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Abstract—Combined Heat and Power (CHP) systems are well
known for their high efficiency and relatively low emissions.
Existing CHP economic dispatch schemes do not use the energy
buffer to minimize the average cost in the long term. Motivated by
the queueing analysis and buffer management solutions in data
communication systems, in this paper, we investigate how to use
a battery pack and a water tank to optimize the average cost for
the CHP systems by jointly considering the real-time electricity
price, renewable energy generation, energy buffer states, etc. We
first formulate the queueing models for the CHP systems, and
then propose an algorithm based on the Lyapunov optimization
technique which does not need any statistical information about
the system dynamics. The optimal control actions are obtained
by solving a non-convex optimization problem. We then discuss
when it can be converted into a convex optimization problem.
Since the battery pack queue and water tank queue are correlated
by the CHP, the capacity relationship between them is further
explored. Through the theoretical performance analysis, we also
show the tradeoff between the cost saving and the energy buffer
capacity. Finally, the effectiveness of the proposed algorithms is
evaluated with practical data.

Index Terms—Combined Heat and Power, Lyapunov Optimiza-
tion, Smart Grid

I. INTRODUCTION

Combined heat and power (CHP) systems can generate
both electricity and thermal energy simultaneously from a
single fuel source, and can achieve a much higher energy
efficiency than generating electricity and heat separately [1].
The use of CHP systems can also reduce greenhouse gas
emissions. As a result, CHP systems are becoming increas-
ingly popular. Existing works try to minimize the total fuel
cost by optimizing the operation points of CHP systems in
each time slot. They are called combined heat and power
economic dispatch (CHPED) problems [2], [3]. However, in
the conventional CHPED problem, there is no energy buffer
which can be used to store excessive energy when the energy
price is low to save it for later use. With large batteries, such as
distributed PHEVs, flywheel energy storage, electrochemical
battery, super-conducting magnetic energy storage, etc. [4],
[5], and water tanks which can be used to store heat in the form
of hot water, it is possible to optimize the total energy cost in
the long term. Motivated by the queueing analysis and buffer
management solutions in data communication systems, in this
paper, we investigate how to use a battery pack and a water
tank to optimize the average cost for the CHP systems. We first
formulate the queueing models for the CHP systems. Then,
we use the Lyapunov optimization technique to minimize the
average energy cost by dispatching the electricity and natural
gas in each time slot. Both the stochastic electricity and hot

water demands from users are met in each time slot. Since
the CHP systems generate electricity and heat simultaneously,
the energy queues of the battery pack and the water tank
are related. Therefore we cannot use the stochastic network
optimization framework to solve the problem directly. We
consider two different types of CHP systems. The first one
is a conventional CHP which uses natural gas as the fuel and
has a fixed electricity-heat generation ratio, while the second
one uses renewable energy and has an adjustable electricity-
heat generation ratio.

The contributions of this paper are three-fold. First, we
propose a comprehensive model from the perspective of a
commercial customer, which incorporates both the electricity
and thermal energy queues. We investigate the relationship of
these two queues to minimize the average cost. Second, we
propose an algorithm to approximately achieve the optimal
average cost, considering the limited capacities of the battery
pack and the water tank. The algorithm does not require
any statistical information of the system dynamics such as
electricity and hot water demands, etc. To obtain the optimal
scheduling decision, we discuss when we can use the specific
features of the problem to turn a non-convex optimization
problem into a convex one which can be solved in real
time. Third, we analyze the performance of our algorithm and
validate its effectiveness through extensive simulations.

The rest of the paper is organized as follows. Section II
discusses the existing CHPED problems and the application of
Lyapunov optimization in smart grid. A general description of
the system architecture is given in Section III. Then we discuss
the design details of the proposed algorithm in Section IV and
analyze its performance. In Section V we discuss how to apply
the proposed algorithm to the CHP using renewable energy.
Performance evaluation is given in Section VI, followed by
concluding remarks and future research issues in Section VII.

II. RELATED WORK

Thanks to the ubiquitous communications technologies,
it is possible to optimize the provisioning and delivery of
various energy sources to achieve a higher efficiency [6],
[7]. To provide both electricity and heat economically, the
design and operation strategies of CHP systems have been
well investigated. [8] discussed operating strategies, such
as heat and electricity load following, for three micro-CHP
technologies. [9] evaluated four typical operation modes in
a hotel based on measured electric and heating loads. [10]
analyzed the utilization of micro-CHP systems in conjunction
with domestic household appliances. [11] analyzed the cost



for different fuel-cell systems. These works tried to find the
most cost-effective strategies from a system view, and do not
consider the detailed control policies. The CHPED problem,
first raised in [2], aimed to find the optimal operation point
of CHP with minimum energy cost such that both electricity
and heat demands were met. A two-level strategy to separate
the objective function and constraints was adopted in [2].
Besides the traditional mathematical approaches, evolutionary
computation techniques were used to improve the performance
[12]. However, in the CHPED problems, optimization was
performed to minimize the cost in each time slot. No energy
buffer was used to minimize the long-term cost. In addition,
it did not consider the stochastic nature of energy demand.

