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Abstract—Non-Orthogonal Multiple Access (NOMA) exhibits
superiority in spectrum efficiency and device connections in com-
parison with the traditional orthogonal multiple access technolo-
gies. However, the non-orthogonality of NOMA also introduces
intra-cell interference that has become the bottleneck limiting the
performance to be further improved. To coordinate the intra-
cell interference, we investigate the dynamic user scheduling
and power allocation problem in this paper. Specifically, we
formulate this problem as a stochastic optimization problem
with the objective to minimize the total power consumption
of the whole network under the constraint of all users’ long-
term rate requirements. To tackle this challenging problem, we
first transform it into a series of static optimization problems
based on the stochastic optimization theory. Afterward, we
exploit the special structure of the reformulated problem and
adopt the branch-and-bound technique to devise an efficient
algorithm, which can obtain the optimal control policies with
a low complexity. As a good feature, the proposed algorithm
can make decisions only according to the instantaneous system
state and can guarantee the long-term network performance.
Simulation results demonstrate that the proposed algorithm has
good performance in convergence and outperforms other schemes
in terms of power consumption and user satisfaction.

I. INTRODUCTION

The fifth generation mobile communication systems (5G)
will penetrate into every element of future society such that
a unified wireless network connecting everything will be
created. At the same time, several serious challenges are
also posed for 5G, such as the requirements for one million
connections per km2, millisecond end-to-end latency, Gbps
user experienced data rate, and more severe physical layer
security [1], [2]. To meet these rigorous requirements, ten key
wireless technologies are presented in the 5G white paper on
wireless technology architecture [3]. As indicated in the white
paper, non-orthogonal multiple access (NOMA) is a potential
candidate for the air interface techniques of 5G. Furthermore,
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note that a downlink version of NOMA, i.e., multiuser su-
perposition transmission (MUST), has been proposed in Third
Generation Partnership Project (3GPP) Long Term Evolution
(LTE) Release-13 [4].

In NOMA systems, multiuser superposition coding is im-
plemented in transmitters and successive interference can-
cellation (SIC) is adopted at receivers so that the receivers
can recover their desired information from the multiplexed
signals. Exploiting user diversities in power domain, NOMA
is capable of accommodating more users on the same spectrum
in comparison with the traditional orthogonal multiple access
technologies. It has been verified in both theory [5] and
system-level simulations [6] that NOMA outperforms orthog-
onal frequency-division multiple access (OFDMA) in terms
of spectrum efficiency and device connections. Therefore,
NOMA is very suitable for the 5G application scenarios of
ultra-low latency and ultra-high connectivity [7], e.g., the
Internet of Things (IoT) in urban areas [8].

A. Motivations

Notwithstanding the above benefits, NOMA also has some
shortcomings. First of all, the multiuser detection method
SIC increases the decoding complexity of receivers, which
is a heavy burden on the computing ability and battery
capacity constrained mobile devices. Furthermore, the non-
orthogonality of NOMA leads to intra-cell interference that
becomes the bottleneck to further upgrade the performance. To
overcome these shortcomings and promote the application of
NOMA in 5G-based IoT, extensive works have been conducted
for NOMA systems in recent years. In order to reduce the
decoding complexity, some approaches have been proposed in
[9]–[13], including new detection algorithms [9], [10], efficient
coded modulation [11], [12], and some of the approximation
methods [13]. To coordinate the intra-cell interference and fur-
ther enhance the performance of NOMA networks, abundant
control policies have been devised, including power allocation
[14]–[16], channel assignment [17]–[22], user pairing (or
clustering) [23]–[25], rate control [26], [27], etc.

Although the existing works have enhanced the performance
of NOMA networks to some extent, they still have some limits.
As a common feature, all works in [14]–[27] make an implicit
assumption that the network can support the connectivity of all
users at the same time. However, it is almost impossible for the
future networks to meet this special requirement especially for
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the scenario with massive connections (e.g., IoT that connects
a very large number of devices but usually with a small
data rate requirement). For this condition, user scheduling
in the time domain should be adopted so as to satisfy the
quality-of-services (QoS) of all users. Although there have
been some works studying on the user scheduling problem
[28]–[32], they usually focus on the instantaneous network

performance by scheduling partial users, and thus the QoS
of all users cannot be guaranteed. Furthermore, appropriate
user scheduling can schedule the users with distinct channel
conditions in the same time slot while the others with similar
channel conditions in different slots, which is more helpful
for developing the near-far effect of users. Moreover, serving
many users at the same time and frequency will greatly
increase the decoding complexity that is intolerable for mobile
devices as discussed earlier. Therefore, it is necessary to design
appropriate user scheduling strategies for NOMA networks.

