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Abstract—Channel coding such as Reed-Solomon (RS) and
convolutional codes has been widely used to protect video
transmission in wireless networks. However, this type of channel
coding can effectively correct error bits only if the error rate is
smaller than a given threshold; when the bit error rate is under-
estimated, the effectiveness of channel coding drops dramatically
and so does the decoded video quality. In this paper, we propose
a low-complex, scalable video coding architecture based on
compressive sensing (SVCCS) for wireless unicast and multicast
transmissions. SVCCS achieves good scalability, error resilience
and coding efficiency. SVCCS encoded bitstream is divided into
base and enhancement layers. The layered structure provides
quality and temporal scalability. While in the enhancement layer,
the CS measurements provide fine granular quality scalability.
In addition, we incorporate the state-of-the-art technologiesto
improve the compressive sensing coding efficiency. Experimental
results show that SVCCS is more effective and efficient for
wireless videocast than the existing solutions.

I. I NTRODUCTION

Video transmission over wireless networks is a challenging
task. Compared to other types of data transmission, video
applications have stringent Quality of Service (QoS) require-
ments. On the other hand, due to the inherent impairments
of wireless channels, channel error, erasure and variation
may degrade video fidelity or even make the video bitstream
undecodable.

In order to reduce the error and erasure of wireless channels,
error correction coding such as Reed-Solomon (RS) code
and convolutional code has been widely used. However, this
type of channel coding is not flexible. It can correct the bit
errors only if the error rate is smaller than a given threshold.
Therefore, it is hard to find a single channel code suitable for
unknown or varying wireless channels.

For unicast applications, retransmission in the link layer
or the transport layer can help recover the errors at the cost
of delay. When we utilize the broadcast nature of wireless
medium to multicast video, due to the independence of dif-
ferent receivers’ channels, the data needed to retransmit are
different for different receivers, which makes retransmission
difficult and expensive.

Can we find a flexible channel coding for wireless unicast
and multicast? That is, for a wide range of channel error
rate, the effectiveness of channel coding degrades gracefully
when the channel condition becomes worse. In addition, for
multicast applications, without the feedback from individual
receivers, the sender can retransmit data that are helpful to
all the receivers. These requirements are indeed difficult and
challenging for traditional channel coding design.

Thanks to the recent advance in signal processing, the
newly developed compressive sensing (CS) technologies can
help to achieve the above goals. Compressive sensing or
compressive sampling [8][3] has been proposed as a new
data acquisition framework which can sample and compress
sparse or compressible signals in a single operation. Besides,
in the research community, people become more and more
interested in the characteristics of the acquired measurements.
With CS, random linear projection of signals not only makes
the encoder very simple but also makes the acquired measure-
mentsdemocratic [11], i.e., they are equally important. For
compressible signals such as image and video, compressive
sensed measurements demonstrate good scalability, i.e., the
more measurements are received, the better user-perceived
image and video quality is.

If we only treat compressive sensing as an image com-
pression method, there is a huge gap in terms of coding
efficiency between compressive sensing and conventional cod-
ing methods [10]. Although compressive sensing has the
advantage of being a joint source and channel coding, its
coding efficiency needs to be improved, since minimizing
bandwidth consumption is one of the most important goals
in codec design, particularly for wireless transmissions.

The main contributions of this paper are twofold. First,
we propose a low-complex, scalable video coding architecture
based on compressive sensing (SVCCS) for wireless unicast
and multicast transmissions. SVCCS achieves good scalability,
error resilience and coding efficiency. A SVCCS encoded
bitstream is divided into a base and an enhancement layer.
The layered structure provides quality and temporal scalability.
The base layer is composed of a small portion of discrete
cosine transform (DCT) coefficients. The enhancement layer
consists of compressive sensed measurements. While in the
enhancement layer, the CS measurements provide fine granular
quality scalability. In addition, we incorporate the state-of-
the-art technologies of compressive sensing (e.g., analysis-
basedℓ1 minimization and dictionary) to improve the coding
efficiency. Second, we study the performance of SVCCS and
the contribution of each component of the codec. We also
compare the performance of SVCCS and MJPEG in wireless
video multicast.