Various optimization technologies have been used to op-
timize the cost of a smart grid system with energy buffers.
T. Chang et al. used the dynamic programming and de-
composition approach to minimize the total cost from the
perspective of each user and the whole micro-grid, respectively
[13]. In their work, the distributions of all the stochastic
variables such as the load and real-time price information were
assumed to be available from historical data. [14] proposed a
threshold based energy storage control policy that minimizes
the long-term average grid operational cost based on dynamic
programming. Model predictive control (MPC) has also been
applied to obtain the optimal control policies. For example, T.
G. Hovgaard et al. proposed an economic MPC algorithm to
minimize the total cost of distributed power generation plants
by using large cold rooms as the energy buffer. Different from
these approaches, our proposed algorithm tries to minimize the
long-term time average cost without the need to estimate the
statistical system dynamics from historical data.

There are also several works which use the Lyapunov
optimization technique to construct low complexity energy
storage management policies. M. J. Neely et al. minimized
the time average cost from the perspective of one user, and
guaranteed the worst-case delay for each elastic load in [16].
In [17], the authors used uninterruptible power systems (UPS)
in the data center to reduce the electricity bill in a real-time
price environment. Their model did not consider renewable
energy sources. Guo et al. investigated how to use a household
battery to minimize the average electricity cost, considering
both inelastic and elastic load in [18]. L. Huang et al. extended
their model by considering selling power back to the grid
in [19]. Instead of guaranteeing the worst-case delay, [20]
guaranteed that the percentage of the delayed elastic load
was less than a threshold. These works discussed above only
considered one energy buffer, however, the system model
discussed in our work includes two energy buffers, the battery
pack and the water tank, which are correlated by the CHP
system. With two dependent queues, the system model is more
complicated and we need to solve a non-convex optimization
problem to obtain the optimal control policy. In addition, we
illustrate the relationship between the capacity of these two
energy buffers and the minimum required capacity to achieve
the optimal performance. This paper focuses on the problems
closely related to the unique features of the CHP systems.
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Fig. 1. The CHP system uses natural gas.

Some well-studied applications of Lyapunov optimization in
smart grid, such as elastic load queue, worst-case delay, etc,
are not discussed here due to the space limitation.

III. SYSTEM MODEL

We consider how to minimize the average energy cost using
the CHP device and energy buffers. The mathematical models
of this system are discussed in this section.

A. System Architecture

Fig. 1 gives an overview of the CHP system, such as the one
used in a hotel. Le(t) and Lw(t) represent the electricity and
hot water demands from users in each time slot, respectively,
which are stochastic. Le(t) can be met by the electricity
discharged from the battery D(t) or bought from the power
grid Gl(t). Lw(t) is met by the hot water stored in the water
tank.

In each time slot, the CHP device can generate electricity,
in the amount of ηcePc(t), to charge the battery and hot
water, in the amount of ηcgPc(t), to fill the water tank, where
Pc(t) is the amount of the natural gas consumed by the
CHP, ηce is the conversion efficiency from natural gas to the
amount of the electricity charged to the battery, and ηcg is the
conversion efficiency from natural gas to the amount of hot
water. Meanwhile, if the battery is full or the grid electricity
price is high, the electricity generated from the CHP, in the
amount of ηcoPc(t), can be sold back to the grid with the
conversion efficiency ηco. The parameter r(t), ranging from
0 to 1 is used to make a tradeoff between the amount of
electricity used to charge the battery and that sold to the grid.

Note that we did not let the power generated from the CHP
supply the user’s electricity demand Le(t) directly in the above
model to simplify the analysis. The reason is that we assume
the electricity price bought from and sold to the power grid
are the same, so whether the electricity is used to supply the
user’s demand directly or sold back to the grid does not affect



the total energy cost (if we do not sell the electricity, less
electricity is bought from the grid).

Since the electricity price in the real-time electricity market
changes according to the supply and demand, in this paper we
assume the real-time electricity price Ce(t) for the next time
slot is known ahead of time. Ce(t) is bounded in the range
[Ce,min,Ce,max]. On the other hand, the price of the natural gas
does not change frequently and the percentage of the change is
usually not large, so we assume it is constant in each time slot.
However, the proposed algorithm is still applicable if we also
consider the real-time gas price because the control decisions
of the proposed algorithm are made upon the current system
states in each time slot, including the natural gas price.

To minimize the average energy cost in the long term,
in each time slot the controller determines the amount of
electricity Gl(t) and Gs(t) bought from the grid to supply
the electricity demand and charge the battery, the amount of
the natural gas Pc(t) consumed by the CHP and the amount
of the natural gas Pa(t) consumed by the boiler. It also needs
to determine the value of r(t) which specifies the dispatch
of the generated electricity from the CHP to the battery.
The parameter ηs in Fig. 1 represents the battery charging
efficiency, and ηag represents the conversion efficiency from
natural gas to the amount of hot water using the boiler.

The intuition is that the controller discharges the battery
and makes the CHP generate more electricity to meet the
high electricity demand or sell to the grid to earn profit when
the electricity price is high. On the contrary, the controller
charges the battery using the electricity from the grid when the
electricity price is low. This problem is challenging because
we do not know the distribution of the electricity and hot
water demand, nor do we know the distribution of the real-time
electricity price. Of course, we can use dynamic programming
to estimate the distribution of these stochastic variables, but it
is usually computationally complex and may have the “curse
of dimensionality” problem [27].