B. Contributions

Motivated by the above reasons, we in this paper investigate
the dynamic user scheduling and power allocation problem for
NOMA based downlink networks with massive IoT devices.
The main contributions of this paper are summarized as
follows.
• We formulate the joint user scheduling and power allo-

cation problem as a stochastic optimization problem with
the objective to minimize the long-term power consump-
tion of the whole system including the base station and all
mobile devices. Specifically, the discontinuous reception
mode is considered for mobile devices, that is, during
the unscheduled period, the mobile devices can sleep
for energy conservation. This energy saving approach is
in favor of prolonging the standby time of the energy
constrained devices such as sensor nodes or wearable
devices. Besides, the long-term rate requirements of all
users are also considered as constraints in the problem
formulation, such that the QoS of all users can be
guaranteed.

• We devise a dynamic user scheduling and power al-
location algorithm (DUSPA) based on the Lyapunov
optimization technique. Particularly, the DUSPA is an
online algorithm that can make decisions without requir-
ing any statistical information about the random channel
conditions. Besides, we proof that the long-term rate
requirements of all users can be strictly guaranteed by
the proposed DUSPA. However, a mixed integer and
non-convex programming (MINCP) is embedded in the
DUSPA and should be solved optimally. To overcome this
difficulty, we first transform the MINCP into a tractable
one by theoretical analysis. Afterward, exploiting the spe-
cial structure of the transformed problem, we employ the
branch-and-bound framework to devise a low-complexity
algorithm to obtain the optimal user scheduling and
power allocation policies in each slot.

• We present extensive simulation results to evaluate the
performance of the proposed algorithm. It shows that the
DUSPA can converge to a balance point which makes

a tradeoff between the total power consumption and the
virtual queue backlog. Furthermore, it is also verified that
the rate requirements of all users can be satisfied by the
DUSPA. Moreover, comparing to other schemes, simula-
tion results demonstrate that the proposed algorithm can
save more power in underloaded systems and provide
better user satisfaction in overloaded systems. Last, we
reveal that the optimal number of users scheduled on each
time-frequency resource for energy conservation is about
2-3, which is a helpful guidance for the design of practical
NOMA networks.

C. Organization

The remainder of this paper is organized as follows. In
section II, we demonstrate the details of related works. Section
III introduces the network model and the problem formulation.
In section IV, we elaborate the proposed algorithm DUSPA.
Section V describes the algorithm design for the instantaneous
resource management problem embedded in the DUSPA.
Simulation results are presented in section VI. Finally, we
conclude our paper in Section VII.

II. RELATED WORK

In this section, we introduce the details of the related
works. As the decoding complexity problem is not the primary
concern of this paper, the detailed introduction for the related
works [9]–[13] is omitted for brevity. In what follows, we
concentrate on introducing the researches on how to deal with
the intra-cell interference in NOMA networks.

To coordinate the intra-cell interference, abundant control
policies have been devised in recent years, including power
allocation [14]–[16], channel assignment [17]–[22], user pair-
ing (or clustering) [23]–[25], rate control [26], [27], etc.
In detail, a general power allocation scheme was proposed
in [14] for both uplink and downlink networks to realize
different tradeoff between user fairness and system throughput.
Focusing on the downlink transmission, the authors in [15]
analytically obtained the closed-form or semi-closed solutions
to the power optimization problems with different criteria. Dif-
ferent from [14] and [15], [16] considered the MIMO-NOMA
systems with a layered transmission scheme and designed
the corresponding power allocation algorithm. With channel
assignment taken into account, [17] proposed an iterative
resource allocation algorithm to maximize the weighted sum-
rate. Using a different approach, [18] devised a maximum
weighted independent set based resource allocation algorithm
for uplink networks. Besides, the energy-efficient channel
assignment and power allocation algorithms were designed
for NOMA networks with perfect [19], [20] and imperfect
channel conditions [21]. From the perspective of mathematical
analysis, [22] characterized the tractability of the joint problem
under a range of constraints and utility functions. In addition,
the user pairing and power allocation problem was studied in
[23]–[25] and the joint rate and power control problem was
investigated in [26], [27].

