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In this paper, we investigate the streaming strategy for dynamic adaptive streaming over
HTTP (DASH). Specifically, we focus on the rate adaptation algorithm for streaming scal-
able video (H.264/SVC) in wireless networks. We model the rate adaptation problem as a
Markov Decision Process (MDP), aiming to find an optimal streaming strategy in terms of
user-perceived quality of services (QoS) such as playback interruption, average playback
quality and playback smoothness. We then obtain the optimal MDP solution using
dynamic programming. However, the optimal solution requires the knowledge of the
available bandwidth statistics and has a large number of states, which makes it difficult to
obtain the optimal solution in real time. Therefore, we further propose an online algo-
rithm which integrates the learning and planning process. The proposed online algorithm
collects bandwidth statistics and makes streaming decisions in real time. A reward
parameter has been defined in our proposed streaming strategy, which can be adjusted to
make a good trade-off between the average playback quality and playback smoothness.
We also use a simple testbed to validate our proposed algorithm. Experimental results
show the feasibility of the proposed algorithm and its advantage over the existing work.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Current statistics show that video applications account
for the highest percentage of the traffic mix in the Internet.
Cisco forecasts that, by 2018, the sum of all forms of video,
including TV, video on demand, Internet video, and peer-
to-peer (P2P) video, will account for 79% of the global
consumer network traffic, while mobile video will account
for more than 75% of the total mobile network traffic [2].

The increasingly popular video websites such as You-
Tube and Vimeo will be the major providers of mobile
presented at ACM
ng the design of the
ture, the SVC video
the wireless testbed,
videos. Progressive download is currently the dominant
video delivery techniques of these video websites. It has
several advantages over the traditional streaming techni-
ques using RTP/UDP. First, it is simple to deploy. At the
server side, any web server can host videos and serve as a
streaming server; at the client side, the user only needs a
flash player or web browser supporting HTML5 for video
playback. Second, the HTTP/TCP protocols used in pro-
gressive download are more firewall and network address
translation (NAT) friendly, and the congestion control
mechanism in TCP simplifies the design of the application
layer. Third, for progressive download, a server can store
several versions of a video to meet the requirements of
heterogeneous users, so a user can select the right version
of the video according to the device decoding capability,
display size and available network bandwidth.
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However, selecting the appropriate version of a video to
match the available bandwidth may not be easy for users
and their decisions might be error-prone. In addition, with
progressive download, the client always downloads as
much video data as possible. Plissonneau and Biersack [3]
report that only half of the videos are fully downloaded
and this number drops dramatically when the users are
not satisfied with the video quality. It is likely that when a
user turns off the video player or switches to another
video, a large amount of un-watched video has been buf-
fered unnecessarily, which wastes the resources of both
the network and the end-systems. It is particularly unde-
sirable for mobile devices with limited energy supply.

Dynamic adaptive streaming over HTTP (DASH) [4] is a
promising technique to overcome the aforementioned
disadvantages of progressive download. Videos encoded in
different versions are chopped into small segments. After
the client receives one segment, it has a chance to decide
which version of the video to request for the next segment,
based on the current network condition. Thus, rate adap-
tation can be performed at the client side naturally and
flexibly. Also, the client has a chance to control the client-
side queue length to avoid streaming buffer overflow, e.g.,
when the download rate is much higher than the
playback rate.

Currently, commercial adaptive streaming products
such as Microsoft Smooth Streaming and Apple Live
Streaming support single-layer H.264 advanced video
coding (AVC) encoded videos. Multiple versions of a video
with different resolution, frame rate and quality are
obtained by encoding the source video multiple times with
different configurations, and the different versions of the
video are completely independent of each other. Thus, not
only more server storage space is needed, but also the web
caching hit-ratio is reduced.

Recently, scalable video coding (H.264/SVC) has been
introduced to the DASH framework to improve the system
performance [5]. With SVC, a video is encoded once only,
and it can be decoded many times with different resolu-
tion, frame rate and quality. However, how to improve the
rate adaptation algorithm to provide users with a satis-
factory quality of services (QoS) is still a challenging and
open question. The problem is even more challenging
when a user uses a handheld device via a wireless access
link for video streaming, as the handheld devices typically
have limited energy supply and computation capacity, and
the wireless links are highly dynamic due to the time-
varying fading, shadowing, interference and hand-off, all
of which motivated our work.

In this paper, we design the rate adaptation algorithm
for streaming scalable video over HTTP in wireless net-
works. The main contributions of this paper are threefold.
First, we formulate the rate adaptation problem as a finite
Markov Decision Process (MDP), aiming to find an optimal
streaming strategy in terms of user-perceived QoS such as
playback interruption, average playback quality and play-
back smoothness. We obtain the optimal streaming strat-
egy by dynamic programming under the reinforcement
learning framework [6]. A reward parameter is defined in
our proposed strategy, which can be adjusted to make a
trade-off between average playback quality and
smoothness. Second, since the optimal solution requires
the knowledge of available bandwidth statistics and has a
high computational complexity, which makes it difficult to
obtain the optimal solution in real time, we propose an
online algorithm which integrates the learning and plan-
ning process, i.e., the proposed algorithm collects band-
width statistics and makes streaming decisions in real
time. Third, we have prototyped a scalable video streaming
framework including the server-side video pre-processing
and client-side SVC video playing back. A real sample
video encoded in SVC is used to evaluate the proposed
streaming strategies and compare them with the existing
work using both wireless testbed experiments and simu-
lations. The experimental and simulation results show the
advantage of the proposed algorithms in practical settings.

