairly
share the link capacity in steady state, since
(0.2,0.875) satisfies the TCP-friendly condition
(10). Thus, the numeric results validate the
theorems.

Furthermore, from Figs. 2 and 3, with a smaller
value of a and a larger value of b, it takes longer
time for the system to converge to the steady state,
and the link utilization during the transient stage is
low; however, in steady state, the oscillation ampli-
tudes of the instantaneous window size and queue
length are smaller. In other words, with a smaller
value of a and a larger value of b, the queuing delay
jitter is smaller, and the link utilization in steady
state is higher, which are desired for supporting
time-sensitive multimedia applications.

5. Stability and fairness analysis with heterogeneous

feedback delays

In this section, we study the stability properties
of the AIMD/RED system with feedback delay,
using the method of Lyapunov functional and
Lyapunov function with Lyapunov–Razumikhin
condition, to establish different sufficient conditions
for the stability of the AIMD/RED system with het-
erogeneous flows and feedback delays.

5.1. Stability of homogeneous delayed AIMD/RED

system

For AIMD/RED system with feedback delay,
i.e., p(t � R(t)) = Kpq(t � R(t)), we can obtain the
equilibrium point ðW �

0; q
�
0Þ of the system (1) as

0 2 4 6 8 10 12 14 16 18 2080

85

90

95

100

105

110

115

120

125

t

w

TCP window trace

(a) TCP window trace

0 2 4 6 8 10 12 14 16 18 20
80

85

90

95

100

105

110

115

120

125

t

w

AIMD (0.2, 0.875) window trace

(b) AIMD (0.2, 0.875) window trace

Fig. 2. Window trace.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

t

q

TCP queue length

(a) TCP queue length

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

t

q

AIMD(0.2, 0.875) queue length

(b) AIMD(0.2, 0.875) queue length

Fig. 3. Queue length.

L. Wang et al. / Computer Networks 51 (2007) 4475–4491 4481



Author's personal copy

W �
0 ¼

R�C
N

; q�0 ¼
að1þ bÞN 2

2ð1� bÞR�2C2Kp
; ð12Þ

where R� ¼ q�
0

C þ T p. Due to the highly nonlinear nat-
ure and the effect of delays in the system, no suitable
Lyapunov function could be constructed to prove
global asymptotic stability of the equilibrium. With-
out loss of generality, we ignore the dependence of
the time-delay argument t � R(t) on the queuing de-
lay and assume it is fixed to t � R*. Then, the system
(2) can be linearized as

_eW ðtÞ ¼ � aN

R�2C
eW ðtÞ � aN

R�2C
eW ðt � R�Þ � a

R�2C
~qðtÞ

� 2ð1� bÞ
1þ b

KpC2R�

N 2
� a

R�2C

� 	
~qðt � R�Þ;

_~qðtÞ ¼ N
R�
eW ðtÞ � 1

R�
~qðtÞ;

ð13Þ

where eW :¼ W � W �
0; ~q :¼ q� q�0.

System (13) can be written in the form of

_xðtÞ ¼ AxðtÞ þ Bxðt � R�Þ; ð14Þ
with x ¼ ð eW ðtÞ; ~qðtÞÞT, A ¼

�aN
R�2C

�a
R�2C

N
R� � 1

R�

� �
and

B ¼
�aN
R�2C

�2ð1�bÞ
1þb

KpC2R�

N2 þ a
R�2C

0 0

" #
:

The norm of matrix is defined by kAk ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðATAÞ

q
, i.e., the square root of the maximum

eigenvalue of ATA.
It can be checked that A is a Hurwitz matrix,

which implies that for any positive-definite matrix
Q, there exists certain positive-definite matrix P,
such that ATP + PA = �Q.

Theorem 4. Let M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðP Þ=kminðP Þ

p
, if there

exist positive-definite P and Q satisfying ATP +

PA = �Q such that matrix Q � 2MkPBkI is positive

definite, then the equilibrium point of (2) is locally

asymptotically stable.

Proof. With (13) and (14), we choose Lyapunov
function V(x) = xTPx. Then

_V ¼ _xTPxþ xTP _x

¼ xTðtÞðATP þ PAÞxðtÞ þ 2xTðt � R�ÞBTPxðtÞ:

Applying Lyapunov–Razumikhin condition, we as-
sume l > 1 such that

V ðnÞ 6 l2V ðtÞ for t � R� 6 n 6 t;

which implies that kx(n)k 6M Æ l Æ kx(t)k, where

M ¼
ffiffiffiffiffiffiffiffiffiffiffi
kmaxðP Þ
kminðPÞ

q
.

