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Abstract—Plug-in Hybrid Electrical Vehicles (PHEV) are
promising to improve energy efficiency and environment friend-
liness. However, without proper control, their charging will cause
harmful impact on the power distribution grid, including load
congestion and voltage drop. Instead of using centralized opti-
mization which may need accurate predictions on key parame-
ters, in this paper, a new decentralized random access framework
is introduced to schedule the PHEV charging. The proposed
distributed solution does not need accurate predictions and
can be executed online. Simulation on a semi-urban residential
medium voltage grid shows that our algorithm can effectively
provide demand response to protect the distribution grid from
bus congestion and voltage drop, and also improve its efficiency.
Most importantly, this algorithm is simple to deploy.

Index Terms—Decentralized/Randomized PHEV charging, De-
mand Response, Distribution Grid, Smart Grid

I. I NTRODUCTION

Plug-in hybrid electric vehicle (PHEV) becomes increas-
ingly popular. The energy department of USA estimates that
more than one million PHEVs will be sold by the end of
2015. In addition to its environment friendliness, the adoption
of a large number of PHEVs will exert great pressure on the
current power grid due to its high power demand [2]. As a
result, appropriate actions are needed to eliminate any possible
harmful impact, which sparks numerous research efforts.

The previous work mainly focused on the grid constraints
at the transport and high-voltage distribution grid [1], [2].
Recent research started to pay attention to the distribution grid.
The two most common problems in the distribution grid are
bus congestion and voltage drop. As discussed in the related
work section, existing approaches mainly focus on centralized
optimization technologies which need accurate predictions and
may be difficult to solve within a short time period given a
large grid size. In the low voltage grid, some centralized light-
weight control algorithms were proposed, but they may not
be easily extended to the whole distribution grid with a large
population and high PHEV penetration.

According to our literature survey, there still lacks of a
distributed scheduling approach for supporting a high PHEV
penetration rate and considering the common grid constraints.
In this paper, we propose a framework to regulate PHEV
charging by considering the bus load congestion and voltage
drop problems in the distribution grid. Different from the
existing algorithms, our algorithm is decentralized with a
low complexity. No complex optimization problem needs to
be solved. And it does not rely on any accurate prediction
on load or PHEV arrival time and can be executed in real-
time. In addition, our approach takes the delay constraintsof
PHEV charging into consideration. Finally, it can be extended

to include other elastic loads to provide automatic demand
response to protect the power grid and improve its efficiency.

The main contributions of this paper are three-fold. First,
a decentralized algorithm is introduced, which can efficiently
avoid bus congestion and large voltage drop in the distribution
grid with charging PHEVs. The smart agents schedule the
PHEV charging independently based on the received informa-
tion of the current grid status from a control center. Second,
we analyze the performance of our algorithm and derive the
system capacity. Finally, extensive simulation with real data
from National House Hold Travel Survey 2009 [11] and the
RELOAD database [12] from national energy modeling system
are conducted to evaluate the performance of the proposed
algorithm on a typical resident area distribution grid [5].

The rest of the paper is organized as follows. A detailed
discussion of related work is given in Section II. Section III
provides the modeling of current load and PHEV charging
profiles, and introduces the grid architecture. Then the problem
is formulated in Section IV. A general description of the
proposed framework is given in Section V. Then we introduce
the detailed algorithm design in Section VI. The performance
of the proposed algorithm is analyzed in Section VII. Per-
formance evaluation by simulation is given in Section VIII,
followed by concluding remarks and future research issues in
Section IX.

II. RELATED WORK

J. Tayloret. al demonstrated that a high PHEV penetration
rate would result in loads exceeding current bus capacity
through simulation based on a real data model [3]. In [4], the
authors used load flow analysis to show the impact of PHEV
on the distribution grid. J. A.et. al investigated the impact of
PHEV charging on medium voltage grid, considering the bus
load congestion, and voltage drop problems [5].