As a common feature, all works in [14]–[27] make an im-
plicit assumption that the network can support the connectivity
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of all users at the same time. However, when the number of
users is much larger than the communication resources of the
network as the IoT system that connects massive devices, the
control policies proposed in [14]–[27] cannot work. To deal
with this problem, the schemes of user scheduling in the time
domain have been studied in [28]–[32]. Specifically, the uplink
user scheduling problem was investigated in [28], the objective
of which is to either maximize the throughput of the system
or to obtain some kind of fairness among the users. In [29],
the authors proposed a joint subcarrier and transmission power
allocation algorithm to maximize the connectivity for narrow-
band IoT systems [33] with NOMA. The proportional fair
scheduling problem was studied in [30] by jointly considering
the user selection and utility maximization problems. A hybrid
reservation/contention-based medium access control protocol
was designed in [31] to achieve the goal of adaptive user
scheduling and thus higher multiplexing gain. In [32], a multi-
dimensional tuple-link based model was adopted to devise a
joint scheduling and resource allocation scheme. Although the
works in [28]–[32] have studied the user scheduling problems,
they usually focus on the instantaneous network performance
by scheduling partial users, and thus the QoS of all users
cannot be strictly guaranteed. To satisfy the QoS of all users,
the dynamic user scheduling strategies for NOMA networks
should be carefully designed, which motivates the work of this
paper.

III. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we first introduce the concerned network
model and definitions. Then, we present the problem formu-
lation.

A. Network Model

As shown in Fig. 1, we consider a NOMA based downlink
network, which consists of one base station (BS) and M IoT
mobile devices (MDs). For notational simplicity, the set of
MDs is represented by U , i.e., U = {1, 2, · · · ,M}. Besides,
the network is assumed to operate in slotted time with slots
normalized to integral units, and slot t refers to the time
interval [t, t+1), t ∈ {0, 1, 2, · · · }. In slot t, the channel power
gain (CPG) from the BS to MD m is denoted by gm (t), which
accounts for the pass loss, shadowing, and fading. In addition,
we consider the block fading channel model1, that is, gm (t)
remains constant during one slot, but may change on slot
boundaries. For simplicity of expression, all MDs are sorted in
the ascending order of their CPG (i.e., gi (t) < gj (t) ,∀i < j).
It is worth noting that the order of MDs is not fixed. With the
dynamic change of the channel conditions G(t)={gm(t)}, the
order of MDs among different time slots may change as well.

In NOMA networks, the BS can simultaneously transmit
data to multiple MDs on the same spectrum via superposition
coding. To fully exploit the near-far effect of users and control
the decoding complexity, we jointly consider the user schedul-
ing and power allocation for NOMA networks, as depicted in

1When the duration of each time slot is small enough, the block fading
channel model is a good approximation for the wireless channel in practical
systems [34], [35].

MD1

MD5

MD4

MD3

MD2

MD4

MD5

MD1

MD2

MD3

MD4

MD5

t1 t2 t3 Time

Power

...

Figure 1. The scenario of a downlink NOMA wireless network with joint
user scheduling and power allocation.

Fig. 1. To model the control policy, we define P(t) = {pm(t)}
and A(t) = {am(t)} as the power allocation variables and
the user scheduling variables, respectively. More specifically,
in P(t) = {pm(t)}, pm(t) represents the transmit power
allocated by the BS to MD m. In A(t) = {am(t)}, am(t) = 1
if MD m is scheduled in slot t; otherwise am(t) = 0. In
the scheduled slots, the relevant MDs must keep the status
of data reception, which leads to some power consumption.
The consumed power of MD m due to data reception is
denoted by pcm. In the unscheduled slots, the relevant MDs can
turn off the corresponding circuits [36], which is in favor of
energy conservation especially for the enery-constrained IoT
devices. This energy-saving mode is in accordance with the
Discontinuous Reception (DRX) [37].