The rest of the paper is organized as follows. Section 2
summarizes the related work. Section 3 formulates the
optimal streaming problem as an MDP. Section 4 presents
the proposed optimal streaming policy and the online
algorithm. The evaluation framework, testbed configura-
tions and experimental results are described and given in
Section 5, followed by concluding remarks and further
research issues in Section 6.
2. Background and related work

Different from the application-layer multicasting [7], in
a DASH system, rate adaptation is conducted at the client
side, which is also called pull-based rate adaptation [8]. At
the server side, a source video is encoded into different
versions with different resolution, frame rate and quality.
For each version, the video is divided into small segments.
A web server can host these segments and send them to
the clients upon HTTP requests. At the client side, after a
user clicks the play button, the streaming starts. The video
player first obtains the general information of the video,
such as the number of different versions and the corre-
sponding resolution, frame rate and quality of each ver-
sion. Then, the video player will decide the right version
according to its own display size, decoding capability and
network condition. Usually, the playback does not start
until a sufficient number of segments are received. After
the client receives a segment completely, the rate adap-
tation algorithm will decide which version to request for
the next segment based on the current network condition
and the client-side state such as the number of buffered
segments. In this way, the workload of the server is
reduced dramatically. Fig. 1 shows the general workflow of
the video player in a DASH-like system.

There are extensive research efforts on the adaptive
video streaming over HTTP [4,9,10,11]. Stockhammer [4]
introduced the 3GPP specification of the dynamic adaptive
streaming over HTTP, which describes the framework of
the adaptive streaming system. In [10], the commercial
adaptive streaming products including Microsoft Smooth
Streaming and Netflix player and the open source media
framework (OSMF) player were evaluated and compared.
The results show that the performance of these products
still needs to be improved substantially.



initiate client
get video information send HTTP request

wait HTTP reponse

request the
first segment

measure avg. throughput
estimate bandwidth

save content to buffer
fetched by the decoder

receive HTTP response

rate adaptation algorithm

BEGIN

TERMINATION

request decisionVideo information

Fig. 1. Video player state diagram.
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Liu et al. proposed a rate adaptation algorithm for
adaptive video streaming [9]. The decision of switching to
a video version of a higher or lower bit-rate is made based
on the measured segment fetch time, which can be con-
verted to the average segment throughput and buffer
state. The algorithm is evaluated using constant bit-rate
(CBR), single-layer video traffic only, and the queue length
may sometimes exceed the maximum buffer size. In [11], a
quality-adaptation controller based on the feedback con-
trol theory was proposed. The controller tries to maintain
the buffer level as stable as possible to match the video
bit-rate with the available bandwidth. As the server needs
to maintain the information for each user to perform rate
adaptation, the complexity of the server is increased. To
improve the performance of adaptive video streaming over
HTTP for mobile users, the authors in [12] tried to reduce
the computation load of MDP approach. They devised both
off-line algorithm based on global bandwidth statistics
and on-line algorithm to calculate the optimal solution
periodically. In [13], Yan et al. proposed an evidence
theory-based admission control scheme in cellular net-
works to guarantee the QoE continuum for both existing
and new users. They derived the admission decision logic
by combining the weighted evidence of all users, to
address the issues of uncertainty and inaccuracy of QoE
management.

Recently, SVC has been introduced to adaptive video
streaming. With SVC, we can encode video once and
decode the bitstream multiple times with different reso-
lution, frame rate and video quality [14,15], so the
encoding time and server storage space can be saved,
which is particularly important for live or high-quality
stored video streaming. In addition, thanks to the layered
structure of SVC, we may even upgrade an already
received segment to a higher quality in certain conditions
[16,17]. Sánchez et al. [5] showed the advantage of using
SVC in adaptive HTTP streaming over the single-layer AVC
in terms of caching efficiency. In [16], the authors pro-
posed a priority-based media delivery strategy using SVC
with RTP and HTTP streaming. In the pre-buffering phase,
the most important base layer is transmitted first, so there
are more base-layer frames than enhancement-layer
frames in the buffer. This scheme was designed assuming
that the temporary bandwidth reduction is the only pos-
sible bandwidth variation, and the bandwidth will restore
to a normal level after the temporary reduction. Thus, it
cannot fully handle the random variation of the available
bandwidth at the bottleneck in wireless networks. In [17],
how to use multiple links to improve video quality con-
sidering the different costs of various links was investi-
gated. To investigate the adaptive video streaming over
whitespace fast-fading channel, the authors in [18] pro-
posed a new MDP-based algorithm to take the advantage
of the flexibility of SVC video.

Different from the existing approaches, in this paper,
we focus on the rate adaptation algorithm for streaming
SVC video in wireless networks, considering the random
and less predictable variation of the available bandwidth
in wireless access links. We also consider the more general
case where the layered video is encoded in variable bit-
rate (VBR). The fairness of the proposed algorithm in
multiple clients scenario has been investigated. And
extensive experiments using realistic bandwidth and video
traces have been conducted.
3. Problem formulation

Considering the limited computation capacity of
handheld devices and the high variation of wireless access
links, we formulate the optimal rate adaptation problem as
a finite Markov Decision Process, which can deal with the
random network condition with a relatively simple
approach. For each video segment, the client uses MDP to
make a decision on which action to conduct given the
current client state. There are four components for MDP,
i.e., action, state, transition probability and reward. MDP or
reinforcement learning has also been successfully used in
the medical imaging area [19].

