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Abstract—Channel coding such as Reed-Solomon (RS) and Thanks to the recent advance in signal processing, the
convolutional codes has been widely used to protect videonewly developed compressive sensing (CS) technologies can
transmission in wireless networks. However, this type of channel help to achieve the above goals. Compressive sensing or

coding can effectively correct error bits only if the error rate is . i 8131 h b d
smaller than a given threshold; when the bit error rate is under- compressive sampling [8][3] has been proposed as a new

estimated, the effectiveness of channel coding drops dramatity ~ data acquisition framework which can sample and compress
and so does the decoded video quality. In this paper, we proposesparse or compressible signals in a single operation. Bgsid

a low-complex, scalable video coding architecture based onin the research Community, pe0p|e become more and more
compressive sensing (SVCCS) for wireless unicast and m”|tica5tinterested in the characteristics of the acquired measmtm

transmissions. SVCCS achieves good scalability, error resilience With CS d i ecti f i | t onl K
and coding efficiency. SVCCS encoded bitstream is divided into ! » random finear projection ot signais not only makes

base and enhancement layers. The layered structure provides the encoder very simple but also makes the acquired measure-
quality and temporal scalability. While in the enhancement layer, mentsdemocratic [11], i.e., they are equally important. For

the CS measurements provide fine granular quality scalability. compressible signals such as image and video, compressive
In addition, we incorporate the state-of-the-art technologiesto sensed measurements demonstrate good scalability, hiee., t

improve the compressive sensing coding efficiency. Experimental . .
results show that SVCCS is more effective and efficient for more measurements are received, the better user-perceived

wireless videocast than the existing solutions. image and video quality is. ' ' .
If we only treat compressive sensing as an image com-
. INTRODUCTION pression method, there is a huge gap in terms of coding

Video transmission over wireless networks is a challengiradficiency between compressive sensing and conventiomil co
task. Compared to other types of data transmission, videq methods [10]. Although compressive sensing has the
applications have stringent Quality of Service (QoS) regtui advantage of being a joint source and channel coding, its
ments. On the other hand, due to the inherent impairmeistzding efficiency needs to be improved, since minimizing
of wireless channels, channel error, erasure and variatibandwidth consumption is one of the most important goals
may degrade video fidelity or even make the video bitstream codec design, particularly for wireless transmissions.
undecodable. The main contributions of this paper are twofold. First,

In order to reduce the error and erasure of wireless channele propose a low-complex, scalable video coding architectu
error correction coding such as Reed-Solomon (RS) coblased on compressive sensing (SVCCS) for wireless unicast
and convolutional code has been widely used. However, tlisd multicast transmissions. SVCCS achieves good sdgjabil
type of channel coding is not flexible. It can correct the bérror resilience and coding efficiency. A SVCCS encoded
errors only if the error rate is smaller than a given thregholbitstream is divided into a base and an enhancement layer.
Therefore, it is hard to find a single channel code suitalie fohe layered structure provides quality and temporal sdélab
unknown or varying wireless channels. The base layer is composed of a small portion of discrete

For unicast applications, retransmission in the link layeosine transform (DCT) coefficients. The enhancement layer
or the transport layer can help recover the errors at the cesnsists of compressive sensed measurements. While in the
of delay. When we utilize the broadcast nature of wirelegnhancement layer, the CS measurements provide fine granula
medium to multicast video, due to the independence of diuality scalability. In addition, we incorporate the stafe
ferent receivers’ channels, the data needed to retrangmit the-art technologies of compressive sensing (e.g., asalys
different for different receivers, which makes retransios based¢; minimization and dictionary) to improve the coding
difficult and expensive. efficiency. Second, we study the performance of SVCCS and

Can we find a flexible channel coding for wireless unicaste contribution of each component of the codec. We also
and multicast? That is, for a wide range of channel erreompare the performance of SVCCS and MJPEG in wireless
rate, the effectiveness of channel coding degrades gicefwideo multicast.
when the channel condition becomes worse. In addition, forThe rest of the paper is organized as follows. Section ligjive
multicast applications, without the feedback from indiwédl a brief introduction of compressive sensing and the related
receivers, the sender can retransmit data that are helpfultork. Section Ill describes the architecture of SVCCS. The
all the receivers. These requirements are indeed diffiedt aperformance of SVCCS is studied in section IV, followed by
challenging for traditional channel coding design. concluding remarks in section V.