To solve the problems listed above in the distribution grid,
O. Sundstromet. al proposed a centralized approach aiming
to reach minimum charging cost using an optimization tech-
nology. Their model concerns both bus congestion and voltage
drop problems in the medium voltage grid [6], [7]. Richardson
et. al formulated and solved an optimization problem to
maximize the energy delivered to all electrical vehicles (EVs)
within a certain period of time [27]. Transformer overload and
voltage drop of a low-voltage transmission grid are considered,
assuming the charging rate of each EV can be adjusted
continuously. M. D. Galuset. al proposed a hierarchic PHEV
scheduling algorithm based on model predictive control and
game theory in [22], aiming to avoid transformer overload. In
[26], the PHEV charging process can respond to frequency
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Fig. 1. Grid Architecture [5]

and voltage deviations detected locally. [24] uses stochastic
programming to minimize the power losses of the distribution
grid. Sortomme et al discussed a method to reduce compu-
tation time of minimizing the impacts of PHEV charging on
the distribution system’s losses in [25]. In [9], each house
is assigned an upper bound for power consumption. After
reaching this bound, a centralized controller will shut down
some devices according to a predefined priority. In [10], a
dynamic upper bound for all the houses based on the rule
that the original peak demand without PHEV charging is
maintained.

The centralized control used in the previous work may not
be easily extended to a large-scale distribution grid with high
PHEV penetration, as perfect prediction information may not
be available, and the computation time to obtain the control
actions by solving complex optimization problems may be
long. Also, some users may not want their applications being
controlled by others due to privacy reasons. These issues
motivate us to design a distributed algorithm which does not
need accurate prediction on users’ behavior and future load
information [18]. How to design such a distributed algorithm
that can be executed online to solve common distribution grid
problems is still an open issue.

III. SYSTEM MODEL

In this section, the topology of the distribution grid, the load
profile and PHEV charging patterns are introduced. The PHEV
charging profile is modeled based on the data from National
House Hold Travel Survey 2009 using a stochastic approach.

A. Medium Voltage Grid in Our Case Study

Fig. 1 shows a typical residential area distribution grid in
Portugal [5], corresponding to a semi-urban15 kV medium
voltage grid in a residential area. The triangular shapes inthis
figure represent the Medium Voltage to Low Voltage (MV/LV)
transformers. Each transformer serves4 neighborhoods includ-
ing 10 people on average.1

1Our algorithm can be scalable to support more people. Howeverthe
simulation time of the bench-mark algorithm using exhaustive search will
be much longer.

TABLE I
PHEV TYPES AND THEIR KEY PARAMETERS

PHEV Types Battery Capacity Max Range Market Share
Auto 24 kWh 73 miles 49.9%
SUV 37.6 kWh 80 miles 19.4%

Pickup 30 kWh 55 miles 17.8%
Van (and others) 36 kWh 60 miles 12.9%

Similar to [5]–[7], this medium voltage grid is explored
using a radial configuration. All the dashed branches are
considered to be open. The two round shapes in Fig. 1
represent the feeding points. As discussed in [5], this grid
may experience two main problems: the buses near the feeding
points may reach a high congestion level while the far away
ones may encounter the voltage drop problem.2

B. Distribution Grid Load

The total load profile for the medium voltage grid used is
from [14] which is based on the hourly residential load curves
of an average household from the RELOAD database [12] and
interpolated using the approach described in [8]. The hourly
data is interpolated into the load curve which consists of1440
minutes of a day.

The load curve consists of 2 different types of residential
loads, including both critical loads and elastic loads. Critical
loads refer to those that cannot be delayed, such as for
cooking and lighting. Elastic loads can be delayed, like for
cooling/heating. In this paper, we assume all the loads except
PHEV charging to be critical loads for simplicity. In other
words, only PHEV charging is controllable and delayable,
although, if needed, other elastic loads can also take part in
the demand response process using the proposed framework.

C. PHEV Charging Modeling

To obtain the PHEV charging profile, we need to know the
driving habits, PHEV types and etc. We use the data from
National Household Travel Survey (NHTS) 2009 under the
assumption that PHEV owners’ preferences to vehicle types
and their driving behaviors will be similar to the conventional
vehicle owners’. From the NHTS report, vehicles can be
classified into Auto, Sport Utility Vehicle (SUV), Pick-up
trucks and Van. Their key parameters including the estimated
market share are shown in Table I.

In this paper, the Monte Carlo method is used to simulate
the daily driving distance for each PHEV by using the driving
data from [19], so the state of charge (SOC) of each vehicle
can be determined when they arrive home based on the battery
profile and the maximum driving range of that PHEV. Similar
to [10], we further assume that the arriving and departure time
of PHEVs follows a normal distribution with the mean of
6pm and 7am respectively and a standard deviation of 1hr,
respectively. As our focus is to deal with the impact of PHEV
charging during peak time on a residential distribution grid,
peak hours are included in the charging period.