As shown in Fig. 1, after a segment is obtained com-
pletely, the rate adaptation algorithm has a chance to
decide the video version of the next segment to request
and whether the client should be idle for a while to avoid
streaming buffer overflow. We define the sequential
actions as fatg; t ¼ 0;1;…. at is the decision made at step t,
where the step duration equals the time to retrieve one
segment. Note that the step duration is not a constant,
since the segment download time varies according to the
segment size and the available bandwidth. L is the number
of versions. The action set for a given state is
AðsÞ ¼ fAi;Au;Awg, where Ai (i¼ �Lþ1;…; L�1) means to
request the next segment with i layer higher (for iZ0) or
lower (for io0) than the current one, Au means to
“upgrade” the last received segment to a higher quality
version, and Aw means to wait for a time duration of Ts
which is the constant playback time of a segment.

We define a state at step t as st ¼ ðqt ;Δqt ; vt ;Δvt ; bwt ; dtÞ.
Here, qt is the queue length in terms of the number of
buffered frames. Obviously, qt is in the range of ð0; FÞ, where
F ¼ BT � Ns, BT is the target buffer size in terms of the
number of segments, and Ns is the number of frames
per segment. Δqt is the queue length variation after a new
segment has been retrieved, i.e., Δqt ¼ qt�qt�1, which
indicates whether the requested video's bit-rate matches
the available bandwidth. Δqt is in the range of ½�F;Ns�. vt is
the version index of the last received segment. Δvt indicates
the difference of video versions requested in consecutive
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steps. bwt is the available bandwidth at step t. dt is the
number of received segments, which is in the range of
½0;NT �, where NT is the total number of segments the client
needs to request.

From the definition of the states, we can observe that
the Markov property exists, since all of these states depend
on their immediately previous state only, i.e.,

Prfstþ1jst ; at ; st�1; at�1;…; s0; a0g ¼ Prfstþ1jst ; atg: ð1Þ
To obtain the state transition probability, the most

challenging issue is to obtain the model for bwt . For
wireless streaming scenarios, the bottleneck is often in the
wireless access link due to contention or mobility, and the
finite-state Markov chain has been widely used to model
the variation of wireless channels [20,21]. Thus, we use a
discrete-time finite-state Markov model to capture the
variation of the bandwidth, and the state transition prob-
abilities can be obtained from the measurement or derived
from the wireless channel model [20]. Given the time
duration for downloading the current segment, we can
estimate the probability distribution of the bandwidth for
the next segment using the state transition probability
matrix of the Markov model.

For the problem of our interest, we can derive the state
transition probability for the MDP by

Pa
ss0 ¼ Prfstþ1 ¼ s0jst ¼ s; at ¼ ag: ð2Þ
The state at step t is s¼ ðq;Δq; v;Δv; bw; dÞ. If action

at ¼ Ai is selected, with probability Pa
ss0 ¼ Prfbw0jbwg, the

new state will be s0 ¼ ðq0;Δq0; v0;Δv0;bw0; d0Þ, i.e.,
v0 ¼ vþ i; Δv0 ¼ i;

q0 ¼ q�⌈ðmv0
dþ1 � f Þ=bw0⌉þNs;

Δq0 ¼ q0 �q; d0 ¼ dþ1; ð3Þ
where mv0

dþ1 is the size of segment dþ1 in version v0 and f
is the playback frame rate (since we are dealing with the
stored video streaming, the client can have the knowledge
of the size of every segment). If at ¼ Au, the new state is

v0 ¼ vþ1; Δv0 ¼Δvþ1;
q0 ¼ q�⌈½ðmv0

d �mv
dÞ � f �=bw0⌉;

Δq0 ¼ q0 �q; d0 ¼ d: ð4Þ
Similarly, we can derive other state transition probabilities.

The reward in MDP is the payoff obtained when a
particular action is taken at a state:

rtþ1 ¼ Rðst ¼ sÞ; ð5Þ
where R maps the state to a reward. Table 1 lists the
rewards defined for different states. n means any value for
the state, and F þ represents that the number of buffered
frames is larger than BT � Ns. The reward of a state can be
looked up in the table from the top to the bottom, using
Table 1
Rewards associated with states.

st ¼ s RðsÞ

(�; �; �; �; �;NT ) 0
(0; �; �; �; �; �) �FþΔq
(F þ ; �; �; �; �; �) �F�Δq
(�;Δq; �;Δv; �; �) minð�αjΔvj; �jΔqjÞ
the reward of the first entry in the table matching the
current state. The values of rewards need to be carefully
designed, since it is closely related to the control objective.
The stored video has a finite length, and when the state
reaches d¼NT , i.e., all the segments have been down-
loaded, the streaming task completes, which is called an
episodic task. Therefore, we give state (�; �; �; �; �;NT ) a
reward of 0. Besides, any action taken in this state will not
change the state, i.e., the terminal state will not affect the
decision process. By giving the minimum reward when the
buffer is empty, we can minimize playback interruption;
by giving a negative reward to the state when the number
of buffered frames is larger than the desired value, we can
avoid buffer overflow. When both Δq and Δv are 0, the
maximum reward (0) is given, since in these states, the
playback will be smooth and the selected video version
matches the available bandwidth well.