B. Electricity Queueing Model

In practice, although the lifetime of the battery may be
influenced by the charging and discharging process, etc, we do
not take them into account. Besides, we assume that the state
of charge (SOC) of the battery, viewed as the energy queue
of the battery, is linear to simplify our analysis. However,
the proposed algorithm will not be largely affected if we
incorporate more complicated battery models because the
proposed algorithm only needs to know the current battery
status to make control decisions.

The SOC level of the battery B(t) evolves according to the
following equation:

B(t+ 1) = B(t)−D(t) + ηsGs(t) + r(t)ηcePc(t). (1)

Obviously, in any slot t, the battery needs to have the
following capacity and charge/discharge constraints.

0 ≤ B(t) ≤ Bmax, (2)

0 ≤ D(t) ≤ Dmax, (3)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar, (4)

where Bmax is the capacity of the battery, Dmax is the
maximum discharge rate of the battery, and Cchar is the
maximum charge rate of the battery.

The amount of electricity drawn from the grid in one time
slot is also bounded by Pe,max:

0 ≤ Gl(t) +Gs(t) ≤ Pe,max, (5)

0 ≤ Gl(t) ≤ Gl,max, 0 ≤ Gs(t) ≤ Gs,max, (6)

where Gl,max and Gs,max are the upper bound of Gl(t) and
Gs(t), respectively. Since the grid can meet the commercial
power demand most of the time, we assume Pe,max ≥ Le,max

where Le,max is the upper bound of Le(t).

C. Water Queueing Model

The water tank discussed here is assumed an ideal one, so
we do not consider heat leakage. A more practical water tank
model can easily be applied as we can consider the amount
of the heat needed to reheat the water tank as the additional
heat demand in the form of hot water from the users.

The amount of hot water stored in the water tank, which is
the queue length of the water tank, evolves according to the
following equation:

W (t+ 1) = W (t)− Lw(t) + ηcgPc(t) + ηagPa(t), (7)

where W (t) is the water level in the water tank in slot t.
Since the amount of the water stored in the water tank

should always be bounded by the size of the water tank, we
have: 0 ≤ W (t) ≤ Wmax, where Wmax is the capacity of
the water tank. In addition, since we assume the hot water
demand in each time slot will not exceed Lw,max, to make
sure that users’ demand can always be met even in the worst-
case situation, i.e., the hot water demand is always Lw,max,
we assume the following constraint holds:

Lw,max ≤ ηagPa,max, (8)

where Pa,max is the maximum amount of the natural gas used
by the boiler in each time slot, and Lw,max is the upper bound
of the hot water demand in each time slot.

D. Control Objective

In each time slot, the total energy cost for the CHP system
is the sum of the electricity and natural gas cost minus the
amount of the electricity sold to the grid:

f(t) = Ce(t){Gl(t)+Gs(t)−(1−r(t))ηcoPc}+Cg{Pc+Pa},
(9)

where Cg is the natural gas price.
The control objective is to find a control policy determining

the amount of the electricity and natural gas dispatched in each
time slot, so as to minimize the long-term average energy cost.

favg = lim
T→∞

1

T

T−1∑
i=0

E{f(i)}. (10)



IV. THE CHP SYSTEM SCHEDULING ALGORITHM

In this section, we assume the electricity and hot water
demands in each time slot Le(t), Lw(t) are independent. The
proposed algorithm in this section will solve the following
problems. First, given the current states of the CHP system,
including the electricity and hot water demand, battery and
water tank storage level, electricity price in the current time
slot, etc, how to obtain the optimal control decisions with a
low computational complexity and can adapt to the stochastic
system dynamics while still provide a good performance?
Second, what is the minimum capacity of the battery pack and
water tank we should have to achieve a given performance re-
quirement? Third, since the CHP can generate both electricity
and heat, the battery pack and water tank queues specified in
(1) and (7) are dependent. What is the relationship between
the capacity of the battery pack and that of the water tank?

According to the system architecture and control objective
described in Section III, the problem can be formulated as the
following stochastic optimization problem.
Problem One (P-I)

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

P1 = lim
T→∞

1

T

T−1∑
t=0

E{f(t)},

(11)
subject to

B(t+ 1) = B(t)−D(t) + ηsGs(t) + r(t)ηcePc(t), (12)

W (t+ 1) = W (t)− Lw(t) + ηcgPc(t) + ηagPa(t), (13)

0 ≤ B(t) ≤ Bmax, (14)

0 ≤ W (t) ≤ Wmax, (15)

Le(t) = Gl(t) +D(t), (16)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar, (17)

0 ≤ r(t) ≤ 1, Pc(t), Gl(t), Gs(t) ≥ 0, (18)

0 ≤ D(t) ≤ Dmax. (19)

The above problem cannot fit into the stochastic optimiza-
tion framework directly mainly because of the battery and
water tank capacity constraints (14) and (15). Specifically,
stochastic optimization can only guarantee the average energy
generation equals the average consumption in the long term,
but cannot provide a hard bound on the difference between
the generation and consumption in any time slot. To solve
this problem, we take the expectation on the two sides of (12)
and (13), which leads to the following relaxed problem:
Problem Two (P-II)

min
D(t),r(t),Gl(t),Gs(t),Pc(t),Pa(t)

P1 = lim
T→∞

1

T

T−1∑
t=0

E{f(t)},

(20)
subject to

D(t) = ηsGs(t) + ηcer(t)Pc(t), (21)

Lw(t) = ηcgPc(t) + ηagPa(t), (22)

and (16), (17), (18), (19).
P-II fits the stochastic optimization framework, so we can

solve it using existing algorithms [21], [22]. Obviously, only
when the solutions to P-II can meet the constraints (14) and
(15) for ∀t ∈ T , they are also feasible to P-I. To reach this
objective, we define two constants θ and ε. The intuition is
that by adjusting these two constants appropriately, we can
make the solutions to P-II also be feasible to P-I.