Thus,

_V 6 �xTðtÞQxðtÞ þ 2kxðt � R�ÞkkPBkkxðtÞk
6 �xTðtÞ½Q� 2lMkPBkI �xðtÞ:

Since Q � 2MkPBkI is positive definite, there exists
l > 1 such that _V < 0. The local asymptotic stability
of system (2) is then obtained. h

Lyapunov–Razumikhin condition is used in The-
orem 4 to deal with the delayed terms in _V . Lyapu-
nov functional is another method that can be
applied when studying the stability of delayed sys-
tems. In the following, we apply the method of
Lyapunov functional to give a different sufficient
condition for the local asymptotic stability of sys-
tem (2).

Theorem 5. If there exist positive-definite P and Q

satisfying ATP + PA = �Q and positive-definite H
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such that matrix
Q� H �PB
�BT P H

� �
is positive definite,

the equilibrium point of (2) is locally asymptotically

stable.

Proof. With (13) and (14), we choose Lyapu-
nov functional V ðxÞ ¼ xTPxþ

R t
t�R� xTðsÞHxðsÞds,

then

_V ¼ xTðtÞðATP þ PAÞxðtÞ þ 2xTðt�R�ÞBTPxðtÞ

þ xTðtÞHxðtÞ � xTðt�R�ÞHxðt�R�Þ

¼ �xTðtÞðQ�HÞxðtÞ þ 2xTðt�R�ÞBTPxðtÞ

� xTðt�R�ÞHxðt�R�Þ

¼ �ðxTðtÞ;xTðt�R�ÞÞ
Q�H �PB

�BTP H

" #
xðtÞ

xðt�R�Þ

" #
:

Thus, system (2) is locally asymptotically stable if
Q� H �PB
�BTP H

� �
is positive definite. h

The two theorems provide sufficient conditions of
local asymptotic stability for the AIMD/RED sys-
tem. We give a numerical example for Theorem 5:
Let N = 10, C = 3000 (packets/s), Tp = 0.02(s),
Kp = 0.0005 with a = 1, b = 0.5. We choose

Q ¼ 39:0410 2:2648
2:2648 6:4539

� �
and H ¼ 1

2
Q: Note that Q

and H are positive definite. With Matlab, we get

P ¼ 19:0990 0:2793
0:2793 0:0599

� �
and the eigenvalues of the

matrix
Q� H �PB
�BTP H

� �
are all positive: 0.1780,

3.2305, 3.4105, 38.6758; therefore,
Q� H �PB
�BTP H

� �
is positive definite. Thus, the condition of Theorem
5 holds and the system is locally asymptotically sta-
ble. Simulation results using the same parameters
will be given in Section 6.

Theorems 4 and 5 give different sufficient asymp-
totic stability conditions, which allow us to use any
of them at our convenience. Again, the asymptotic
stability is for the average values of window size
and queue length. Given that the average window
size converges to W �

0, the maximum instantaneous
window size is bounded to 2W �

0=ð1þ bÞ, so the
AIMD window size can be marginally stable with
known bounds. Similarly, the instantaneous queue
length is bounded.

So far, we have mathematically derived the local
stability conditions of AIMD/RED system. For
local asymptotic stability, once the system enters

the stability region or region-of-attraction, the sys-
tem will converge to the equilibrium asymptoti-
cally. Obviously, the equilibrium point belongs to
the stability region. We conjecture that, with both
the slow-start and the AIMD algorithms of the
TCP/AIMD protocols, the system will eventually
evolve to the stability region and equilibrium,
and thus global asymptotic stability can be
achieved. Simulations in Section 6 also demon-
strate this tendency. Global asymptotic stability
conditions for AIMD/RED systems are still under
investigation.

5.2. Stability of heterogeneous delayed AIMD/RED

system

In the previous subsection, we discuss the stabil-
ity issue of homogeneous flows with the same
AIMD (a,b) pair and the same round-trip delay.
In this section, we first consider two classes of
flows with parameters (a1,b1), (a2,b2), traffic loads
N1, N2 and rtts R1, R2, respectively. The results
can be generalized to any number of flows with
heterogeneous AIMD parameters and feedback
delays.