In addition, we can associate a weight parameter α with
the reward to make a trade-off between the average
playback quality and playback smoothness. When α is
smaller, the video streaming can be more adaptive to the
available bandwidth to achieve a higher average playback
quality; when α is larger, a higher priority is given to the
playback smoothness. Note that the reward is independent
of the bandwidth, since we are unable to control the actual
varying bandwidth.
4. Algorithm design

4.1. Optimal solution

We formulate the rate adaptation problem as an opti-
mization problem. The objective is to find a strategy πðsÞ
for the action taken at a state s to maximize the reward
received in the long run. Given a deterministic strategy,
the state-value function is thus

VπðsÞ ¼
X
s0
Pa

ss0 RðsÞþγVπðs0Þ½ �; ð6Þ

where γ is the discounting rate 0rγr1. Note that in our
case, we can set γ to 1, since we are dealing with an epi-
sodic streaming task. An optimal strategy π�ðsÞ should
maximize the state-value function in the long run, i.e.,

π�ðsÞ ¼ arg max
π

X
s0
Pa

ss0 RðsÞþγV�ðs0Þ� �
; ð7Þ

where V�ðsÞ is the optimal value function. Then, we can
obtain the optimal streaming strategy using a value
iteration algorithm [6]. The solution is a table that maps
each state to an optimal action. Furthermore, to reduce the
number of states for MDP and the input size for value
iteration, we divide the buffer size (in frames) into a
number of bins and index them as qb starting from 0 to
⌊BT � Ns=BSc, where BS is the number of frames in each
bin. Then we use qb � BS to represent the number of buf-
fered frames for each bin.
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4.2. Online real-time algorithm

The optimal streaming algorithm can provide us
important insights for dynamic rate adaptation, but it has
several limitations which make it less practical. First, the
optimal streaming algorithm requires the knowledge of
the available bandwidth statistics, i.e., the bandwidth state
and transition probability between states. This information
is difficult to obtain or estimate beforehand. Using finite
state Markov models for dedicated wireless channels is
one way to obtain the channel statistics, but the available
bandwidth statistics for shared wireless access links or
backbone links should depend on not only the physical
channel dynamics but also the less-predictable contention
from other users. Second, we rely on the value iteration
algorithm to solve (7), and the complexity of these algo-
rithms are proportional to the number of states. For the
optimal video rate adaptation problem, the number of
states can be so large that the computational complexity
makes it difficult, if not impossible, to be used in real time.

One category of online algorithms, such as Q-Learning
and Saras [6], does not require the complete knowledge of
the system dynamics but need to repeat the streaming
process many times, and take a long time to improve the
policy. Thus, they are not practical for our problem as well.

In the following, we propose an online algorithm
integrating the learning and planning process, which
learns bandwidth statistics and makes decisions in real
time, and the reasoning of the proposed algorithm still
comes from reinforcement learning. The rate adaptation
algorithm is decomposed into two modules, bandwidth
statistics estimation and real-time action search. After one
segment is received, the bandwidth statistics estimation
module will update the average bandwidth and transition
probability, and then the real-time search module will
determine the best action based on the bandwidth statis-
tics and the current state. We will describe these two
modules in the following subsections.

4.2.1. Bandwidth statistics estimation
In order to obtain the bandwidth statistics, we divide

the bandwidth into Lþ1 regions (states) based on the
average bitrate of video layers. r i is the average bitrate of
layer i. The regions are [0; r1], ðr1; r2], (r2; r3], …, and
(rL;1]. When the d-th segment is received completely, we
can calculate the effective throughput ld for downloading
this segment and determine which bandwidth region
(state) it falls in. We define a transition count matrix C
whose element cij denotes the number of bandwidth
transitions from state i to j. We can calculate the transition
probability as

Pij ¼
cijþkPLþ1

k ¼ 1 cikþkðLþ1Þ
; ð8Þ

where k is the Laplacian smoothing parameter. Laplacian
smoothing can avoid over-fitting and naturally initialize
the transition probability as equal. The average bandwidth
bi of state i is

bi ¼
P

dIðld; iÞPLþ1
k ¼ 1 cki

; ð9Þ
where Iðld; iÞ is defined as

Iðld; iÞ ¼
ld if ldAðr i�1; r i�;
0 otherwise;

(
ð10Þ

In this way, as the number of received segments increases,
the bandwidth statistics will be more accurate.

4.2.2. Real-time action search
The proposed real-time (RT) search algorithm is listed

in Algorithm 1, where D is the search depth threshold to
define how many steps we look forward into the future:

π�ðsÞ ¼ arg max
a

Q�ðs; aÞ; ð11Þ

V�ðsÞ ¼max
a

Q�ðs; aÞ; ð12Þ

Q�ðs; aÞ ¼
X
s0
Pa

ss0 RðsÞþγV�ðs0Þ� �¼ RðsÞþγ
X
s0
Pa

ss0V
�ðs0Þ: ð13Þ

The reasoning behind the real-time search algorithm is
from (11)–(13). We can see the recursive relationship
between the optimal state-value function V�ðsÞ and the
optimal action-value function Q�ðs; aÞ, where Q�ðs; aÞ is the
long-term return when the state is s and action a is taken.
Eqs. (11) and (12) are equivalent since they both indicate
that action a which maximizes Q�ðs; aÞ is the optimal
action for state s. While in (13), Q�ðs; aÞ is dependent on
the expected optimal value function of the next state s0. In
the online algorithm, procedure OptStateValue corre-
sponds to (12) and procedure OptActionValue corresponds
to (13). In line 13, the procedure OptStateValue returns the
best action for state s and the long-term return. In line 17,
the state s0 can be obtained from s and a based on the
transition models defined in (3) and (4).