The rest of the paper is organized as follows. Section II gives
a brief introduction of compressive sensing and the related
work. Section III describes the architecture of SVCCS. The
performance of SVCCS is studied in section IV, followed by
concluding remarks in section V.



II. BACKGROUND AND RELATED WORK

A. Background of Compressive Sensing

Compressive sensing or sampling [8][3] was proposed as a
new acquisition framework which can sample and compress
sparse or compressible signals in a single operation.

Suppose that a signalx ∈ Rn can be transformed to a coef-
ficient vectorθ with some basisΨ, i.e.,x = Ψθ. Ψ can be any
representing basis such as DCT or wavelet. The measurements
of compressive sensing,y ∈ Rm, are obtained by multiplying
signalx with a measurement matrixΦ ∈ Rm×n, i.e.,y = Φx.
Sincem < n, (1) is an underdetermined system with infinite
solutions. Using the reverse operation in (1) to recoverx is
infeasible.

y = Φx̃ (1)

However, [8] and [3] have shown thatℓ1 minimization may
recover the original signal with high probability, which can be
formulated as

min ‖θ̃‖ℓ1

subject to ‖y − Aθ̃‖ℓ2 ≤ ǫ,
(2)

whereA = ΦΨ andǫ is the noise energy in the measurements.
Then the recovered signalx̂ = Ψ∗θ̂, whereΨ∗ is the adjoint
of Ψ and θ̂ is the solution to (2).

In order to make recovery stable and accurate, sensing
matrix A must satisfy the restricted isometry property (RIP).
Reference [3] showed the methods of generating sensing
matrix holding RIP. One of them is to randomly selectm
rows from the Fourier matrix. When condition

m ≥ CS(log n)4 (3)

is satisfied, the sensing matrixA obeys RIP with overwhelm-
ing probability, whereC is a constant.

For compressible signals, [3] also showed that if there are
O(S log n) measurements, the recovery is as good as knowing
x and selecting the largestS coefficients fromθ.

There are four important observations which are exploited
in this paper. 1) The sufficient condition (3) for RIP only
cares about the number of rows of Fourier matrix instead of
which row is selected. In other words,CS measurements are
equally important. The property is also called democracy [11].
2) Compressive sensing is scalable. The more measurements,
the smaller recovery error is. 3) Given a fixed number of
measurements, the faster the signal decays, the smaller the
recovery error is. 4) The recovery error is proportional to noise
energyǫ. The noise may include quantization and transmission
errors, which should be carefully managed.

B. Related Work

There are a few related work using compressive sensing as
joint source and channel coding framework. [6] used compres-
sive sensing to protect sparse signals over erasure channels.
The proposed method compensates the lost measurements
during transmission by sending more measurements.

With respect to image and video transmission, [12] designed
a video encoder based on CS and a streaming protocol for
wireless video transmission. To exploit temporal redundancy,
the difference frame of the I frame and the target frame is
compressive sensed in [12]. This means the original video
frame is used as the reference frame in the encoder side, while
the decoder uses the recovered image as the reference frame.
The discrepancy will degrade decoded video quality. When
there is transmission error in the reference frame, the error
will affect the frames depending on it.

In [15], the hardware and algorithm to acquire image and
video signals were proposed, which exploited the correlation
of adjacent frames. They used the joint measurement matrix
and 3D wavelets as the representing basis, encoding several
frames or even the whole video sequence and then recovering
the frames together. However, this method increases compu-
tational complexity and also increases both the encoding and
decoding delay.

Therefore, in this paper, we propose a low-complex, scal-
able video coding architecture based on compressive sensing,
which utilizes temporal redundancy and the state-of-the-art
technologies to improve the compressive sensing coding ef-
ficiency and makes it resilient to transmission errors.

III. PROPOSEDV IDEO CODING ARCHITECTURE

Previously, coding efficiency of compressive sensing cannot
compete with conventional codec such as JPEG or MPEG4
when dealing with already acquired image or video signals
with high resolution and quality. Compressive sensing only
shows its advantage when it acquires and compresses image
at the same time. Our goals of designing SVCCS are two-fold:
1) improve its coding efficiency, and 2) make it error resilient.
In this section, we describe how these goals are achieved.