Taking all the time delays into consideration, the
AIMD/RED system shared by two classes of flows
can be modeled as

dW IðtÞ
dt

¼ a1

R1ðtÞ
� 2ð1� b1Þ

1þ b1

� W IðtÞW Iðt � R1ðtÞÞ
R1ðt � R1ðtÞÞ

Kpqðt � R1Þ;

dW IIðtÞ
dt

¼ a2

R2ðtÞ
� 2ð1� b2Þ

1þ b2

� W IIðtÞW IIðt � R2ðtÞÞ
R2ðt � R2ðtÞÞ

Kpqðt � R2Þ;

dqðtÞ
dt
¼

N1W IðtÞ
R1ðtÞ

þ N2W IIðtÞ
R2ðtÞ

� C; q > 0;

N1W IðtÞ
R1ðtÞ

þ N2W IIðtÞ
R2ðtÞ

� C
n oþ

; q ¼ 0;

8><>:
ð15Þ

with R1ðtÞ ¼ qðtÞ
C þ T p1R2ðtÞ ¼ qðtÞ

C þ T p2.
Then, the delayed linearized system about the

equilibrium point is
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_eW IðtÞ ¼ �
a1ðN 1R�2Gþ N 2R�1Þ

GCR�1R�2
ð eW IðtÞ � eW Iðt � R�1ÞÞ

� 2ð1� b1Þ
1þ b1

KpG2C2R�1R�22

ðN 1R�2Gþ N 2R�1Þ
2

~qðt � R�1Þ

� a1~qðtÞ
R�21 C

þ a1

CR�21

~qðt � R�1Þ;

_eW IIðtÞ ¼ �
a2ðN 1R�2Gþ N 2R�1Þ

CR�1R�2
� ð eW IIðtÞ � eW IIðt � R�2ÞÞ

� 2ð1� b2Þ
1þ b2

KpC2R�21 R2

ðN 1R�2Gþ N 2R�1Þ
2

~qðt � R�2Þ

� a2~qðtÞ
R�22 C

þ a2

CR�22

~qðt � R�2Þ;

_~qðtÞ ¼ N 1

R�1
eW IðtÞ þ

N 2

R�2
eW IIðtÞ

� GN 1R�2
R�1ðN 1R�2Gþ N 2R�1Þ

~qðtÞ

� N 2R�1
R�2ðN 1R�2Gþ N 2R�1Þ

~qðtÞ;

ð16Þ

where eW I :¼W �W �
I ;
eW II :¼W �W �

II; ~q :¼ q�q�0:

ðW �
I ;W

�
II;q

�
0Þ

¼ GCR�1R�2
N 1R�2GþN 2R�1

;
CR�1R�2

N 1R�2GþN 2R�1
;

a1ð1þb1Þ
2ð1�b1ÞW �2

I Kp

� 	

is the equilibrium point of system (15), where

R�1¼
q�

0

C þT p1;R�2¼
q�

0

C þT p2, and G¼ a1ð1þb1Þð1�b2Þ
a2ð1�b1Þð1þb2Þ

� �1=2

.

System (16) can be rewritten as

_xðtÞ ¼ AxðtÞ þ B1xðt � R�1Þ þ B2xðt � R�2Þ; ð17Þ

with x ¼ ð eW IðtÞ; eW IIðtÞ; ~qðtÞÞT,

A¼

a11 0
�a1

R�21 C

0 a22

�a2

R�22 C
N 1

R�1

N 2

R�2
a33

26666664

37777775; B1¼
b111 0 b113

0 0 0

0 0 0

264
375 and

B2¼
0 0 0

0 b222 b223

0 0 0

264
375:

where

a11 ¼ �
a1ðN 1R�2Gþ N 2R�1Þ

GCR�1R�2
;

a22 ¼ �
a2ðN 1R�2Gþ N 2R�1Þ

CR�1R�2
;

a33 ¼ �
GN 1R�22 þ N 2R�21

R�1R�2ðN 1R�2Gþ N 2R�1Þ
;

b111 ¼ �
a1ðN 1R�2Gþ N 2R�1Þ

GCR�1R�2
;

b113 ¼ �
2ð1� b1Þ

1þ b1

KpG2C2R�1R�22

ðN 1R�2Gþ N 2R�1Þ
2
þ a1

CR�21

;

b222 ¼ �
a2ðN 1R�2Gþ N 2R�1Þ

CR�1R�2
;

b223 ¼ �
2ð1� b2Þ

1þ b2

KpC2R�21 R2

ðN 1R�2Gþ N 2R�1Þ
2
þ a2

CR�22

:

Also, we can check that A is a Hurwitz matrix.
Let M ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmaxðP Þ=kminðPÞ

p
, we have the following

theorem.