Algorithm 1. Real-time search algorithm.

1:
 procedure OptStateValueðs; kÞ

2:
 if kZD then

3:
 return RðsÞ

4:
 end if

5:
 max’�1

6:
 for all aAAðsÞ do

7:
 q’ OptActionValueðs; a; kÞ

8:
 if q4max then

9:
 best ’a

10:
 max’q

11:
 end if

12:
 end for

13:
 return (best, max)

14:
 end procedure
15:
 procedure OptActionValueðs; a; kÞ

16:
 q’RðsÞ

17:
 for all s' from s; a do

18:
 ðbest; vÞ’ OptStateValueðs0 ; kþ1Þ

19:
 q’qþγPss0 v

20:
 end for

21:
 return q

22:
 end procedure
Essentially, the states can be viewed as the nodes of a
search tree and the possible combinations of actions and
bandwidth transitions determine the edges of the tree. The
online algorithm is traversing the tree, and the time
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complexity of the online algorithm is OðbDÞ, where b is the
number of branches of the tree (the product of the number
of actions and possible bandwidth transitions). If the
search depth is equal to the whole length of a video, then
we can obtain the optimal solution. But the computation is
too high to obtain such a result in real-time, so the search
depth is set to a small value in the proposed real-time
search algorithm. Thus, the algorithm gives a suboptimal
solution. We use D to make a trade-off between the
optimality and computational complexity. In Section 5, we
demonstrate that the performance of the proposed real-
time algorithm is close to the optimal one when D is 3, and
the computation cost is low enough for real-time decision-
making. As for the memory consumption, since the real-
time search algorithm is similar to the depth-first search,
the memory consumption is bounded by OðDÞ, i.e., the
search depth. Therefore, when D is small, the memory
consumption is small too.
5. Performance evaluation

In this section, we first define the objective QoS metrics
in terms of playback interruption, average playback quality
and playback smoothness. Then we describe the evalua-
tion framework including the layered video storage
structure, SVC video player implementation details and
the experiment settings. We evaluate the proposed online
algorithm and compare it with the optimal solution and
the existing state-of-the-art rate adaptation algorithm [9]
by experiments and simulations.

5.1. QoS metrics

There are many different approaches and metrics for
video streaming quality assessment, ranging from refer-
enced to non-referenced ones, and subjective to objective.
Here we focus on the quality of experience perceived by
end users, i.e., how often the streaming is interrupted, the
average video quality and how often the quality changes,
in an objective manner. Such QoS metrics highly rely on
Frame 1

Layer 1 Layer 2 Layer 3

Frame 1 Frame 2

Layer 1

Frame 1 Frame 

Layer 2

Fig. 2. Layered video s
the rate adaptation algorithm used and can lead to sub-
jective metrics if needed.

(1) Interruption ratio: Every 1/f second (f is the video
frame rate), the video player displays one frame, which is
defined as one display event. If there is no decoded frame
available to display, a playback interruption occurs. Let n0
be the number of occurrences that a frame to be displayed
is not available. Denote by nt the total number of display
events, the interruption ratio (IR) is defined as IR¼ n0=nt .
Among the performance metrics, we give the IR the
highest priority because interruptions during playback are
most unpleasant for users. It means that if the IR of an
algorithm is higher than the other, then this algorithm is
inferior no matter how good the other performance
metrics are.

(2) Average playback quality: We define a continuous
playback of layer i video as one run and its length in terms
of the number of display events as nr for the r-th run. There
are totally N runs. The layer index 0 denotes that a playback
interruption occurs. The weighted sum of the layer index is
used to measure the average playback quality (APQ), which
is defined as APQ ¼ PN

r ¼ 1ðnr � iÞ=PN
r ¼ 1ðnrÞ. We also use

the PSNR metric to measure the average playback quality.
The experiment results show that the APQ has a highly
positive correlation with PSNR.

(3) Playback smoothness [22]: Intuitively, a longer run
length leads to a smoother watching experience. The mean
square root of run length is used to measure the playback

smoothness (PS), and we have PS¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

r ¼ 1 ðnrÞ2=N
q

. It also

gives a fair evaluation when the length of one run is much
larger than the others, when compared with the arith-
metic average.
5.2. Evaluation framework and testbed settings

In this section, we describe the layered video storage
structure at the server side, video player implementation
details, and experiment and testbed settings.
Frame 2

Layer 1 Layer 2 Layer 3

2 Frame 1 Frame 2

Layer 3

torage structure.
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5.2.1. Layered video storage structure
At the server side, the video is segmented and encoded

into multiple layers. To minimize the server load, the ser-
ver stores the SVC video in a layered segment structure.
Fig. 2(a) shows the structure of the original bitstream
generated by an SVC encoder (supposing that each seg-
ment has two frames and there are three layers for illus-
tration purposes). In the server, the Network Abstraction
Layer (NAL) units of all the frames with the same layer
index are stored together as shown in Fig. 2(b). When the
client receives the layer segments, it can reorganize them
into the original bitstreams for decoding and playback.