Il. BACKGROUND AND RELATED WORK With respect to image and video transmission, [12] designed
a video encoder based on CS and a streaming protocol for
wireless video transmission. To exploit temporal redugian
Compressive sensing or sampling [8][3] was proposed agj@ difference frame of the | frame and the target frame is
new acquisition framework which can sample and compreggmpressive sensed in [12]. This means the original video
sparse or compressible signals in a single operation. frame is used as the reference frame in the encoder sides whil
Suppose that a signalc R™ can be transformed to a coef-the decoder uses the recovered image as the reference frame.
ficient vectord with some basid, i.e.,« = ¥6. ¥ can be any The discrepancy will degrade decoded video quality. When
representing basis such as DCT or wavelet. The measuremeRése is transmission error in the reference frame, ther erro
of compressive sensing,c R™, are obtained by multiplying il affect the frames depending on it.
signalz with a measurement matrik € R™*", i.e.,y = ®z. | [15], the hardware and algorithm to acquire image and
Sincem < n, (1) is an underdetermined system with infinitgjgeo signals were proposed, which exploited the corati
solutions. Using the reverse operation in (1) to recaves of adjacent frames. They used the joint measurement matrix
infeasible. and 3D wavelets as the representing basis, encoding several
@ frames or even the whole video sequence and then recovering
the frames together. However, this method increases compu-
However, [8] and [3] have shown thd{ minimization may tational complexity and also increases both the encoding an
recover the original signal with high probability, whichnrcke decoding delay.
formulated as Therefore, in this paper, we propose a low-complex, scal-
able video coding architecture based on compressive ggnsin
_ ~ (2) Wwhich utilizes temporal redundancy and the state-of-the-a
subject to [ly — Afll¢, <, technologies to improve the compressive sensing coding ef-

whereA — ®T ande is the noise energy in the measurementg.CienCy and makes it resilient to transmission errors.
Then the recovered signal= ¥, whereU* is the adjoint
of U andd is the solution to (2).

In order to make recovery stable and accurate, sensingPreviously, coding efficiency of compressive sensing canno
matrix A must satisfy the restricted isometry property (RIPtompete with conventional codec such as JPEG or MPEG4
Reference [3] showed the methods of generating sensingen dealing with already acquired image or video signals
matrix holding RIP. One of them is to randomly seleat with high resolution and quality. Compressive sensing only
rows from the Fourier matrix. When condition shows its advantage when it acquires and compresses image

4 at the same time. Our goals of designing SVCCS are two-fold:
m 2 C5(log n) () 1) improve its coding efficiency, and 2) make it error resitie

is satisfied, the sensing matrik obeys RIP with overwhelm- In this section, we describe how these goals are achieved.
ing probability, whereC' is a constant. i

For compressible signals, [3] also showed that if there afe L@yered Siructure Design
O(S log n) measurements, the recovery is as good as knowingrigs. 1 and 2 illustrate the proposed video encoder and
x and selecting the largest coefficients fromd. decoder architecture, respectively. As shown in Fig. lewid

There are four important observations which are exploitéthmes are divided into two categories, i.e., | frames and P
in this paper. 1) The sufficient condition (3) for RIP onlyfframes. | frames are DCT transformed ahaoefficients are
cares about the number of rows of Fourier matrix instead ektracted in a zigzag order, then uniformly quantized and
which row is selected. In other word€S measurements are  entropy encoded. Although the number of these coefficients
equally important. The property is also called democracy [11]is small, they contain the majority energy of the image.
2) Compressive sensing is scalable. The more measurements,Therefore, after these coefficients are inversely quaghtize
the smaller recovery error is. 3) Given a fixed number eind inversely DCT transformed, the resultant image pravide
measurements, the faster the signal decays, the smaller rif@lerate image quality and can be used as a reference frame.
recovery error is. 4) The recovery error is proportionaldéise  Then the difference between the reference frame and the | or P
energye. The noise may include quantization and transmissidrame, called the difference frame, is fed into the compvess

A. Background of Compressive Sensing

y=ozx

min 1611,

Ill. PROPOSEDVIDEO CODING ARCHITECTURE

errors, which should be carefully managed. sensing block.
The concept of the reference frame comes from conven-
B. Related Work tional video codecs, where temporal redundancy of adjacent

There are a few related work using compressive sensingfesames is exploited to improve coding efficiency. For conven
joint source and channel coding framework. [6] used compre®nal video codecs, the difference of adjacent imagesatost
sive sensing to protect sparse signals over erasure clsanriebs energy thus needs less bits to represent. For conyaressi
The proposed method compensates the lost measuremsastssing, the difference of adjacent images is more sparse an
during transmission by sending more measurements. compressible.