At the receiver side, the MDs can successfully decode their
desired signals through successive SIC. According to [17],
[19], the optimal decoding order in the downlink transmission
should be in the ascending order in the CPG2. As such, the
MDs with larger CPG will cause interference to the MDs with
smaller CPG, rather than vice versa. Therefore, the signal-to-
interference-plus-noise ratio (SINR) of MD m can be written
as

γm (t) =
pm(t)gm (t)∑

i∈U,i>m
pi(t)gm (t) + σ2

, (1)

where σ2 is the additive white Gaussian noise.
According to the Shannon equation, the achievable data rate

of MD m in slot t can be expressed as

Rm(t) = am (t)B0log (1 + γm (t)) , (2)

where B0 denotes the channel bandwidth.

2It is a broadcast channel in downlink transmission, such that the decoding
order of SIC completely depends on the level of transmit power. To enhance
the performance of cell-edge users (i.e., with small CPG), it is expected to
allocate more power to the users with small CPG. Thus, the optimal decoding
order in downlink NOMA netwroks is the ascending order of CPG.
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Given the control policy P(t) and A(t), the total power
consumption of the whole network in slot t can be written as

P tot(t) =
∑
m∈U

pm(t) +
∑
m∈U

am (t) pcm

=
∑
m∈U

(pm(t) + am (t) pcm) . (3)

B. Definitions

Since the concerned network is a dynamic system, we pay
attention to its long-term performance (i.e., the long-term
average data rate and power consumption) rather than the
instantaneous performance. To depict these, we first give the
following definition.

Definition 1. (Time Average Expectation) The time average
expectation of a random variable X(t) is defined as

X = lim
T→∞

1

T

T∑
t=1

E {X(t)} . (4)

According to the above, the long-term average data rate of
MD m and the total power consumption of the whole network
be respectively expressed as

Rm (P(t), A(t)) = lim
T→∞

1

T

T∑
t=1

E {Rm(t)} . (5)

P tot (P(t), A(t)) = lim
T→∞

1

T

T∑
t=1

E
{
P tot(t)

}
. (6)

Additionally, we also give the definition for the mean rate
stable, which will be utilized in the latter parts.

Definition 2. (Mean Rate Stable) A discrete time process Y (t)
is mean rate stable [38] if the following condition is satisfied.

lim
t→∞

E(|Y (t)|)
t

= 0. (7)

C. Problem Formulation

In this paper, we focus on the energy-efficient resource
management problem by jointly considering the dynamic user
scheduling and power allocation. Particularly, this problem is
formulated as the following stochastic optimization problem.

min P tot (P(t), A(t))

s.t. C1 : Rm (P(t), A(t)) ≥ Rreq
m , ∀m

C2 :
∑
m∈U

pm(t) ≤ Pmax, ∀t

C3 : pm(t) ≥ 0, ∀m, t
C4 : am (t) = {0, 1} , ∀m, t (8)

The objective of (8) is to minimize the long-term average
power consumption of the whole network including the BS
and all MDs. In (8), C1 specifies the long-term average rate
requirement of all MDs. C2 limits the maximum instantaneous
transmit power of the BS on each channel (also called spectral
mask), which is imposed to limits the inter-cell interference.
Besides, C3 and C4 indicate the value range of P(t) and A(t).

Remark 1. Problem (8) is very hard to tackle, due to the
following reasons. First, it is a long-term optimization problem
due to the objective function and constraint C1. Thus, the
conventional static optimization techniques are not suitable
for it. Furthermore, the binary variable am (t) makes (8) a
mixed integer programming problem, which is NP-hard in
general [39]. Moreover, the existence of intra-cell interference
complicates the power allocation, as it results in a non-
convex problem. To overcome these difficulties, we exploit the
stochastic optimization theory and branch-and-bound method
to devise low-complexity and efficient algorithms to solve (8).

IV. DESCRIPTION OF THE PROPOSED ALGORITHM

In this section, we first transform the primal problem into a
tractable one and then propose a dynamic algorith m to solve
it based on the stochastic optimization theory, followed by the
performance analysis.

A. Problem Transformation

To satisfy the long-term average rate requirement of each
MD, we define a set of virtual queues Q(t) = {Qm (t)},
wherein the dynamic of each Qm (t) is defined as

Qm (t+ 1) = [Qm (t) +Rreq
m −Rm(t)]

+
, (9)

where [x]
+

= max {x, 0}. Then, we have the following
lemma.

Lemma 1. If Qm (t) is mean rate stable, the long-term
average rate requirement of MD m is satisfied.