Theorem 6. If there exist positive-definite P and Q

satisfying ATP + PA = �Q such that matrix

Q � 2M(kPB1k + kPB2k)I is positive definite, then

the equilibrium point of (15) is locally asymptotically

stable.

Proof. With (16) and (17), we choose Lyapunov
function V(x) = xTPx, then

_V ¼ xTðtÞðATP þ PAÞxðtÞ þ 2xTðt � R�1ÞBT
1 PxðtÞ

þ 2xTðt � R�2ÞBT
2 PxðtÞ:

Let R� ¼ maxfR�1;R�2g. Applying the Lyapunov–
Razumikhin condition, we assume l > 1 such that

V ðnÞ 6 l2V ðtÞ; t � R� 6 n 6 t;

which implies that kx(n)k 6M Æ l Æ kx(t)k.
Thus,

_V 6 �xTðtÞQxðtÞ þ 2kxðt � R�ÞkkPB1kkxðtÞk
þ 2kxðt � R�ÞkkPB2kkxðtÞk
6 �xTðtÞ½Q� 2lMðkPB1k þ kPB2kÞI �xðtÞ:

Therefore, there exists l > 1 such that _V < 0 under
the condition of the Theorem. The local asymptotic
stability of system (15) is then obtained. h
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We can also apply the method of Lyapunov func-
tional to obtain a different sufficient condition for
the local asymptotic stability of system (15).

Theorem 7. If there exist positive-definite P and Q

satisfying ATP + PA = � Q and positive-definite H

such that matrix

Q� 2H �PB1 �PB2

�BT
1 P H 0

�BT
2 P 0 H

24 35 is posi-

tive definite, the equilibrium point of (15) is locally

asymptotically stable.

Proof. With (16) and (17), we choose Lyapunov
functional

V ðxÞ ¼ xTPxþ
Z t

t�R�
1

xTðsÞHxðsÞds

þ
Z t

t�R�
2

xTðsÞHxðsÞds;

then

_V ¼ xTðtÞðATP þ PAÞxðtÞ þ 2xTðt � R�1ÞBT
1 PxðtÞ

þ 2xTðt � R�2ÞBT
2 PxðtÞ þ 2xTðtÞHxðtÞ

� xTðt � R�1ÞHxðt � R�1Þ � xTðt � R�2ÞHxðt � R�2Þ
¼ �xTðtÞðQ� 2HÞxðtÞ þ 2xTðt � R�1ÞBT

1 PxðtÞ
þ 2xTðt � R�2ÞBT

2 PxðtÞ � xTðt � R�1ÞHxðt � R�1Þ
� xTðt � R�2ÞHxðt � R�2Þ
¼ �ðxTðtÞ; xTðt � R�1Þ; xTðt � R�2ÞÞ

�
Q� 2H �PB1 �PB2

�BT
1 P H 0

�BT
2 P 0 H

264
375 � xðtÞ

xðt � R�1Þ
xðt � R�2Þ

264
375:

Denote D ¼
Q� 2H �PB1 �PB2

�BT
1 P H 0

�BT
2 P 0 H

24 35. Thus, sys-

tem (15) is locally asymptotically stable if D is posi-
tive definite.

The two theorems provide sufficient conditions of
local asymptotic stability for the AIMD/RED sys-
tem with heterogeneous delays. It is worth pointing
out that sufficient conditions derived in Theorem 4
to Theorem 7 are all given in terms of linear matrix
inequalities (LMIs). These conditions can be easily
assessed by applying the LMI Control Toolbox with
Matlab, which makes our results of good practical
value. We give a numerical example for Theorem 7:
let N1 = N2 = 10, Kp = 0.0001, C = 12,000 (packets/
s). Choose (a1,b1) = (1, 0.5) with Tp1 = 0.01 (s), and
(a2,b2) = (0.2,0.875) with Tp2 = 0.008 (s), respec-
tively. Solving the LMI in Theorem 7 with Matlab