This layered segment storage structure can better uti-
lize the web caching infrastructure and the client can
request any layer segment flexibly. Since the frames of
different layers are separately stored, the client uses HTTP
pipelining to request several layer segments and construct
the video. Other solutions including partial HTTP requests
or letting the web server extract the requested layer seg-
ments on-the-fly not only add the complexity to the ser-
ver, but also slow down the response time to the client
requests. One concern with the proposed storage structure
is that the client needs to wait until all the layers in a
frame are downloaded before playback. A solution to
minimize the latency is that the client can establish par-
allel TCP connections to request the different layers
simultaneously, which is left for future investigation. Due
to the limited number of frames in a segment and usually
at least one segment of frames retrieved before playback
starts, such a tradeoff is considered acceptable as the
experiment shows.

5.2.2. Video player implementation
The client-side video player is implemented using an

open-source SVC decoder [23]. As depicted in Fig. 3, the
video player consists of three modules, rate adaptation,
decoder and display. The rate adaptation module deter-
mines the version of the next video segment to request.
The decoder fetches a segment from the segment buffer
and decodes the segment as fast as possible and stores the
decoded picture in the picture buffer. The decoder will not
Rate 
Adaptaion Decoder Display

segment buffer picture buffer

HTTP Request

HTTP Response

Video Player

Fig. 3. Video player structure.

Table 2
Layer configuration.

Resolution Avg. bit-
rate (Kbps)

std bit-rate
deviation

Y-PSNR
(upscaled)

Layer
index

320�180 112.84 39.01 35.47 (30.99) 1
320�180 238.94 88.84 39.44 (32.62) 2
640�360 363.82 140.33 35.90 (35.90) 3
fetch a new segment until the number of pictures left to be
displayed is smaller than a threshold. In this way, the
buffered segments have a chance to be enhanced with
higher-layer segments that may arrive later. The display
module simply fetches a picture from the buffer and dis-
plays it on the screen every 1/f seconds. Meanwhile, the
video player also collects the system state information
including the buffer state and the playback version index.

5.2.3. Experiment and testbed settings
We used the open-source SVC codec JSVM [24] to

encode the sample video (“Big Buck Bunny” [25]) into
three layers, and their configurations are listed in Table 2.
The encoding rate of layer n is the cumulative rate of all
the layers up to n. Note that the Y-PSNR of Layer 3 is lower
than that of Layer 2, but we still prefer Layer 3 video which
has a higher resolution, as it leads to a better watching
experience when displayed on a larger screen due to a
higher dots per inch (DPI) index. Typically, PSNR reflects
the mean square errors between the original video signal
and the received signal; if we use the original videos with
different layers, the layer-wise PSNR comparison becomes
unfair as a received lower-layer video with a higher PSNR
may have a worse visual quality. To make the PSNR com-
parison meaningful with layered video, we upscale the
lower resolution 320�180 video to 640�360 video using
the “bicubic” interpolation method and then calculated the
PSNR accordingly. The PSNRs for the 3 layers from low to
high quality are 30.99, 32.62 and 35.90 dB. In this way, the
scaled PSNR can reflect the visual quality of layered videos
consistently from a user's experience point of view.

Each layer is chopped into small segments of 17 frames.
The total number of segments, NT, is 200, and the frame
rate is 24 frames per second. From the experiments, we
find that the segment size of 17 frames is small enough to
react to the varying bandwidth, and large enough to keep
the HTTP overhead low. The target buffer size is BT ¼ 20
segments. The playback starts when 4 segments are
received.

Fig. 4 shows the testbed configuration. The testbed used
Lighttpd as the streaming web server. The server and the
wireless router were connected via wired links, and two
laptops accessed the web server through the wireless rou-
ter. The laptop C1's CPU is dual-core at 2.53 GHz with 2 GB
memory, and for another laptop C2, the CPU is dual-core at
2.26 GHz with 4 GB memory. OpenWRT has been installed
on the wireless router, configured in the IEEE 802.11b mode,
and the downlink transmission rate was set to 1 or 2 Mbps
to emulate a dynamic wireless environment with different
congestion levels.
wireless
router

web
server

C1

C2

Fig. 4. Network topology for the experiments.
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5.3. Experiments and simulations

5.3.1. Experiment 1 (no background traffic)
In this case, the transmission rate of the wireless router

was set to 1 Mbps, and the effective goodput was about
717.6 Kbps (measured by downloading a large file through
HTTP). We conducted the experiment for 10 runs and the
presented performance results are the average values.

In Table 3, we compare the proposed online realtime
algorithm, RT, with the rate adaptation algorithm, RA,
proposed in [9] and the fixed layer algorithm, FL(3), which
always requests all three layers. Generally, when the
search depth D is larger, the performance of RT is better.
But we cannot increase it too much. For C1, when D¼1 or
2, it takes less than 1 ms to make the decision for a new
segment. When D¼3, it takes about 10 ms, still less than
the duration of one frame. When D¼4, it takes 240 ms to
make one decision, which is approximately the playback
time of six frames. We believe that the decision time less
than the playback time of one frame is acceptable.
Therefore, in the following experiments, D is set to 3 by
default. (For C2, we also set D to be 3, although its CPU
cycle is slightly lower than C1).

For the proposed RT algorithm with D¼3, as we
increase the weight parameter α to 12 to emphasize on
higher smoothness, when compared with α¼ 10, we can
see that APQ is reduced but PS is increased, which shows
that α can make a trade-off between APQ and PS.

Comparing RT ðD¼ 3Þ and RA, we note that RT can
achieve both a higher APQ and PS, while maintaining a
lower queue length. Since the available bandwidth is suf-
ficient to support Layer 3 video, FL(3) outperforms the RT
Table 3
Experiment 1 results.