2Note that the load used in [5] is different from that in this paper although
the same grid topology is used.
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In addition to the driving patterns, charging power from [2],
[20], [23] is also used to build the PHEV charging model. In
this paper, the charging power of1.4 kW, 2 kW and6 kW are
chosen with probability0.45, 0.45 and0.1, respectively.

Since there are207 MV/LV transformers in the target grid
and each transformer severs10 people, the population size is
2070. From the data of Major Travel Indicators of 2009 [11],
the vehicle ownership ratio is74.4%. Therefore, the number
of vehicles is1540.

IV. PROBLEM FORMULATION

We consider a discrete-time system,i.e., time is divided into
slots with a constant duration. We also set the slot duration
small enough that the number of PHEVs accessing or leaving
the tagged distribution grid per slot is typically no largerthan
one. The objective of the problem is to maximize the total
number of PHEVs that can be charged under the given system
capacity by optimizing the charging scheduling vectors

X(t) = [X1(t), X2(t), ..., XN (t)], ∀t = 1, 2, ..., T, (1)

where Xk(t) ∈ {0, 1}, ∀k = 1, 2, ..., N , N is the total
number of PHEVs andT is the total time slots.

The scheduling needs to consider three constraints. First,
each PHEV cannot wait longer than the maximum tolerable
delay. Second, the load of each bus cannot exceeds its capacity.
Third, the voltage drop of any bus cannot be larger than the
maximum allowed voltage drop at any time. This problem can
be formulated as follows:

max N (2)

subject to: ω(k) ≤ ωm(k), (3)

fi(X(t), Li
base(t)) ≤ 1, ∀i = 1, 2, ..., M, (4)

fv(X(t), Li
base(t)) ≤ Vmi, ∀i = 1, 2, ..., M, (5)

whereM is the number of buses in the distribution grid;ω(k)
is the total waiting time of PHEVk; ωm(k) is the maximum
tolerable delay time of PHEVk; Vmi is the maximum allowed
voltage drop of busi; Li

base is the base load on busi; fi is the
mapping function that calculates the loading rate from all the
load; fv is the mapping function that calculates the voltage
drop from all the load.

Since it is an integer optimization problem, which is dif-
ficult to obtain the optimal solution in polynomial time, and
constraints (4) and (5) are not linear, in this paper, we aim to
obtain a sub-optimal solution in a distributed and real-time
manner and compare its performance with the best results
using exhaustive search in simulation.

V. PROPOSEDFRAMEWORK

The proposed framework includes three entities: a control
center covering one or more medium voltage grids, one smart
agent per house, and PHEVs. It is important to note that
although our proposed framework is used for PHEV charging,
other elastic load such as washing machine, water heater, and
air conditioner may also be applicable under this framework
to provide demand response.

A. Control Center

The control center in the grid will monitor two kinds
of information: load and voltage drop. All the information
can be obtained from sensors distributed in the grid. In this
paper, we assume that an existing smart grid communication
infrastructure is available to connect the control center,sensors
and smart agents, and the communication delay and packet
losses are negligible [16], [17], [21]. We assume that the data
from all the sensors are updated in real-time. The influence of
grid information update delay on system performance will be
discussed in Section VIII.

From both the historical data and grid topology information,
the control center is able to determine which buses are more
likely to experience the congestion or voltage drop problems.
These are called critical buses, which constitute the congested
bus setSc and voltage drop bus setSv.

When a PHEV is plugged in, the smart agent which makes
scheduling decisions for the PHEV will request a data set from
the control center including parameters relevant to the critical
buses. The data set contains the loading rate of the most easy-
to-congest bus affected by that PHEV (denoted asγc), and a
voltage ratioγv.