Motion compensation is not adopted although it can improwvehere matrix P € R™*™ is a global randomizer which
the coding efficiency greatly, since it is the most compotal randomly permutes matrikxi’. Matrix Q@ € R™*™ randomly
complex operation in the traditional encoder. In additiorselectan rows of W P. W € R™*™ is a block diagonal matrix.
motion compensation requires to transmit the motion vector In addition to the synthesis-basetj minimization, an
error-free. If motion vectors are corrupted during trarssitn, alternative analysis-baseéd minimization can be formulated

degradation of received video quality is inevitable. as . ..
In order to minimize transmission errors, a small portion of min NG 5)
DCT coefficients are chosen as the reference frame instead subject to [ly — @[, <€

of the whole | frame, since it is easier and less costly t&ccording to [5], when¥ is an orthonormal basis, the above

protect the small amount of the DCT coefficients than tr} o problems are equivalent. But whe is a redundant
whole | fra”?e- As any part in the referen(_:e frame is COVT”’F"E’ ictionary, analysis-basefi minimization involves less un-
the error will propagate among the entire group of pictur owns so the recovery performance is superior.

(GOP). We can see the similarity between the propose Undeci .
. . . ted let t f UWT h th
video codec and the scalable video coding (SVC) [14]. Tl'be ndecimated wavelet transform ( ) is chosen as the

reference fram nstitutes the b laver and th . asisW. UWT has been found to outperform the orthogonal
eterence frame consttutes the base fayer a € COMEESZ avelet transform in image denoising. It is expected to en-
sensed difference frame composes the enhancement lager. : :

: X ; ce the sparsity of image.
layered structure of the proposed video coding architectur
thus preserves the quality and temporal scalability. C. Quantization

Fig. 3 shows the layered structure of frames. The GOP sizencT coefficients and measurements are uniformly quan-

is four. The arrowed dashed lines indicate the dependengRy | et/ be the number of bits to represent a measurement.
between frames. From the figure, we can see that P franvas{lx = max(Jy;|). Range [~ Vinax, Vinax] is divided into

are dependent on the closest | frame(s)’ reference frame@ (bins. Then the measurement can be represented by the

The P frame in the middle is dependent on the average of {4 nymber which contains it. The quantization step size
two reference frames to better exploit temporal redundancyq = 2Vinax/2!. DCT coefficients quantization follows the same

way. The guantization error can be estimated by

Inverse
Reff'earnejr;ce ~—] Iiﬂ | quantize
q2m Vmax\/TTl
pCT A = = ' (6)
Entropy 12 \/g ' 2l

. coefficients
DCT f—— Quantize ——————
zigzag

coding

When there is no other noise except quantization etrer,A.
Entropy Last, we adopt the simple entropy coding technology, the
€oding | mezsurements Huffman code, to further improve the code efficiency.

1 frame

= Sensing —— Quantize |——
I,Pframeu 9 Q

Fig. 1. encoder IV. PERFORMANCE STUDY

o] oYt quantme [ [DCT [ Reference In this section, we first investigate the reasoning behind
coefficents i the codec design and its performance. Then we compare
the performance of the proposed SVCCS and the traditional

2 Decoded solutions in supporting wireless multicast applications.
| Entropy Inverse 3~ frame
Measurements | decoding [ | quantize N
' = A. Performance of SYCCS
Fig. 2. decoder We use “Foreman” as the test video sequence to investigate

the SVCCS performance. The resolution is QCI(x 144),

and frame rate i45 frames per second. We use NESTA [1]
which is one of a few routines that can solve analysis-based
£1 minimization.

Figure 4 shows the compressibility of an original frame
and a difference frame. A difference frame is obtained by
Soeticens subtracting two consecutive original frames. We use db4 UWT
with four levels. Since UWT is redundant, the number of
resultant transform coefficients i times larger than the
frame size. Then, we sort the magnitude of the coefficients in
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Fig. 3. GOP Structure. Vertical dashed lines contain a gafupictures of

size four. descending order. From the figure, we can see that not only the
B. Components of Compressive Sensing difference frame’s energy is reduced, but also the coeffisie

The structurally random matrix [7] is chosen as the me&f the difference frame decay faster and the portion of small
surement matrix which can be described as coefficients is lager than that of the original frame.