Algorithm IR APQ (PSNR) PS Max queue

RA 0 2.57 (34.73) 260.80 21.0
RT
α¼ 10 0 2.24 (33.90) 700.96 19.0
D¼1

RT
α¼ 10 0 2.63 (34.88) 258.996 19.0
D ¼ 2

RT
α¼ 10 0 2.72 (35.07) 643.60 19.0
D ¼ 3

RT
α¼ 10 0 2.45 (34.36) 905.80 19.0
D ¼ 4

RT
α¼ 10 0 2.63 (34.85) 1132.63 19.0
D ¼ 3

FL(3) 0 3 (35.90) 3400 21.0

Table 4
Experiment 2 results.

Algorithm IR APQ (PSNR) PS Max queue

RA 0 1.19 (31.33) 179.98 20.7
RT α¼ 10 0 1.29 (31.50) 529.88 18.6
FL(1) 0 1 (30.99) 3400 20.9
FL(2) 0.27 1.46 (32.62) 34.11 5.2
and RA algorithm. However, the performance of FL will
degrade dramatically when there is any competing traffic
and the available bandwidth is more dynamic. We can see
this in the following experiments.
5.3.2. Experiment 2 (with background traffic)
In this experiment, the transmission rate of the wire-

less router was also set to 1 Mbps. Laptop C1 ran the SVC
Player, and another laptop C2 downloaded a large file from
the web server. From Table 4, we can see that the available
bandwidth is sufficient to support Layer 1 video but can-
not support Layer 2 video, since for FL(2) algorithm, the IR
is as high as 0.27. Because we give the IR the highest
priority when comparing rate adaptation algorithms, FL
(2) is inferior compared to RA and RT, although its APQ
value is better than the others. Both RA and RT algorithm
can achieve APQ between 1 and 2, and RT is better than RA
in terms of both APQ and PS.
5.3.3. Experiment 3 (competing video flows with on–off
background traffic)

In this experiment, the transmission rate of the wire-
less router was set to 2 Mbps. Each laptop ran the SVC
player and an on–off background traffic flow. The on–off
traffic flow downloaded a file (1.3 MB) from the server, and
then slept for 10 s, and this process repeated until the end
of the experiment. Since the time needed to download the
fixed-size file varies due to contention, there can be 0–2
background flows during the experiment, which makes
the available bandwidth more dynamic. In order to eval-
uate the fairness of the rate adaptation algorithms, both
laptops run the same rate adaptation algorithm. In Table 5,
we can see from the FL algorithm that the video version
can be supported between Layer 1 and Layer 2. RT is better
than RA in terms of both APQ and PS, and the two videos
on different laptops have roughly the same QoS perfor-
mance, which demonstrates that the proposed RT algo-
rithm together with the TCP congestion control can allow
Table 5
Experiment 3 results.

C Algorithm IR APQ (PSNR) PS Max queue

C1 RA 0 1.46 (31.93) 146.33 21
RT α¼ 10 0 1.56 (32.04) 269.08 19
FL(1) 0 1 (30.99) 3400 21.0
FL(2) 0.05 1.89 (32.62) 545.55 19.1

C2 RA 0 1.56 (32.07) 141.29 21
RT α¼ 10 0 1.59 (32.11) 321.89 19
FL(1) 0 1 (30.99) 3400 20.8
FL(2) 0.02 1.95 (32.62) 1040.64 19.9

Table 6
Experiment 4 results.

Algorithm IR APQ (PSNR) PS Max queue

RA 0 2.07 (33.1) 120.94 21
RT 0 2.18 (33.2) 318.31 19
FL(3) 0.06 2.82 (32.75) 541.02 15.2
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the competing videos to obtain a fair share of the
bandwidth.
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Fig. 5. Playback trace comparison

Table 7
Simulation results.

Simu Algorithm IR APQ (PSNR) PS Max queue

S1 RA 0 2.35 (34.17) 153.48 21
RT α¼ 10 0 2.57 (34.66) 517.98 19
OS α¼ 2 0 2.82 (35.24) 1434.99 19.4
FL(3) 0 3 (35.90) 3400 21.0

S2 RA 0 1.34 (31.56) 84.59 21
RT α¼ 10 0 1.78 (32.32) 300.49 19
OS α¼ 2 0 1.80 (32.33) 498.5 17.5
FL(1) 0 1 (30.99) 3400 20.8
FL(2) 0.09 1.82 (32.62) 193.13 9.1
5.3.4. Experiment 4 (performance study over long-distance
connections)

In this experiment, we set up the web server on the
campus network and the video player client was located
outside the campus network through commercial Internet.
There were 14 hops between the client and the server
(identified by the traceroute program) and the last hop
was wireless link. In order to make the network band-
width more dynamic, we created 35 flows of on–off
background traffic in the network. Each flow repeatedly
requested a 2 MB file from the server and slept for 10 s.
Table 6 shows the experiment results. The available
bandwidth cannot support Layer 3 video, so FL(3) suffers
from playback interruptions. Both RA and RT can achieve
APQ between 2 and 3 and RT outperforms RA in terms of
both APQ and PS.
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Fig. 6. A zoom-in of playback trace of RT.

Table 8
Larger segment size.