Control Toolbox, one feasible solution we obtain is
as follows:

Q ¼
107:8925 66:0119 49:7801

66:0119 62:8475 38:7408

49:7801 38:7408 52:1792

264
375

and H ¼ 1
4
Q. Note that Q and H are positive defi-

nite. We obtain matrix

P ¼
13:8052 6:9367 �0:3094

6:9367 11:6831 �0:1195

�0:3094 �0:1195 0:1443

264
375

with Matlab, and the eigenvalues of the matrix

D ¼
Q� 2H �PB1 �PB2

�BT
1 P H 0

�BT
2 P 0 H

264
375
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are all positive: 2.4997, 3.4597, 3.8422, 5.5610,
7.9974, 13.6734, 46.2107, 46.2592, 93.4159; there-
fore, D is positive definite. Thus, the condition of
Theorem 7 holds and the system is locally asymptot-
ically stable. Simulation results using the same
parameters will be give in Section 6.

While choosing parameters in the numerical
example, we have also found that link capacity C

and feedback delays cannot be too large, so that the
matrix D can be positive definite. This observation
is also consistent with [3], which suggested that
TCP/RED will become unstable when delay
increases, or more strikingly, when link capacity
increases.

Similarly, we can obtain the local stability of the
AIMD/RED system when it is shared by more than
two classes of heterogeneous flows as well. The
proof is omitted here. h

5.3. TCP-friendliness

According to the equilibrium point of the system,
W �

I=W �
II ¼ G is a function of the AIMD parameter

pairs, and it is independent of the delays. In other
words, for two AIMD flows, as long as their AIMD
parameters satisfy the condition that G = 1, their
average window sizes are the same and their flow
throughputs inversely proportional to their rtts.
To be TCP-friendly, the necessary and sufficient
condition is still a = 3(1 � b)/(1 + b), the same as
the condition (10) derived in the delay-free systems
in Section 4.3.

6. Performance evaluation

Matlab is used to obtain the system evolution tra-
jectory of the fluid model in order to verify the
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asymptotic stability proved in Section 5. Network
simulator, NS-2, is used to evaluate the perfor-
mance of the AIMD/RED systems.

6.1. Numeric results

The traces of window size and queue length of 10
TCP flows and 10 AIMD(0.2,0.875) flows in a
RED-enabled link with feedback delays are given
in Figs. 5 and 6, respectively. The parameters used
are the same as those in the numerical example of
Theorem 5, i.e., C = 3000 packet/s, Kp = 0.0005,
rtt = 0.02 s, and minth = 200 packets. For heteroge-
neous-flow case, let 10 TCP flows and 10
AIMD(0.2,0.875) flows share the bottleneck with
C = 12,000 packet/s, Kp = 0.0001, and rtts of the
TCP and AIMD flow are 0.01 s and 0.008 s, respec-
tively. These parameters are the same as those in the
numerical example of Theorem 7. To show the local
asymptotic stability of the system, we choose the
value of the initial condition close to the equilibrium

point. As shown in the figures, all systems are
asymptotically stable, and the numerical results val-
idate the theorems proved in the paper. Since the
parameter pair (0.2,0.875) satisfies the TCP-friendly
condition derived, the average window sizes of the
competing TCP and AIMD (0.2,0.875) flows should
be the same, which is verified by the numerical
results shown in Fig. 7.

6.2. Simulation results

We use network simulator (NS-2) to further
study the performance of the AIMD/RED system
with realistic protocols and network topologies.
Both single bottleneck and multiple bottleneck
topologies are used in the simulations. The follow-
ing parameters are used unless otherwise explicitly
stated. The routers adjacent to the bottleneck link
are RED-capable: all packets can be queued when
the average queue length is less than 200 packets,
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Fig. 8. TCP, Kp = 0.0001, R = 100 ms.

0

1000

2000

3000

4000

5000

6000

7000

0 5 10 15 20 25 30 35 40 45 50

Q
u

eu
e 

L
en

g
th

Time (second)

Queue Length
Time Average Queue Length

(a) Queue length

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30 35 40 45 50

W
in

d
o

w
 S

iz
e

Time (second)

Flow Average Window Size
Time Average Window Size

(b) Window trace

Fig. 9. TCP, Kp = 0.00002, R = 100 ms.
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and the packets will be discarded with probability
Kp times the current average queue length minus
200. The packet size of all flows is 1250 bytes. The
bottleneck link capacity is 1 Gbps, equivalent to
100,000 packet/s.