A. Layered Structure Design

Figs. 1 and 2 illustrate the proposed video encoder and
decoder architecture, respectively. As shown in Fig. 1, video
frames are divided into two categories, i.e., I frames and P
frames. I frames are DCT transformed andd coefficients are
extracted in a zigzag order, then uniformly quantized and
entropy encoded. Although the number of these coefficients
is small, they contain the majority energy of the image.
Therefore, after these coefficients are inversely quantized
and inversely DCT transformed, the resultant image provides
moderate image quality and can be used as a reference frame.
Then the difference between the reference frame and the I or P
frame, called the difference frame, is fed into the compressive
sensing block.

The concept of the reference frame comes from conven-
tional video codecs, where temporal redundancy of adjacent
frames is exploited to improve coding efficiency. For conven-
tional video codecs, the difference of adjacent images contains
less energy thus needs less bits to represent. For compressive
sensing, the difference of adjacent images is more sparse and
compressible.



Motion compensation is not adopted although it can improve
the coding efficiency greatly, since it is the most computational
complex operation in the traditional encoder. In addition,
motion compensation requires to transmit the motion vectors
error-free. If motion vectors are corrupted during transmission,
degradation of received video quality is inevitable.

In order to minimize transmission errors, a small portion of
DCT coefficients are chosen as the reference frame instead
of the whole I frame, since it is easier and less costly to
protect the small amount of the DCT coefficients than the
whole I frame. As any part in the reference frame is corrupted,
the error will propagate among the entire group of pictures
(GOP). We can see the similarity between the proposed
video codec and the scalable video coding (SVC) [14]. The
reference frame constitutes the base layer and the compressive
sensed difference frame composes the enhancement layer. The
layered structure of the proposed video coding architecture
thus preserves the quality and temporal scalability.

Fig. 3 shows the layered structure of frames. The GOP size
is four. The arrowed dashed lines indicate the dependence
between frames. From the figure, we can see that P frames
are dependent on the closest I frame(s)’ reference frame(s).
The P frame in the middle is dependent on the average of the
two reference frames to better exploit temporal redundancy.

zigzag

IDCT Reference 
frame

Inverse 

quantize

DCT
zigzag

Sensing Quantize

Quantize

DCT 

coefficients

Measurements

I frame

I, P frame

Fig. 1. encoder

Inverse 

quantize

Inverse 

quantize

DCT 

coefficients

Measurements

L
1

m
in
im
iz
a
tio
n

zigzag

IDCT Reference 
frame

Decoded

frameEntropy

decoding

Entropy

decoding

Fig. 2. decoder

I P PP I

DCT 

coefficients

CS

Measurements

Fig. 3. GOP Structure. Vertical dashed lines contain a groupof pictures of
size four.

B. Components of Compressive Sensing

The structurally random matrix [7] is chosen as the mea-
surement matrix which can be described as

Φ = QWP, (4)

where matrix P ∈ Rn×n is a global randomizer which
randomly permutes matrixW . Matrix Q ∈ Rm×n randomly
selectsm rows ofWP . W ∈ Rn×n is a block diagonal matrix.

In addition to the synthesis-basedℓ1 minimization, an
alternative analysis-basedℓ1 minimization can be formulated
as

min ‖Ψ∗x̃‖ℓ1

subject to ‖y − Φx̃‖ℓ2 ≤ ǫ
(5)

According to [5], whenΨ is an orthonormal basis, the above
two problems are equivalent. But whenΨ is a redundant
dictionary, analysis-basedℓ1 minimization involves less un-
knowns so the recovery performance is superior.

Undecimated wavelet transform (UWT) is chosen as the
basisΨ. UWT has been found to outperform the orthogonal
wavelet transform in image denoising. It is expected to en-
hance the sparsity of image.