Proof: According to the dynamic of Qm (t) (9), we can
treat Rreq

m and Rm(t) as the arrival rate and the departure
rate of Qm (t) in slot t, respectively. If Qm (t) is mean rate
stable, E(|Qm (t) |) must be finite (as the Definition 2), that is,
the queuing system is stable [40]. From the queuing theory,
to maintain the stability of the queuing system, the average
arrival rate (i.e., Rreq

m ) must be equal to or smaller than the
average departure rate (i.e., Rm). Therefore, if Qm (t) is mean
rate stable, the average rate requirement of MD m is satisfied.

According to Lemma 1, the primal problem (8) can be
equivalently recast as

min P tot (P(t), A(t))

s.t. C1 : Qm (t) is mean rate stable, ∀m

C2 :
∑
m∈U

pm(t) ≤ Pmax, ∀t

C3 : pm(t) ≥ 0, ∀m, t
C4 : am (t) = {0, 1} , ∀m, t. (10)

Compared with the primal problem (8), the above problem
(10) is easier to handle, as discussed in the following subsec-
tion.
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B. Description for the Overall Algorithm

In this subsection, we exploit the Lyapunov optimization
technique [38] to devise an effective online algorithm to solve
(10). First, we define the Lyapunov function as

L(Q(t)) ,
1

2

∑
m∈U

Qm(t)2. (11)

Then, the conditional Lyapunov drift in slot t is given by

∆(Q(t)) , E {L (Q(t+ 1))− L (Q(t)) |Q(t)} . (12)

The objective of (10) is to minimize the total power con-
sumption under the constraints of queue stability. To achieve
this goal, we focus on the following drift plus penalty

DPP (Q(t)) = ∆(Q(t)) + V E
{
P tot(t)|Q(t)

}
, (13)

where V is a weight.
As shown in (13), minimizing the drift plus penalty

DPP (Q(t)) can reduce both the power consumption P tot(t)
and the queue backlog Q(t). Thus, by changing the value of
V , we can strike a balance between the queue backlog and
the total power consumption. For DPP (Q(t)), we can derive
the following conclusion.

Lemma 2. The upper bound of DPP (Q(t)) is

DPP (Q(t)) ≤
∑
m∈U

Qm(t)E {Rreqm −Rm(t)|Q(t)}

+ V E
{
P tot(t)|Q(t)

}
+ C, (14)

where C is a finite constant.

Proof: For each virtual queue Qm (t), we can get

Qm(t+ 1)2 −Qm(t)2

=
(

[Qm (t) +Rreq
m −Rm(t)]

+
)2
−Qm(t)2

≤ (Qm(t) +Rreq
m −Rm(t))

2 −Qm(t)2

= (Rreq
m −Rm(t))

2
+ 2Qm(t) (Rreq

m −Rm(t)) . (15)

Since pm ≤ Pmax, Rm(t) must be finite. As such, we can
always find a finite constant C that satisfies

C ≥ 1

2

∑
m∈U

(Rreq
m −Rm(t))

2
. (16)

According to (15) and (16), we can obtain

L (Q(t+ 1))− L (Q(t))

=
1

2

∑
m∈U

Qm(t+ 1)2 − 1

2

∑
m∈U

Qm(t)2

=
1

2

∑
m∈U

(
Qm(t+ 1)2 −Qm(t)2

)
≤1

2

∑
m∈U

(
2Qm(t) (Rreq

m −Rm(t)) + (Rreq
m −Rm(t))

2
)

≤
∑
m∈U

Qm(t) (Rreq
m −Rm(t)) + C. (17)

Then, adding V P tot(t) to both-hand-sides of the above
inequation (17) and taking conditional expectations yield (14).

In each slot, minimizing the upper bound of DPP (Q(t))
is helpful for reducing the total power consumption P tot and
maintaining the stability of each virtual queue Qm(t), which is
the design philosophy of our algorithm. The general algorithm
procedure is summarized in Algorithm 1 and detailed in the
following. At the beginning of each slot t, the DUSPA ob-
serves the instantaneous network state (virtual queues3 Q(t)=
{Qm(t)}and channel conditions G(t) = {gm(t)}). Then, the
DUSPA obtains the control policies A∗(t) = {am(t)} and
P∗(t) = {pm(t)} in slot t by solving the optimization problem
(18). With the execution results, the DUSPA finally updates
each virtual queue Qm(t+ 1). The aforementioned operations
are repeated and the network eventually reaches a steady state,
where the average total power consumption is bounded and the
rate requirements of all MDs are satisfied.