To start, we define two queues E(t) and X(t):

E(t) = B(t)− θ, (23)

X(t) = W (t)− ε. (24)

The constants θ and ε are two queue offsets, which are used
to guarantee that the two queues B(t) and W (t) are bounded.

From (12) and (13), we can obtain the queueing dynamics:

E(t+ 1) = E(t)−D(t) + ηsGs(t) + r(t)ηcePc(t), (25)

X(t+ 1) = X(t)− Lw(t) + ηcgPc(t) + ηagPa(t). (26)

We then define the Lyapunov function Q(t) = 1
2E(t)2 +

1
2X(t)2. The conditional one-slot Lyapunov drift is:

∆(t) = E{Q(t+ 1)−Q(t)|E(t), X(t)}. (27)

Here, the battery queue and the water tank queue are of equal
weight. Our algorithm can be extended if we assign different
weights to them.

According to (25) and (26), by squaring both sides, we have:

∆(t) ≤0.5max[(ηsGs,max + ηcePc,max)
2, D2

max]

− E(t)[D(t)− ηsGs(t)− r(t)ηcePc(t)

+ 0.5max[(ηcgPc,max + ηagPa,max)
2, L2

w,max]

−X(t)[Lw(t)− ηcgPc(t)− ηagPa(t)]

=B − E(t)[D(t)− ηsGs(t)− r(t)ηcePc(t)]

−X(t)[Lw(t)− ηcgPc(t)− ηagPa(t)],

where Pc,max is the maximum amount of the natural gas that
can be used by the CHP in each time slot, and B is a constant
and defined as

B =0.5max[(ηsGs,max + ηcePc,max)
2, D2

max]

+0.5max[(ηcgPc,max + ηagPa,max)
2, L2

w,max].
(28)

According to the stochastic optimization framework, in
order to make the two queues E(t) and X(t) mean rate stable,
we must minimize the drift ∆(t). In addition, our control
objective is to minimize the average cost. So we use a constant
V to represent the tradeoff between these two objectives. Then
the drift plus penalty function can be written as follows.

∆(t) + V E{f(t)}
≤ B − E(t)E{D(t)− ηsGs(t)− r(t)ηcePc(t)|E(t)}

−X(t)E{Lw(t)− ηcgPc(t)− ηagPa(t)|X(t)}
+ V E{Ce(t){Gl(t) +Gs(t)− (1− r(t))ηcoPc}
+ Cg{Pc + Pa}}.

(29)



We then substitute Gl(t) in (29) according to (16), and after
some manipulation we can obtain:

∆(t) + V E{f(t)}
≤ B + V E{Ce(t)Le(t)|E(t)} − E{Lw(t)X(t)|X(t)}

− E{D(t)[E(t) + V Ce(t)]|E(t)}
+ E{Gs(t)[ηsE(t) + V Ce(t)]|E(t)}
+ E{Pc(t)[r(t)ηceE(t) + ηcgX(t)

− (1− r(t))ηcoV Ce(t) + CgV ]|E(t), X(t)}
+ E{Pa(t)[ηagX(t) + V Cg]|X(t)}.

(30)

Based on the “min-drift” principle of the Lyapunov opti-
mization approach, the main idea of the proposed algorithm
is to minimize the right-hand side (RHS) of (30) over all the
feasible control policies in each time slot. In other words,
at the beginning of each time slot, we observe the system
states B(t), W (t), Le(t), Lw(t), Ce(t), determine the value
of B+V E{Ce(t)Le(t)|E(t)}−E{Lw(t)X(t)|X(t)}, and then
solve the following problem:
Problem Three (P-III)

min Gs(t)Hs(t)+Pc(t)Hc(r(t))+Pa(t)Ha(t)−D(t)Hd(t),
(31)

subject to
Le(t) = Gl(t) +D(t), (32)

0 ≤ ηsGs(t) + r(t)ηcePc(t) ≤ Cchar, (33)

0 ≤ r(t) ≤ 1, Pc(t), Gl(t), Gs(t) ≥ 0. (34)

0 ≤ D(t) ≤ Dmax, (35)

where

Hs(t) =ηsE(t) + V Ce(t), Ha(t) = ηagX(t) + V Cg,

Hd(t) =E(t) + V Ce(t), Hc(r(t)) = Hr(t)r(t) +Hb(t),

Hr(t) =ηceE(t) + ηcoV Ce(t),

Hb(t) =ηcgX(t)− ηcoV Ce(t) + CgV.
(36)

Note that (31) contains the product of Pc(t) and functions of
r(t), so P-III is a non-convex optimization problem because its
Hessian matrix is not always positive definite. When looking
into the structure of P-III, we can find that D(t) and Pa(t) can
be easily obtained according to the value of Hd(t) and Ha(t).
If Hd(t) ≥ 0, then D(t) = min{Dmax, Le(t)}; otherwise
D(t) = 0. If Ha(t) ≤ 0, then Pa(t) = Pa,max; otherwise
Pa(t) = 0. Therefore, we only have to solve the following
subproblem:

min : Gs(t)Hs(t) + Pc(t)[Hr(t)r(t) +Hb(t)], (37)

subject to: (33) and (34).
Suppose (33) is not active and 0 < r(t) < 1. Since Hc(r(t))

is a linear function of r(t), then we can always increase or
decrease r(t) to make (37) smaller. Therefore, either (33) is
active or r(t) equals 0 or 1.