C. Quantization

DCT coefficients and measurements are uniformly quan-
tized. Letl be the number of bits to represent a measurement.
Vmax = max(|yi|). Range [−Vmax, Vmax] is divided into
2l bins. Then the measurement can be represented by the
bin number which contains it. The quantization step size
q = 2Vmax/2l. DCT coefficients quantization follows the same
way. The quantization error can be estimated by

∆ =

√

q2m

12
=

Vmax

√
m√

3 · 2l
. (6)

When there is no other noise except quantization error,ǫ = ∆.
Last, we adopt the simple entropy coding technology, the

Huffman code, to further improve the code efficiency.

IV. PERFORMANCE STUDY

In this section, we first investigate the reasoning behind
the codec design and its performance. Then we compare
the performance of the proposed SVCCS and the traditional
solutions in supporting wireless multicast applications.

A. Performance of SVCCS

We use “Foreman” as the test video sequence to investigate
the SVCCS performance. The resolution is QCIF(176× 144),
and frame rate is15 frames per second. We use NESTA [1]
which is one of a few routines that can solve analysis-based
ℓ1 minimization.

Figure 4 shows the compressibility of an original frame
and a difference frame. A difference frame is obtained by
subtracting two consecutive original frames. We use db4 UWT
with four levels. Since UWT is redundant, the number of
resultant transform coefficients is16 times larger than the
frame size. Then, we sort the magnitude of the coefficients in
descending order. From the figure, we can see that not only the
difference frame’s energy is reduced, but also the coefficients
of the difference frame decay faster and the portion of small
coefficients is lager than that of the original frame.

Figure 5 shows the distribution of DCT coefficients and
measurements. Since the DCT coefficients contain the majority
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of the energy of an image and are more important, we use
more bits (9 bits) to represent a DCT coefficient than that for
a CS measurement (4 bits). There are500 DCT coefficients
and 12000 measurements. From the figure, we can see the
distribution is skewed and close to a Gaussian distribution.
Therefore, the coding efficiency can benefit from the Huffman
coding. The average bits of DCT coefficients and measurement
is reduced to5.5 and2.9 bits, respectively.

In order to study the contribution of each component of the
video codec, we turn off the component or use an alternative to
see the effect of the component. We compare analysis-based
ℓ1 minimization with total variation(TV) [13];9/7 wavelet
transform with UWT; intra-coding with inter-coding; and
entropy coding enabled with entropy coding disabled. In this
study, we set the number of DCT coefficients to be500 with
9 bits for each coefficient before Huffman coding. We change
the coding rate by changing the number of measurements but
with fixed 4 bits for each measurement. We use the same GOP
structure depicted in Fig. 3 for inter-coding.

From Fig. 6, we can see that inter-coding is better than
intra-coding for both analysis-basedℓ1 and TV minimization.
PSNR is increased by12% (3.43 dB) on average for analysis-
basedℓ1 with UWT case and inter-coding. If analysis-based
ℓ1 and inter-coding are enabled, the UWT is11% (3.2 dB)
better than biorthorgonal9/7 wavelet transform on average.
Analysis-basedℓ1 with inter-coding is5% (1.6 dB) better than
TV with inter-coding. When we use entropy coding, the bitrate
is further reduced by25% on average.

Next, we study the scalability of SVCCS. The effect of
measurement loss is the same as changing the size of the
measurement matrix. When the measurements are lost, we just

200 400 600 800 1000 1200
20

22

24

26

28

30

32

34

36

Kbps

P
S

N
R

 

 

anal1 intra w
anal1 intra uwt
anal1 inter w
anal1 inter uwt
TV inter
TV intra
anal1 inter uwt coded

Fig. 6. Comparison of components. anal1 denotes analysis-based ℓ1 mini-
mization; inter denotes inter-coding with GOP structure IPPP; intra denotes
all frames are intra-coded; u denotes biorthorgonal9/7 wavelet transform and
uwt denotes UWT.