Figure 5 shows the distribution of DCT coefficients and
®=QWP, (4)  measurements. Since the DCT coefficients contain the rhajori
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of the energy of an image and are more important, we use 10 0 Veasurementlossrate 10
more bits  bits) to represent a DCT coefficient than that for .
a CS measurement (pits). There are&500 DCT coefficients Fig. 7. PSNR vs. measurement loss rate

and 12000 measurements. From the figure, we can see the
distribution is skewed and close to a Gaussian distribution ) ) )
Therefore, the coding efficiency can benefit from the Huffmafliminate the corresponding rows in the measurement matrix
coding. The average bits of DCT coefficients and measurem&fd estimated the quantization ertragain in the decoder
is reduced tc.5 and 2.9 bits, respectively. S|Fie. For SVCQS, we compare our proposed GOI'3 structure
In order to study the contribution of each component of tHith that described in [12], i.e., the whole compressivessen
video codec, we turn off the component or use an alternagivelt Tame is served as a reference frame. Assume that the
see the effect of the component. We compare analysis-bal¥d! coefficients are received correctly. Fig. 7 shows the
¢ minimization with total variation(TV) [13]:9/7 wavelet ComPparison. Since the reference frame in [12] cannot be
transform with UWT: intra-coding with inter-coding; andrgcovered _exqctly the same as in the encoder, the decoded
entropy coding enabled with entropy coding disabled. Is thYid€0 quality is thus degraded. If the measurements of the
study, we set the number of DCT coefficients tod08 with reference frame are _Iost_, the degradation is more apparent.
9 bits for each coefficient before Huffman coding. We changg€réfore, as shown in Fig. 7, the proposed GOP structure of
the coding rate by changing the number of measurements BY{CCS IS more desirable.
with fixed 4 bits for each measurement. We use the same GOPThere are several parameters that control the rate distor-
structure depicted in Fig. 3 for inter-coding. tion performance. The number of DCT coefficients and its
From Fig. 6, we can see that inter-coding is better thayuantization level control the quality of the base layerl an
intra-coding for both analysis-baséd and TV minimization. the number of measurements and quantization level control
PSNR is increased bi2% (3.43 dB) on average for analysis-the video quality of the enhancement layer. An optimization
based/; with UWT case and inter-coding. If analysis-base@roblem can be formulated to maximize the PSNR subject
¢, and inter-coding are enabled, the UWTI1i$% (3.2 dB) to the bit budget. For example, for each | frame, if we
better than biorthorgonad/7 wavelet transform on average.use more DCT coefficients, then we have to allocate less
Analysis-based; with inter-coding is5% (1.6 dB) better than bits (with less quantization level) for each coefficientdvef
TV with inter-coding. When we use entropy coding, the bitratentropy encoding. As shown in Table |, there is no optimal
is further reduced b25% on average. guantization level for all bit budget. In addition, we alseed
Next, we study the scalability of SVCCS. The effect ofo determine how to optimize the allocation of bits between
measurement loss is the same as changing the size of tthe base layer and the enhancement layer. These optinmizatio
measurement matrix. When the measurements are lost, we prstblems beckon for further research.



bits(60 Kbit) 6x 10000 5x 12000 4x 15000 3x 20000

PSNR 33.75 34.82 34.78 33.29
bits(48 Kbit) 6 x 8000 5x 9600 4x 12000 3x 16000
PSNR 31.90 32.96 33.23 32.19
TABLE |
MEASUREMENT AND BITS ALLOCATION
Avg. frame size (Kbits) Avg. PSNR (dB) . == 2 “
SVCCS 36.99 32.74 (a) MIPEG (b) SvCCs
MJIPEG 20.93 31.85
Fig. 9. SVC vs. MIPEG
TABLE Il

MEASUREMENT AND BITS ALLOCATION
V. CONCLUSION

B. Multicast with SYCCS .
) ) ~In this paper, we have proposed a low-complex, scalable
We study the performance of wireless multicast Witigeo coding architecture based on compressive sensing for

SVCCS. We compare the convolutional code protectgfireless unicast and multicast transmissions. As SVCCS can
MJIPEG bitstream and SVCCS0 frames are encoded with 5chieve good scalability, error resilience and coding iefficy,

MJPEG and SVCCS, respectively. Table Il lists the averaggs more effective and efficient than the traditional sntto
frame size and average PSNR of all frames. The SVC(gpport wireless videocast. CS based video coding is dveral
encoded bitstream is obtained from the joint source apdpromising direction with many other open issues that worth
channel coding approach, so we do not apply channel codifigither investigation, e.g., for SVCCS, how to optimize the
For MJPEG coded bitstream, we apply convolutional coqgjantization level and the bit allocation for each layenwho
(code rate isl/2). After channel coding, the doubled averagg, reduce the decoding complexity is an important further

frame size of MJPEG is even larger than that of SVCCS; thygsearch issue; how to enhance network protocols to support

SVCCS can take less channel bandwidth. _ SVCCS with even lower cost and better performance.
We assume that the communication channel is AWGN and
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