Suppose (33) is active. We can replace Gs(t) using (33) in
(37) and get:

min : (ηco −
ηce
ηs

)V Ce(t)Pc(t)r(t)

+
Cchar

ηs
[ηsE(t) + V Ce(t)] + Pc(t)Hb(t).

(38)

Obviously, since Ce(t), Pc(t) ≥ 0, if ηco ≥ ηce

ηs
, then

r(t) = 0; otherwise r(t) should be as large as possible. If
ηcePc,max ≤ Cchar, then r(t) can be 1 and we can use
this fact to convert P-III to a linear optimization problem by
substituting r(t) = 0 and r(t) = 1 into P-III, respectively,
and choose the minimum value. Otherwise, r(t) should be in
the range of [Cchar/ηcePc,max, 1], and since this range is not
too large, we can use a search algorithm to obtain the optimal
solution.

Next we need to prove that the solutions to P-III are also
feasible to P-I. In other words, the solutions to P-III can meet
constraints (14) and (15) for ∀t ∈ T .

Theorem 1: Suppose θ and ε are defined in (39) and (40),
respectively,

θ =
V Ce,max

ηs
+min{Dmax, Le,max}, (39)

ε =
V Cg

ηag
+ Lw,max. (40)

Then through minimizing P-III, we can have the following
results:

0 ≤ B(t) ≤ θ + Cchar, ∀t ∈ T, (41)

0 ≤ W (t) ≤max{ε+ ηceθ − V Cg

ηcg
+ ηcgPc,max,

ε+
ηcoV Ce,max − V Cg

ηcg
+ ηcgPc,max,

ε+ ηcgPc,max + ηagPa,max}, ∀t ∈ T,

(42)

given that the above relationships are satisfied at t = 0.

Proof. First, we use induction to prove the upper bound of
B(t) and W (t). Since it holds when t = 0, we assume it also
holds at time slot t.

1) Suppose B(t) ≤ θ. Since 0 ≤ ηsGs(t)+r(t)ηcePc(t) ≤
Cchar, we can have B(t+ 1) ≤ θ + Cchar.

2) Suppose B(t) > θ. According to (23), E(t) > 0. So we
have Hs(t) > 0,Hd(t) > 0. To minimize P-III, it must
be Gs(t) = 0 and D(t) = min{Dmax, Le(t)}. Besides,
we can find that Hc(r(t)) is an increasing function with
r(t), so Pc(t)Hc(r(t)) reaches its minimum value when
r(t) = 0. From all the above we can see whenever
B(t) > θ, the battery will discharge and do not charge.
Therefore B(t+ 1) ≤ B(t) ≤ θ + Cchar.

3) Suppose W (t) ≤ ε, it is obvious that W (t + 1) ≤ ε +
ηcgPc,max + ηagPa,max.

4) Suppose W (t) > ε, then X(t) > 0 according to (24),
and Ha(t) > 0. To minimize P-III, Pa(t) must be 0.
Next we consider the following two cases. For the first
case, if ηceE(t) + ηcoV Ce(t) < 0, Hc(r(t)) reaches its



minimum value −ηceθ + ηcg[W (t) − ε] + V Cg when
r(t) = 1 and B(t) = 0. Therefore, when W (t) >
ε +

ηceθ−V Cg

ηcg
, Hc(r(t)) > 0 and Pc(t) is set to 0

to minimize P-III. In this case, W (t + 1) ≤ W (t).
On the other hand, W (t + 1) ≤ W (t) + ηcgPc,max ≤
ε+

ηceθ−V Cg

ηcg
+ ηcgPc,max.

For the second case, if ηceE(t) + ηcoV Ce(t) ≥ 0,
Hc(r(t)) reaches its minimum value −ηcoV Ce,max +
ηcg[W (t)− ε] + V Cg when r(t) = 0. Therefore, when
W (t) > ε+

ηcoV Ce,max−V Cg

ηcg
, Hc(r(t)) > 0 and Pc(t) is

set to 0 to minimize P-III. In this case, W (t+1) ≤ W (t).
On the other hand, W (t + 1) ≤ W (t) + ηcgPc,max ≤
ε+

ηcoV Ce,max−V Cg

ηcg
+ ηcgPc,max.

From the above analysis, we can find that both B(t) and
W (t) are upper bounded. So we can determine the capacity
of the battery Bmax and the capacity of the water tank Wmax

according to these upper bounds. Note that both Bmax and
Wmax are functions of the parameter V , so we can make a
tradeoff between the energy buffer capacity and the average
cost. On the other hand, with a given battery pack or water
tank capacity, we can obtain the corresponding parameter V .

Second, we also use induction to prove the lower bound of
the battery and the water tank.

5) Suppose B(t) ≥ min{Dmax, Le,max}, obviously B(t+
1) ≥ 0.