At time slot t, the loading rate of busi is defined as follows
(to simplify the notation, we dropt in the following equations):

γc(i) =
current load of bus i

maximum allowed load of bus i
. (6)

Then γc is obtained by choosing the maximum rate of the
bus fromSc, which is the most vulnerable to the congestion
problem:

γc = max γc(i), i ∈ Sc. (7)

Similarly γv is obtained from all affected buses:

γv(i) =
current voltage drop of bus i

maximum tolerable voltage drop of bus i
. (8)

γv = max γv(i), i ∈ Sv. (9)

For example, from [5], for charging load under all the
MV/LV transformers, bus A in Fig. 1 suffers the severest
congestion problem and bus 1 may experience the largest
voltage drop. If a PHEV at locationL is plugged in, the smart
agent atL will request the grid information from the control
center which will putγc(A) asγc andγv(1) asγv into a data
set and then deliver it to the smart agent.

Meanwhile, the control center will keep monitoring the
status of the whole power grid and send instructions to the
smart agents to adjust some control parameters which will
affect their scheduling decisions if necessary. We will discuss
these parameters and actions in Section VI.

B. Smart Agents

The smart agents (or the smart meters) can schedule PHEVs
charging. The scheduling decisions are made based on the
data sets received from the control center and the algorithms
described in Section VI.
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All the houses adopting our algorithms will receive incen-
tive from the electricity company depending on the contri-
butions they make. (How to determine the contribution and
design an incentive mechanism is left for future research.)

It is worth to notice that the user can always let the smart
agent charge the PHEV without waiting, in this case the
PHEV becomes critical load and the user will not receive
compensation from the power company.

C. PHEV

In this paper, we assume that the PHEVs are plugged
in as soon as they arrive home. The departure time can
either be set by the user or by the smart agent according
to the historical data. Then the smart agent can calculate the
maximum tolerable delay time (ωm) for PHEV charging based
on the total parking time (the time between the departure and
arrival, denoted byωt), state of charge (SOC) and charging
power (Pc). Specifically,ωm = ωt−(1−SOC)PB/Pc, where
PB is the battery capacity. Here we use a linear battery model
which is the same as the model used in [2], [9], [15]. In a real
system, the PHEV charging behavior can be more complicated.
Our algorithm is still applicable so long as the smart agent
knows how much time is needed to charge the PHEV and the
total parking time of the PHEV.

To satisfy users’ requirements, the smart agent should
guarantee that the total delay is always less than the maximum
tolerable delay time. In addition, to maintain fairness, some
charging PHEVs may terminate charging in the middle to
yield the charging opportunity to other waiting ones. The smart
agents will also assign a higher priority to those PHEVs which
have waited for a longer time.

VI. RANDOM ACCESSALGORITHM DESIGN

The design objective of our algorithm can be summarized as
follows. First of all, to avoid bus congestion and voltage drop
problems in the distribution power grid, (4) and (5) should
be satisfied. Second, fairness should be maintained among all
the PHEVs. Third, users’ preferences should be taken into
consideration. Fourth, (3) should be satisfied so that all the
PHEVs can be fully charged before their departure. Finally,
this algorithm should not rely on future load prediction andis
simple enough to be executed online.

The flow chart of our proposed algorithm is presented in
Fig. 2. Fig. 2 (a) describes how the smart agent schedules
PHEV charging based on the received information, while
Fig. 2 (b) shows the process of providing demand response to
protect the distribution grid. We will cover the design details
in the following subsections. To meet the first design objective,
when a PHEV is plugged in, the smart agent will calculate all
the access probabilities based on the data set received from
the control center and choose the minimum one to decide the
charging probability.

Specifically, fromγc, andγv, the access probabilityp1(γc)
and p1(γv) can be obtained using the algorithm described
below respectively. Thenp1 is set to be the minimum one
to decide the charging probability of the PHEV.

p1 = min{p1(γc), p1(γv)}. (10)