We first let 100 TCP flows and 100
AIMD(0.2,0.875) flows with homogeneous delays
share a single bottleneck, respectively. Their win-
dow traces and instantaneous queue lengths are
given in Figs. 8–11, with different values of rtt and
Kp. All figures show that the flow window sizes
and queue lengths are periodically oscillating in
steady state, and their time averages over a round
are converging to certain values, i.e., their time aver-
ages are asymptotically stable.

As shown in Figs. 8 and 9, a small value of Kp

can reduce the oscillation amplitude in the steady
state, and thus improve the link utilization and
reduce delay jitter in the steady state, at the cost
of taking longer for the system to reach the steady
state. The network utilization in transient states is

low, so a slow convergence speed is not desired.
Comparing Figs. 8 and 10, it is noticed that the sys-
tem with AIMD (0.2,0.875) flows has smaller oscil-
lation amplitude in the steady state because the
AIMD flows have a smaller value of a and a larger
value of b than that of TCP flows. Another observa-
tion from Figs. 8 and 11 is that the larger the rtt, the
slower the system converges to the steady state.

To study the system performance with heteroge-
neous flows, let 24 AIMD(0.2,0.875) flows compete
with 100 TCP flows, and their rtts are randomly
chosen between 0.09 s and 0.1 s. The traces of their
average window size and queue length are given in
Fig. 12. It is shown that, when heterogeneous TCP
and AIMD(0.2,0.875) flows share the network, the
network converges to the steady state quickly and
the queue oscillation in the steady state is small.
In other words, when heterogeneous traffic shares
the network, the system performance is even better
than that with only TCP flows (high oscillation
amplitude in the steady state) or homogeneous
AIMD (0.2,0.875) flows (slow convergence speed).
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Another observation from Fig. 12 is that the aver-
age window sizes of the TCP flows and the AIMD
(0.2,0.875) flows are close to each other, therefore
validating the TCP-friendly condition derived in
Section 4.

A realistic network will accommodate flows with
heterogeneous round-trip delays, and some flows
may undergo multiple bottlenecks. The topology
used for a multiple-bottleneck scenario is shown in
Fig. 13; 100 group I flows compete with 50 group
II TCP flows in link r0r1 and with 50 group III
TCP flows in link r1r2. The round-trip times of the
flows are randomly chosen from 50 ms to 400 ms.
There are 50 TCP flows and 50 AIMD(0.2,0.875)
flows in group I. The trace of queue length at r0 is
shown in Fig. 14. Although the instantaneous queue
length oscillates over time, the time average does
not change significantly. The stability conditions
for multiple-bottleneck AIMD/RED systems are
under investigation.

7. Conclusions and future work issues

In this paper, we have studied the stability of
AIMD/RED systems with and without the consider-
ation of feedback delays. Delay-free systems have
been proved asymptotically stable. Sufficient condi-
tions have been obtained for the local asymptotic
stability of both homogeneous-flow and heteroge-
neous-flow systems with feedback delays, which pro-
vide insight and guidelines for the design of a stable
system. TCP-friendliness issue has also been dis-
cussed for multiple flows with different AIMD
parameters and different rtts. Numerical results have
been given to validate the analytical results, and
extensive simulations with NS-2 have been con-
ducted to study the system performance with realistic
protocols and network topologies. The study will be
useful to re-design and re-engineer TCP congestion
control for supporting heterogeneous multimedia
application in more diversified Internet in the future.

There are many interesting open issues require
further research. First, for RED queues, the packet
drop probability depends on the queue length only.
With the model presented in the paper, the average
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queue length in the steady state can be derived,
which can be used to give a rough estimation of
the packet loss rate. However, the packet loss rate
depends on the queue length distribution, which is
unknown from the model. Second, the robustness
of the system with disturbance from short-lived
TCP connections and UDP connections is an impor-
tant open issue. Third, a single-bottleneck topology
is used in this paper. In a follow-up work, we will
extend the stability analysis to systems with multiple
bottlenecks. Finally, since multicast applications
may use a large portion of Internet bandwidth in
the future, how to design and analyze flow/conges-
tion control mechanisms for multicast applications
is a very challenging issue beckon for more research.
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