6) Suppose 0 ≤ B(t) < min{Dmax, Le,max}, substitute
(39), (23) and (24) in (36) we can have Hd(t) <
0,Hs(t) < 0. In order to minimize P-III, we must
have D(t) = 0 and Gs(t) ≥ 0. Since Pc(t) ≥ 0,
B(t+ 1) ≥ B(t) ≥ 0.

7) Suppose W (t) ≥ Le,max, obviously W (t+ 1) ≥ 0.
8) Suppose W (t) < Le,max, substitute (39), (23) and (24)

in (36) we can have Ha(t) < 0. In order to minimize
P-III, we must have Pa(t) = Pa,max. According to (8),
we have Lw(t+ 1) ≥ Lw(t) ≥ 0.

Since both the SOC of the battery pack and the water level
in the water tank are bounded, the solution to P-III is also
feasible to P-I.

Theorem 2: If Ce(t), Le(t), Lw(t) are independent over
slots, then the expected cost using the proposed algorithm over
time is within bound B/V of the optimal cost. In other words

lim
T→∞

1

T

T−1∑
t=0

E{f
′
(t)} ≤ P ∗

1 +B/V, (43)

where f
′
(t) represents the energy cost in one time slot using

the proposed algorithm, and P ∗
1 is the optimal solution to P-I.

To achieve P ∗
1 , we need to know the distributions of the

stochastic variables Ce(t), Le(t), and Lw(t), which are diffi-
cult to obtain. Therefore, the proposed algorithm can provide
a low-complexity approach to achieve a performance deviated
no more than O(1/V ) from the optimal one.

Proof. Assume (D∗(t), r∗(t), G∗
l (t), G

∗
s(t), P

∗
c (t), P

∗
a (t)) is

the optimal policy to achieve P ∗
1 . Since the proposed algorithm

Battery Water tank

CHPGrid Boiler

Gl(t)
ηsGs(t)

D(t)

Le(t)

Lw(t)

r1(t)α(t)S(t)

r2(t)f(α(t))S(t) ηagPa(t)

Electricity Renewable energy Natural gas

Fig. 2. CHP using renewable energy

is obtained by minimizing the RHS of (29), the value of the
RHS of (29) should be no larger than that using the optimal
policy. Then we have:

∆(t) + V E{f
′
(t)}

≤ B + V E{Ce(t)Le(t)|E(t)} − E{Lw(t)X(t)|X(t)}
− E{D∗(t)[E(t) + V Ce(t)]|E(t)}
+ E{G∗

s(t)[ηsE(t) + V Ce(t)]|E(t)}
+ E{P ∗

c (t)[r
∗(t)ηceE(t) + ηcgX(t)

− (1− r∗(t))ηcoV Ce(t) + CgV ]|E(t), X(t)}
+ E{P ∗

a (t)[ηagX(t) + V Cg]|X(t)}
≤B + V P ∗

1 .

(44)

Taking the expectation on both sides, and summing over
t ∈ {0, 1, 2, · · · , T − 1}, then we obtain

E{Q(T )−Q(0)}+
T−1∑
t=0

V E{f
′
(t)} ≤ TB + TV P ∗

1 . (45)

Dividing both sides by TV , letting T → ∞, and using the
fact that both Q(T ) and Q(0) are finite, we have:

lim
T→∞

1

T

T−1∑
t=0

E{f
′
(t)} ≤ P ∗

1 +
B

V
. (46)

V. CHP USING RENEWABLE ENERGY

In the previous section, we discussed the CHP system using
the natural gas as the fuel. However, environmental concerns
and the rising cost of fossil fuels make people to consider using
renewable energy. Fortunately, some new CHP technologies
can make use of certain renewable energy sources, such as
Biomass and geothermal energy to generate both electricity
and heat. In addition, as discussed in the CHPED problems,
we can also adjust the ratio of generated electricity and heat
in each time slot to optimize the energy cost. For example, we
can use more geothermal energy to generate electricity and less
to boil water if the electricity price is high, and vice versa. In



this section, we discuss how to adjust the CHP generation ratio
to minimize the average energy cost without the knowledge of
the distribution of renewable energy generation, electricity and
heat demands by using the Lyapunov optimization technique.

The system architecture is shown in Fig. 2. The electricity
generation ratio from renewable energy is α(t), which ranges
from αmin to αmax, and the hot water generation ratio is
a function of α(t), i.e., f(α(t)), where f is a decreasing
function. r1(t) and r2(t), ranging from 0 to 1, are used to
avoid battery and water tank overflow. Since the renewable
energy in a household is typically very limited, we assume
Smaxαmax ≤ Cchar, where Smax is the maximum renewable
energy available in one time slot. We will discuss the situation
without this constraint later. We use a similar battery and
water tank model as those in Section III, and the optimization
problem can be formulated as follows:
Problem Four (P-IV)

min : P4 =
1

T

T−1∑
t=0

E{Ce(t)[Gs(t) +Gl(t)] + CgPa(t)}

(47)
subject to

B(t+ 1) = B(t) + ηsGs(t) + r1(t)S(t)α(t)−D(t), (48)

W (t+ 1) = W (t) + r2(t)S(t)f(α(t)) + ηagPa(t)− Lw(t),
(49)

0 ≤ B(t) ≤ Bmax, (50)

0 ≤ W (t) ≤ Wmax, (51)

Le(t) = Gl(t) +D(t), (52)