(a) Schedule PHEV charging

(b) Demand Response

Fig. 2. Flow chart for smart agent

The access probability is calculated as follows. If both of
the received ratiosγc and γv are below the corresponding
threshold one (ts1), the PHEV will start charging with prob-
ability one; otherwise, if any of these ratios is higher than
its corresponding ts1, the charging of the PHEV is restricted
based on a back-off algorithm: with probabilityp1, this PHEV
will start charging immediately; with probability1 − p1, it
will be delayed bytd and then try again. If any of the ratios
is even higher than the corresponding threshold two (ts2), the
charging probabilityp1 is set to zero unless the PHEV reaches
its maximum tolerable delay time. In addition, in each time
slot, the control center will broadcast the ratio when it is larger
than the corresponding ts2, to notify all the relevant smart
agents until this ratio falls below ts2 again. These smart agents,
upon receiving the notification, will suspend the charging
PHEVs with a probabilityp2 to protect the distribution grid.
By stopping charging PHEVs every time slot based on a
probability, a fast demand response can be achieved.
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To provide an equal chance for each PHEV, every smart
agent will acquire the data sets from the control center again
after the PHEV has been charged for a period of time and
then decide whether to let it continue charging or to suspend
it based on the updated probability calculated again from the
received ratios. This will provide an opportunity for other
waiting PHEVs to start charging. All the waiting PHEVs will
obtain a higher priority to charge with a larger waiting time.
A suitable charging period is selected to protect the batteries.

However, when a PHEV reaches its maximum tolerable de-
lay time, the smart agent will let it start charging immediately
to meet the design objective four.

In the following part, we describe how to design the access
probability p1 and the suspending probabilityp2 considering
bus congestion and voltage drop in the distribution grid.

A. Bus Load Congestion

Obviously, the access probabilityp1(γc) should be close to
1 if the ratioγc only exceeds ts1 slightly and it must decrease
fast whenγc approaches ts2. Therefore,p1(γc) is designed as
an exponential function:

p1(γc) =

{

κ1e
−αc(γc−νc1)+βcω/ωm + δ1, if ω < ωm,

1, if ω = ωm,
(11)

whereω is the current waited time of the tagged PHEV,ωm

represents its maximum tolerable delay,νc1 is the value of
threshold one for bus congestion, the parameterδ1 is used to
reflect user’s preference, and the global parameterκ1 is used
by the control center for global adjustment if needed.

In the above design,p1(γc) decreases exponentially when
γc increases, which will restrict the number of PHEVs start
charging when the bus congestion level is high. Since the
smart agent will use the largestγc(i) to calculate the access
probability, all the critical buses can be protected.

The global parameterκ1 can be set by the control center
through notification messages and it is the same for all the
smart agents. By decreasingκ1, the probability to start charg-
ing is decreased, so the demand caused by PHEV charging is
reduced whenγc is between ts1 and ts2, and vice versa. By
default,κ1 is set to1.

The parameterαc determines how fastp1(γc) will decrease
when the current loading rateγc approaches threshold two
for bus congestion (with valueνc2). Considering the design
objective, we definep1(νc1) = 1 andp1(νc2) = ε whenω <
ωm whereε is a very small positive number. Then,αc can be
expressed as follows:

αc =
lnε

νc1 − νc2
. (12)

On the other hand, this PHEV charging request may also
be delayed with probability1− p1. If ωm −ω > tm, then the
delay timetd is randomly selected from[0, tm], wheretm is
the upper bound for the delay; otherwise,td is set asωm −ω.

From (11), PHEVs with the waiting time closer toωm have
a higher probability to access the grid. This will maintain delay
and fairness among all the PHEVs. The maximum tolerable
waiting timeωm can be set by the user or by the smart agent

based on the historical data. Here we assume that an incentive
mechanism is used so all the users set an appropriateωm

according to their real needs. The parameterβc is used to
determine the weight of the waiting time on the charging
probability. The value forβc can be defined as follows: let
p1(νc2) = ρ, κ1 = 1 and δ1 = 0 in (11), and we have:
p1(νc2) = e−αc(νc2−νc1)+βc = ρ ⇒ βc = lnρ+αc(νc2−νc1).

To fully utilize PHEV’s delay time,ρ should be less than
1; otherwise, every PHEV will get a high probability to start
charging before it can be delayed to its maximum tolerable
delay time even whenγc is high. According to our simulation,
ρ can be set between0.3 and0.6 empirically.

When γc is greater than ts2, demand response mechanism
will take place. The probability to suspend a charging PHEV
is denoted asp2(γc). Similarly, p2(γc) is also designed as an
exponential function:

p2(γc) =

{

κ2e
λc(γc−1) + δ2, if ω < ωm,

0, if ω = ωm,
(13)

whereκ2 is another global parameter set by the control center
to adjust demand response speed.δ2 is used to represent users’
preferences, similar toδ1. Both δ1 and δ2 can be set by the
user or learnt by the smart agent. Of course, they will be
included into the incentive mechanism aimed to determine
users’ contributions.