10
−4

10
−3

10
−2

10
−1

10
0

26

27

28

29

30

31

32

33

Measurement loss rate

P
S

N
R

 

 

SVCCS
No dct coefficients

Fig. 7. PSNR vs. measurement loss rate

eliminate the corresponding rows in the measurement matrix
and estimated the quantization error∆ again in the decoder
side. For SVCCS, we compare our proposed GOP structure
with that described in [12], i.e., the whole compressive sensed
I frame is served as a reference frame. Assume that the
DCT coefficients are received correctly. Fig. 7 shows the
comparison. Since the reference frame in [12] cannot be
recovered exactly the same as in the encoder, the decoded
video quality is thus degraded. If the measurements of the
reference frame are lost, the degradation is more apparent.
Therefore, as shown in Fig. 7, the proposed GOP structure of
SVCCS is more desirable.

There are several parameters that control the rate distor-
tion performance. The number of DCT coefficients and its
quantization level control the quality of the base layer, and
the number of measurements and quantization level control
the video quality of the enhancement layer. An optimization
problem can be formulated to maximize the PSNR subject
to the bit budget. For example, for each I frame, if we
use more DCT coefficients, then we have to allocate less
bits (with less quantization level) for each coefficient before
entropy encoding. As shown in Table I, there is no optimal
quantization level for all bit budget. In addition, we also need
to determine how to optimize the allocation of bits between
the base layer and the enhancement layer. These optimization
problems beckon for further research.



bits(60 Kbit) 6× 10000 5× 12000 4× 15000 3× 20000
PSNR 33.75 34.82 34.78 33.29

bits(48 Kbit) 6× 8000 5× 9600 4× 12000 3× 16000
PSNR 31.90 32.96 33.23 32.19

TABLE I
MEASUREMENT AND BITS ALLOCATION

Avg. frame size (Kbits) Avg. PSNR (dB)
SVCCS 36.99 32.74
MJPEG 20.93 31.85

TABLE II
MEASUREMENT AND BITS ALLOCATION

B. Multicast with SVCCS

We study the performance of wireless multicast with
SVCCS. We compare the convolutional code protected
MJPEG bitstream and SVCCS.50 frames are encoded with
MJPEG and SVCCS, respectively. Table II lists the average
frame size and average PSNR of all frames. The SVCCS
encoded bitstream is obtained from the joint source and
channel coding approach, so we do not apply channel coding.
For MJPEG coded bitstream, we apply convolutional code
(code rate is1/2). After channel coding, the doubled average
frame size of MJPEG is even larger than that of SVCCS; thus,
SVCCS can take less channel bandwidth.

We assume that the communication channel is AWGN and
modulation scheme is DBPSK. Assume that the base layer
of SVCCS can be correctly received. This assumption is
acceptable as the base layer only counts for2% of the coded
bitstream, which can be protected with very low cost. The
average PSNR of the base layer is21.45 dB.

Fig. 8 shows the advantage of SVCCS which is strongly
adaptive to channel conditions. Suppose that the channel
quality of users varies from7 to 9.2 dB. In the simulation, we
set the packet size of the SVCCS coded bitstream to250 bytes.
If one bit is transmitted in error, the whole packet and the
contained measurements are lost. For MJPEG coded bitstream,
we do not drop any packet, as dropping the whole packet
makes the decoded quality even worse. Admittedly, this is not
the best way of error concealment, but the figure is sufficient
to show the better scalability of SVCCS than FEC protected
MJPEG.

When we evaluate the video quality at a particular receiver
whose SNR is7.6 dB, some of the frames of MJPEG cannot
be decoded and the decoded one shows worse quality than
SVCCS, as shown in figure 9.
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V. CONCLUSION

In this paper, we have proposed a low-complex, scalable
video coding architecture based on compressive sensing for
wireless unicast and multicast transmissions. As SVCCS can
achieve good scalability, error resilience and coding efficiency,
it is more effective and efficient than the traditional solution to
support wireless videocast. CS based video coding is overall
a promising direction with many other open issues that worth
further investigation, e.g., for SVCCS, how to optimize the
quantization level and the bit allocation for each layer; how
to reduce the decoding complexity is an important further
research issue; how to enhance network protocols to support
SVCCS with even lower cost and better performance.
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