0 ≤ ηsGs(t) + r1(t)S(t)α(t) ≤ Cchar, (53)

Smaxαmax ≤ Cchar, (54)

0 ≤ Gl(t) +Gs(t) ≤ Pe,max, (55)

0 ≤ r1(t), r2(t) ≤ 1, Gl(t), Gs(t) ≥ 0, (56)

0 ≤ D(t) ≤ Dmax, (57)

αmin ≤ α ≤ αmax. (58)

After we relax P-IV, the drift plus penalty function after
manipulation can be written as follows:

∆(t) + V E{Ce(t)[Gs(t) +Gl(t)] + CgPa(t)}
≤ B′ + V E{Ce(t)Le(t)|E(t)} − E{Lw(t)X(t)|X(t)}

− E{D(t)[E(t) + V Ce(t)]|E(t)}
+ E{Gs(t)[ηsE(t) + V Ce(t)]|E(t)}
+ E{α(t)[E(t)r1(t)S(t)]|E(t)}
+ E{f(α(t))[X(t)r2(t)S(t)|X(t)]}
+ E{Pa(t)[ηagX(t) + V Cg]|X(t)},

(59)

where B′ is a constant and defined as

B′ =
1

2
max[(ηsGs,max + αmaxSmax)

2, D2
max]

+
1

2
max[(ηcgPc,max + f(αmin)Smax)

2, L2
w,max].

(60)

Our algorithm is to minimize the RHS of (59), i.e., to solve
P-V.

Problem V (P-V)

min Gs(t)Hs(t) + α(t)Hh(r1(t)) + f(α(t))Hf (r2(t))

+Pa(t)Ha(t)−D(t)Hd(t),
(61)

subject to (52) (53) (54) (55) (56) (57) (58),
where Hh(r1(t)) = E(t)r1(t)S(t) and Hf (r2(t)) =
X(t)r2(t)S(t).

Notice that P-V is also a non-convex optimization problem.
However, r1(t) and r2(t) must be 0 or 1. To prove it, let’s
consider the following situations:

1) Suppose E(t) ≥ 0, then both Gs(t) and r1(t) should be
0 to minimize P-V and avoid battery overflow.

2) Suppose E(t) < 0 but Hs(t) ≥ 0. We must have
Gs(t) = 0 and r1(t) = 1 to minimize P-V, and
constraint (53) will not be violated due to (54).

3) Suppose Hs(t) < 0, we have E(t) < 0. Then constraint
(53) is active or r1(t) = 1, otherwise we can increase
r1(t) to further minimize P-V. Substituting Gs(t) with
(Cchar − r1(t)S(t)α(t))/ηs, and expanding Hs(t) in
(61), we have:

min : − V Ce(t)/ηsS(t)α(t)r1(t)

+f(α(t))Hf (r2(t))Pa(t)Ha(t)−D(t)Hd(t),
(62)

Since (54) guarantees that (53) will not be violated when
r1(t) = 1, we have r1(t) = 1 to minimize (62).

4) Suppose X(t) ≥ 0. Since S(t) ≥ 0 and 0 ≤ r2(t) ≤ 1,
we have Hf (t) ≥ 0. Because f(α(t)) ≥ 0, r2(t) must
be 0 to minimize P-V.

5) Suppose X(t) < 0. Since S(t) ≥ 0 and 0 ≤ r1(t) ≤ 1,
we have Hf (t) < 0. Because f(α(t)) ≥ 0, r2(t) must
be 1 to minimize P-V.

By determining the values of r1(t) and r2(t) based on
E(t) and X(t), we can convert P-V to a linear optimization
problem with five variables which can be easily solved in real
time. Note that constraint (54) is critical to make this problem
convex. Without this constraint, we have to search r1(t) in the
range of [Cchar/S(t)/αmax, 1] to obtain the optimal solution.

Theorem 3: Suppose θ and ε are defined in (39) and (40),
respectively. Then through minimizing P-V, we can have the
following results:

0 ≤ B(t) ≤ θ + Cchar, ∀t ∈ T, (63)

0 ≤ W (t) ≤ε+ ηagPa,max + Smaxf(αmin), ∀t ∈ T.
(64)

given that the above relationships are satisfied at t = 0, and

1

T

T−1∑
t=0

E{f
′′
(t)} ≤ P ∗

4 +B′/V, (65)

where f
′′
(t) represents the energy cost in one time slot using

the proposed algorithm to minimize P-V, and P ∗
4 is the optimal

solution to P-IV. The proof of Theorem 3 is similar to that of
Theorems 1 and 2 and thus is omitted due to space limitation.



VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed algorithms
using real data. We consider a small hotel with 20 rooms
equipped with a battery pack and a water tank. Their capacity
are calculated based on the results in Theorem 1. In addition,
we assume ηcoηs >= ηce and Smaxαmax ≤ Cchar, so both
P-III and P-IV can be solved by convex optimization. If these
conditions are not met, we can simply search within a small
region to obtain the optimal result.