The parameterλc determines the increasing speed ofp2(γc)
when γc is above ts2. If we letp2(νc2) = ε and p2(1) =
1, whereε is a very small positive number, thenλc can be
expressed as:

λc =
lnε

νc2 − 1
. (14)

If a PHEV is delayed or suspended, it will try to access the
grid again aftertd slots. Whether its charging request will be
approved depends on the ratio at that time.

B. Voltage Drop

The influence of a charging PHEV on the voltage of a bus
is related to the location of that PHEV. For example, in Fig. 1,
the voltage drop of bus 1 is related to every charging PHEV
connected to the buses from the feeder point to bus 1. With
the same charging power, the closer the PHEV is to bus 1, the
higher the influence it will be. Therefore, the PHEV at location
L has a higher effect on the voltage drop of bus 1 than that at
location Y. Consequently, we add a weight of location,φ, to
design the access probability function:

p1(γv) =

{

κ3

φ e−αv(γv−νv1)+βvω/ωm + δ3, if ω < ωm,

1, if ω = ωm,
(15)

whereκ3, αv, βv andδ3 are set similar toκ1, αc, βc andδ1

respectively. In practice, it is difficult to define an optimal φ
as it needs perfect grid information. It can be approximatedas
the ratio of the distance between the PHEV and the feeding
point over the distance between the considered critical busand
the feeding point. We will further discuss it in Section VIII.
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Similarly, the suspending probabilityp2(γv) can be de-
signed as follows:

p2(γv) =

{

κ4φeλv(γv−1) + δ4, if ω < ωm,

0, if ω = ωm,
(16)

where κ4, λv and δ4 are set similar toκ2, λc and δ2

respectively. Therefore, PHEVs closer to the feeding point
have a smaller suspending probability for providing demand
response.

From the descriptions above, PHEVs are scheduled and
charged in a distributed manner, and no prediction is needed.
Therefore, the last design objective is met.

Finally, since the smart agent will choose the charging
probability calculated from the received data set based on
(10) to charge the connected PHEV, all the distribution grid
components affected by that PHEV are protected.

VII. PERFORMANCEANALYSIS

In this section, the capacity of the proposed algorithm on
bus congestion is analyzed using a probabilistic method. The
performance analysis on voltage drop is similar and omitted
due to the space limitation. To simplify the analysis, we
assume the maximum tolerable delay of any PHEV is infinity,
and the global control parametersκ1, κ2 are set to one. Since
Poisson process is an acceptable model if the occurrences are
uniformly and independently distributed on an interval of time,
the PHEV arriving process is assumed as a Poisson process
with an average arrival rate ofλ.

In the first part, we will analyze the performance of the
proposed algorithm with real-time grid information, and then
we will consider the situation when real-time grid information
is not available.

A. Control Center with Real-time Grid Information

According to the assumption that real-time grid information
is available and the slot duration is sufficiently small in Section
IV, the number of charging PHEVs will increase or decrease
at most by one in each slot. Let us consider a certain critical
bus A, assume that the maximum loading rate increase caused
by one PHEV on bus A is∆m. From (11), the maximum
probability that the loading rate will exceed ts2 caused by one
arrival PHEV is

p1(νc2 − ∆m) = e−αc(νc2−∆m−νc1). (17)

Since demand response will start whenγc > νc2, this probabil-
ity should be smaller than a thresholdpe, wherepe is defined
by the control center. Letp1(νc2 − ∆m) ≤ pe, we can obtain
the minimum value of the gap betweenνc1 andνc2:

νc2 − νc1 ≥ −
1

αc
lnpe + ∆m. (18)

Define Dm the maximum loading rate increase caused by
the variation of the base load in one slot. Since the charging
probability equals0 when γc > νc2, to prevent the loading
rate from exceeding one, the gap betweenνc2 and one should
be greater thanDm plus ∆m. Then we have

νc2 ≤ 1 − Dm − ∆m. (19)

Besides, once the loading rate exceeds ts2, the probability
to suspend charging PHEVs should be less than a pre-defined
threshold pt so that only a small number of PHEVs are
suspended.pt is set by the control center based on the
estimated number of charging PHEVs in the system.

pt ≥ p2(νc2 + ∆m + Dm) = eλc(νc2+∆m+Dm−1). (20)

After manipulation, we can obtain another bound forνc2.