Segment size
(frames)

Algorithm IR APQ
(PSNR)

PS Max
queue

17 RA 0 1.34
(31.56)

84.59 21

RT 0 1.78
(32.32)

300.49 19

51 RA 0 1.32
(31.35)

184.63 22

RT 0 1.65 (32) 372.26 19.1
102 RA 0 1.31

(31.52)
319.27 23

RT 0 1.47 (31.8) 389.75 22.2

Table 9
Experiment 5 results.

T Algorithm IR APQ
(SSIM)

PS Max
queue

Wasted seg

T1 RT 0 1.92
(0.96)

1959.86 17.5 0

BIEB 0 1.39
(0.93)

509.39 13 1.0

FL(2) 0.66 1.03 (1.0) 545.55 3.1 0
T2 RT 0 2.75

(0.98)
3398.24 17.4 0

BIEB 0 2.70
(0.98)

2149.69 20 1.1

FL(3) 0.04 2.86 (1.0) 2486.02 20 0
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5.3.5. Simulation results
We also evaluate the gap between the proposed online

RT algorithm with the optimal streaming policy, OS,
obtained by dynamic programming. Since the optimal
streaming policy cannot be generated in real time, we used
the trace-driven simulation to compare these algorithms.

The traces share the same bandwidth statistics with
Experiments 1 and 2, denoted as S1 and S2, respectively.
The statistics of the average bandwidth for different states
and the transition probability are obtained off-line as the
input to the dynamic programming. Similar to the
experiment, the results are the average over 10 runs.
Optimal solution's queue length is in the unit of segments,
while that of online algorithm is in the number of frames.
Since the queue variation unit of OS and RA is in different
unit, α of these two algorithms are set differently. From
Table 7, both RT and OS are better than RA, and there exists
a small performance gap between RT and OS, which indi-
cates the trade-off between the performance and the
computational complexity.

Fig. 5 shows the playback trace of one run in simulation
S2. We can see from the figure that RA suffers from fre-
quent layer switching, although it keeps more segments in
the buffer than RT and OS, which indicates that buffer
fullness does not directly reflect video quality. The pro-
posed online algorithm, RT, is more aggressive than the
optimal OS algorithm. Although the APQ of RT and OS in
this run are both around 1.78, OS achieves a higher PS by
never requesting Layer 3 video, and the average queue
length of OS is smaller.

We further zoom in the playback trace for RT. In Fig. 6,
the rectangle represents a segment and the width of it
denotes the download time duration (from the time
instant of sending out the HTTP request to that of receiving
the segment completely). The horizontal gap between the
edges of the rectangles is due to the waiting action to
avoid buffer overflow. Fig. 6 shows the advantage of the
proposed video streaming framework using SVC: the rec-
tangles that rise from a non-zero layer index (circled and
annotated by arrows) are the layer segments to “upgrade”
the already buffered segments to improve both APQ and
PS, which is not possible when using the traditional AVC
streaming techniques.

In order to evaluate the impact of segment size on the
proposed algorithm, we compare the algorithms using a
larger segment size with the same settings as those in S2.
The results are shown in Table 8. From the table, with a
larger segment size, the playback is smoother, since the
minimum length with a constant playback quality is
increased. On the other hand, a larger segment size also
slows down the response to varying bandwidth; therefore,
the APQ for both algorithms is reduced. Nevertheless, RT
still shows the advantage over RA in terms of both APQ
and PS. As we can imagine, when the segment size reaches
the size of the whole video, there is no chance of per-
forming rate adaptation and all these algorithms fall back
to the FL algorithm.

5.3.6. Experiment 5 (under simulated varying wireless
bandwidth)

To further demonstrate the performance of the pro-
posed algorithm, we compared with another state-of-the-
art work [26]. In this simulation, we used bandwidth tra-
ces and HTTP throttling module in Apache from [27] to
simulate the varying wireless bandwidth. We have chosen
two bandwidth traces to represent wide range of network
conditions. The average bandwidth of the first trace T1 is
about 1829 Kbps and the average bandwidth of the second
trace T2 is about 3774 Kbps. We used the same SVC video
trace “Tears of Steel” as in [26]. We also adopted the same
quality metric Structural Similarity (SSIM) index for fair
comparison. We also introduced one more performance
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metric, wasted segments, from [26]. It denotes the number
of segments downloaded but not played.

The experiment results are summarized in Table 9.
From the results, we can see that for fixed-layer algo-
rithms, there are playback interruptions. This is the reason
why we need adaptive algorithms. For RT and BIEB that
proposed in [26], we can see that in both traces, RT out-
performs BIEB in terms of both the average playback
quality and smoothness. In addition, all the segments
downloaded are played using RT algorithm.
6. Conclusions

In this paper, for DASH-based adaptive video streaming
in wireless networks, we have formulated the rate adap-
tation problem as an MDP problem and used dynamic
programming to obtain the optimal streaming policy. To
reduce the complexity of the optimal streaming policy, we
have proposed an online algorithm which learns the
bandwidth statistics and makes the request decisions for
the near future. The trade-off between the average video
quality and playback smoothness can be made by adjust-
ing the parameter in the reward function. Experiment
results have shown that the proposed solution is feasible
and can substantially outperform the existing one. There
are several issues worth further investigation. For instance,
to fully utilize the layered feature of SVC, we may consider
other possible actions, such as to “upgrade” multiple pre-
viously received segments when possible. We may use a
moving window to better estimate the bandwidth state
transition probability and capture the non-stationary
behavior of varying bandwidth. We may also keep a his-
tory of the layer index for requested segments and make
decisions based on these records to further improve the
smoothness of video playback and the user-perceived
quality of experience.
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