A. Simulation Setup

The real-time electricity price data we used in this simu-
lation are obtained from [23]. The electricity sell-back price
is assumed to be the same as the purchase price. The natural
gas price is assumed to be a constant, $5.5/MMBtu, which
is obtained from [1]. Meanwhile we used the wind-power
generation data from [24] which has a time resolution of
15 minutes as the renewable energy source for the CHP
system. The wind power is scaled down so that the maximum
wind power generation equals 12kWh per hour. The time
slot duration is set to be 15 minutes too. We assume that
the original water temperature is 20 Celsius, so it need
111.11Btu to heat one liter of water to 70 Celsius. The
charging efficiency ηs is set to 0.95, and the boiler efficiency
ηag is set to 0.8. The default efficiency of the CHP is
assumed to be 75% with 30% to generate electricity and 45%
to generate heat. Since 1kWh = 3.41kBtu, we can have
ηco = 0.088kWh/kBtu and ηce = 0.0836kWh/kBtu. For
the CHP with a variable generation ratio, we assume the total
CHP efficiency is still 75%, and the efficiency to generate
electricity ranges from 20% to 40%. Since the average power
consumption is about 0.8kWh per hour per user [26], we
assume the electricity demand in one hour is uniformly
distributed between 0 and Le,max = 32kWh, while the hot
water demand is also assumed to have a uniform distribution
between 0 and Lw,max = 200L/h. We fix the other parameters
as follows (per hour): Dmax = 30kWh, Cchar = 20kWh,
Gl,max = Gs,max = 32kWh, Pc,max = 0.05MMBtu, and
Pa,max = 0.01MMBtu.

B. Benchmark Algorithm

We compare the performance of our algorithms with the
situation without energy buffer, which is similar to the CHPED
problem [2]. However, since the electricity and gas price model
in the CHPED problem is different from ours, we did some
changes to make them comparable. In each time slot, the
controller chooses the control actions by solving the following
optimization problem.
Benchmark Algorithm I (B-I)

min Ce(t)Gl(t) + Cg[Pc(t) + Pa(t)], (66)

subject to
Gl(t) + ηcePc(t) ≥ Le(t), (67)

ηcgPc(t) + ηagPa(t) ≥ Lw(t), (68)

Gl(t), Pc(t), Pa(t) ≥ 0. (69)
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Fig. 3. Average cost with different V.

The objective of the optimization problem is to minimize the
total cost in each time slot. Constraints (67) and (68) mean
the electricity and heat generation in each time slot should be
no less than the electricity and heat demand.

For the CHP using renewable energy, we have another
corresponding benchmark algorithm.
Benchmark Algorithm II (B-II)

min Ce(t)Gl(t) + CgPa(t), (70)

subject to
Gl(t) + α(t)S(t) ≥ Le(t), (71)

f(α(t))S(t) + ηagPa(t) ≥ Lw(t), (72)

αmin ≤ α ≤ αmax, (73)

Gl(t), Pa(t) ≥ 0. (74)

The objective and constraints of B-II are similar as those of
B-I, with the difference that we have different control actions
and include renewable energy into the problem formulation.

C. Results and Analysis

Fig. 3 shows the average cost in one time slot for different
parameter V . Due to the inherent exponential convergence
property [25], the average cost decreases exponentially. The
average cost of Benchmark Algorithm I and II in one time slot
are $0.2227 and $0.2088, respectively. We can see the CHP
system using natural gas can save up to 26.54% while the CHP
system using renewable energy can save up to 28.63%. In other
words, with the help of energy buffers, the saving of using
either CHP system can reach approximately $2, 000 annually.
The saving mainly dues to the following reasons. First, with
an energy buffer, the controller can use the electricity stored
in the battery and make the CHP generate more electricity or
even sell to the grid to make a profit when the electricity price
is high and purchase electricity to charge the battery when the
electricity price is low. Second, if the renewable energy source
can generate more electricity and heat than required, we can
store them in the energy buffer for future use.
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Fig. 4. The relationship between battery capacity and V

In Fig. 3, the optimal average cost in one time slot for the
CHP using natural gas (Opt-gas) and renewable energy (Opt-
renew) are about $0.1584 and $0.1479, respectively. To obtain
these results, we assume that the battery pack and water tank
capacities are infinite and we can charge/discharge as much
energy as possible to/from the battery when the electricity
price is low/high. However, in practice, due to constraints
(3) and (4), these values may not be achievable and are just
provided here to show the possible bounds.

Fig. 4 shows the relationship between the required battery
capacity pack and the parameter V. As was discussed in
Theorem 1, the required battery capacity increases linearly
with the increase of V. The capacity of the water tank has a
similar relationship and is omitted due to the space limitation.
With V = 200, the battery pack and water tank capacity
are 34kWh and 419L, respectively. These values are quite
reasonable for a small hotel with about 20 rooms.

VII. CONCLUSIONS

In this paper, motivated by the queueing analysis and buffer
management solutions in data communication systems, we
have proposed an approach to minimize the average energy
cost for two different types of CHP systems. Our system
model includes renewable energy, real-time price, stochastic
energy demand and energy buffers with finite capacity. Since
the battery queue and the water tank queue are dependent, we
need to solve a non-convex optimization problem to obtain the
optimal control actions. By using the Lyapunov optimization
techniques, our schemes can achieve a near-optimal perfor-
mance, which will deviate no more than O(1/V ) from the
optimal solution.

In this paper, we assign equal weights to the battery and
water tank queue which are dependent. In the future, we may
adjust their weights to achieve a better performance according
to the estimated distribution of the stochastic variables. In
addition, to be applied in real scenarios, the capital expense of
CHP systems, the operational expense associated with charg-
ing/discharging batteries, and the robustness of our algorithms
also need further investigation.
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