νc2 ≤
1

λc
lnpt + 1 − ∆m − Dm. (21)

From (18), (19) and (21), we can obtain the upper bounds
of νc1 andνc2.

B. Control Center Without Real-time Grid Information

However, there is always a time interval between the infor-
mation update from sensors to the control center in practice.
To analyze the performance of the proposed algorithm in a
more practical situation, we assume the grid information is
updated everyt seconds, and the maximum PHEV arrival rate
does not exceedλ during the followingt seconds.

The expected number of new PHEVs bus A can support
without exceeding ts2 is:

m1 =

⌊

νc2 − γc

Ic

⌋

, (22)

whereIc is the average loading rate increase caused by one
PHEV. We further consider the following three situations.

(1) γc is below ts1. All the arrival PHEVs will start charging
with probability 1. The probability that the number of arriving
PHEVs does not exceedm1 during t is:

P (n ≤ m1) =

m1
∑

k=0

e−λt(λt)
k

k!
. (23)

(2) γc is betweenνc1 andνc2. The probability for each arriving
PHEV to start charging is

p1(i) = e−αc(γc−νc1). (24)

The probability that the number of arriving PHEVs is less than
or equal tom1 is

Pa =

m1
∑

k=0

e−λt(λt)
k

k!
. (25)

The probability that the number of PHEVs starting charging
is less thanm1, given the number of arriving PHEV is larger
thanm1, is

Pb =
+∞
∑

k=m1+1

e−λt(λt)
k

k!
·

( m1
∑

i=0

(

k

i

)

p1
i(1 − p1)

k−i

)

. (26)

The probability that the total new charging PHEVs’ number
does not exceedm1 is

P (n ≤ m1) = Pa + Pb. (27)

(3) γc is larger than or equal toνc2. In this case, all the arriving
PHEVs will not start charging, so their arrivals will not affect
the bus load.
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From (23) and (27) we can obtain the probability to exceed
νc2 for any γc < νc2. Similarly, the number of new PHEVs
this bus can support without exceeding the bus capacity is

m2 =

⌊

1 − γc

Ic

⌋

, (28)

Substitutingm1 by m2 in (23), (25), (26), (27), we obtain the
probability that the loading rate does not exceed one.

Given λ and that the probability to exceed ts2 and one
should belowpe andps respectively, we can obtain the upper
bound for ts1 and ts2 by using a reversed process. We omit
the details due to the space limitation.

It is worth to mention thatνc1 andνc2 can be set dynami-
cally through broadcasting instructions from the control center
to all the users according to the changing PHEV arriving rate
in different time periods.

On the other hand, givenνc1, νc2, pe, ps, we can obtain the
maximum arrival rateλ that the distribution grid can support
using the proposed algorithm, which is the capacity of the
system.

VIII. P ERFORMANCEEVALUATION

The objective of this simulation is to verify the impact of the
proposed control algorithm on bus congestion, and bus voltage
drop. The simulation is mainly based on real data with an
approximated maximum average arriving rate of30 PHEVs
per minute. The maximum tolerable probabilities to exceed
threshold two and bus loading rate one/maximum allowed
voltage drop are set to10−2 and 10−6, respectively.pt is
set to0.05. Whenever the ratio of a critical bus exceeds ts2,
the specific ratio of the bus is multicasted to all relevant
smart agents every time slot. The situation when the grid
information is updated every60 seconds is also considered
in Section VIII-C.

In the following subsections, we only consider one problem
at one time under the proposed framework, and assumep1

equalsp1(γc) andp1(γv) in Section VIII-A and Section VIII-B
respectively. We compare the performance of the proposed
random access (RA) algorithm with that obtained from ex-
haustive search (ES). For exhaustive search, we choose the one
with the minimum average PHEV waiting time so it can result
in the maximum number of PHEVs being supported without
violating the constraints. In the exhaustive search, we assume
that PHEVs’ charging can be interrupted at any time and any
frequency; therefore, ES result can also be considered as the
performance upper bound. Similar to [27], we do not consider
reactive power or grid losses as they will make the simulation
time much longer. On the other hand, in a real system, as
the smart agents use the measured data, which reflects the
reactive power and grid losses, etc., to calculate the access
probabilities, our algorithm can still be applicable.

A. Bus Load Congestion

According to the simulation results in [5], bus A suffers
the severest congestion problem so its loading rate is deliv-
ered to the downstream smart agents when required. In this
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Fig. 3. Loading rate of bus A with 742 PHEVs
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Fig. 4. Loading rate of bus A with 765 PHEVs

simulation,νc1 and νc2 are set to 0.96 and 0.98 respectively
according to the analysis in Section VII.

Fig. 3 (a) illustrates the loading rate of bus A with 742
PHEVs. To view the curves more clearly, the most critical
time period is zoomed in and shown in Fig. 3 (b). This can be
considered as the capacity of the proposed algorithm because
the loading rate reaches ts2 at the end of the charging period.
As shown in the figure, our proposed algorithm can flatten the
bus loading rate quite well while the uncontrolled loading rate
exceeds one by about70%.

Fig. 4 shows the situation when there are765 PHEVs
which is also the maximum number of PHEVs this distribution
grid can support using exhaustive search. Since PHEVs begin
to charge immediately whenever they reach their maximum
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Fig. 5. Voltage drop of bus 1 with grid topology information
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Fig. 6. Voltage drop of bus 1 without grid topology information

tolerable delay time, the loading rate of RA algorithm exceeds
one at the end. Through multiple simulations with different
PHEV arriving/departure time, exhaustive search with perfect
future information can support about3% more PHEVs than
the proposed algorithm on average in the scenario described
in Section III. In other words, the performance of the RA
algorithm is very close to the performance upper bound,
meanwhile satisfying all the design objectives.

B. Voltage Drop

In [5], bus 1 has the largest voltage drop, so its voltage ratio
is passed down to all the relevant users whenever required. In
this simulation, the maximum tolerable voltage drop is5%,
νv1 andνv2 are set to0.90 and0.95, respectively.

Figs. 5 and 6 show the zoomed in simulation results with
and without the grid topology information, respectively. The
maximum number of PHEVs the distribution system can
support are730 and727 on average, respectively. Both of the
two cases can restrict the voltage drop near ts2. Therefore,we
may find that the performance of the random access algorithm
is not sensitive to the weightφ in (15).

C. Non-real-time Data

In this part, we explore the performance of our algorithm
considering that all the data received at the control centeris
updated every minute. The value for ts1 is decreased to0.95
based on the algorithm in Section VII.

Fig. 7 shows the main part of the loading rate of bus A with
717 PHEVs when non-real-time bus loading rate is delivered
to smart agents. This can be considered as the capacity of the
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Fig. 7. Loading rate of bus A with 717 PHEVs: non-real time

distribution grid using the RA algorithm with non-real time
information. Obviously, the controlled loading rate usingthe
RA algorithm fluctuates more severely. The loading rate even
exceeds ts2 several times after minute700. The reason is that
the number of arrival PHEVs varies greatly during the one-
minute time interval, and many PHEVs become critical load
when reach their maximum tolerable delay time. Nevertheless,
the demand response mechanism suspends some charging
PHEVs when the loading rate is overνc2 and keeps the loading
rate under one all the time. The situation for voltage drop is
similar and is omitted due to the space limitation.

IX. CONCLUSION

In this paper, a random access framework has been proposed
to coordinate PHEV charging to maximize the number of
PHEVs that can be supported considering bus load congestion
and voltage drop constraints. Through the simulation on a
residential area distribution grid, it has been demonstrated that
our algorithm can achieve the performance with a small gap
to the best solution. Besides, it can provide demand response
efficiently. We also tested our algorithm when real-time grid
information is not available, and the result is only about6%
worse than the best one. In addition to regulating PHEV
charging, the proposed solution can also be applied to other
elastic devices.

In this work, the locations of customers will lead to different
levels of congestions to the network and thus affect the access
probabilities of their PHEVs. This may lead to a fairness
problem and requires further study together with other pricing
and economic policies. In addition, the distribution grid in this
paper has a radial topology, for a meshed distribution grid,
things are much more complicated. However, the main idea
of the proposed algorithm is still useful to control the PHEV
access if the critical bus is congested. These are important
further research issues. In practice, several other problems in
the distribution grid should be considered, such as medium
voltage to low voltage (MV/LV) transformer overload. How
to make a tradeoff between the complexity of the control
algorithm and the distribution grid efficiency is left for future
research.
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