Algorithm 1 Dynamic user scheduling and power allocation
algorithm (DUSPA)

1: At the beginning of each slot, observe the virtual queues
Q(t)={Qm(t)} and channel conditions G(t)={gm(t)}.

2: Determine the control policies A∗(t) = {am(t)} and
P∗(t) = {pm(t)} by solving the following problem.

min
A(t),P(t)

V P tot(t)−
∑
m∈U

Qm(t)Rm(t)

s.t. C1 :
∑
m∈U

pm(t) ≤ Pmax

C2 : pm(t) ≥ 0, ∀m
C3 : am (t) = {0, 1} , ∀m. (18)

3: Update each virtual queues Qm(t + 1) according to the
control policies {A∗(t),P∗(t)} and equation (18).

Remark 2. The DUSPA is an online algorithm that can make
decisions but without requiring any statistical knowledge of the
channel conditions. This is a good feature for the application
of the proposed algorithm into a practical system. It is noted
that even by this simple way, the DUSPA can still achieve
good performance in power consumption and satisfy the long-
term rate requirements of all MDs, discussed in the following
subsection.

C. Performance Analysis

Lemma 3. The proposed DUSPA can satisfy the long-term
rate requirements of all MDs.

Proof: It has been proofed in [38], [41] that if (10) is
feasible, then for any δ > 0, there must exist a stationary
randomized policy4 that satisfies

E
{
P̂ tot(t)|Q(t)

}
= E

{
P̂ tot(t)

}
≤ Pmin + δ, (19)

E
{
Rreqm − R̂m(t)|Q(t)

}
= E

{
Rreqm − R̂m(t)

}
≤ δ, ∀m

(20)

3Without loss of generality, each Qm(t) in the first slot is set to zero.
4The stationary randomized policy is independent on the queue backlog

information, which makes decisions only according to the instantaneous
random events in each slot [38], [41].
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where P̂ tot(t) and R̂m(t) are the resulting values derived
by the stationary randomized policy, δ is an arbitrarily small
positive number, and Pmin is the minimum value of the
objective function in (10).

As previously mentioned, the DUSPA can minimize the
upper bound of DPP (Q(t)), such that

∆(Q(t)) + V E
{
P tot(t)|Q(t)

}
≤
∑
m∈U

Qm(t)E
{
Rreq

m −R̃m(t)|Q(t)
}

+V E
{
P̃ tot(t)|Q(t)

}
+C

≤
∑
m∈U

Qm(t)E
{
Rreq

m −R̂m(t)|Q(t)
}

+V E
{
P̂ tot(t)|Q(t)

}
+C,

(21)

where P̃ tot(t) and R̃m(t) are the resulting values derived by
the DUSPA.

Plugging (19) and (20) into (21), we can obtain

∆(Q(t)) + V E
{
P tot(t)|Q(t)

}
≤C + V Pmin − δ

∑
m∈U

Qm(t)

≤C + V Pmin. (22)

Taking iterated expectation in the above inequality over t ∈
{1, 2, · · · , T} and using telescoping sums yield

E {L(Q(T ))} − E {L(Q(1))}+ V

T∑
t=1

E
{
P tot(t)

}
≤T

(
C + V Pmin

)
. (23)

Let E {P tot(t)} = 0 and rearranging (23), we can get

E {L(Q(T ))} ≤ T
(
C + V Pmin

)
+ E {L(Q(1))} . (24)

According to the definition of L(Q(T )), it can be obtained

1

2

∑
m∈U

E
{
Qm(t)2

}
≤ T

(
C + V Pmin

)
+ E {L(Q(1))} .

(25)

Due to the fact of E {|Qm(t)|}2 ≤ E
{
Qm(t)2

}
, we can

get

E {|Qm(t)|} ≤
√

2T (C + V Pmin) + 2E {L(Q(1))}. (26)

Since the right hand side of (26) is a finite value, it can be
easily proved

lim
t→∞

E {|Qm(t)|}
t

= 0. (27)

Hence, all virtual queues Q(t) are mean rate stable. Recall
to Lemma 1, we can know that the rate requirements of all
users can be satisfied by the proposed DUSPA.

V. ALGORITHM DESIGN FOR THE RESOURCE
MANAGEMENT PROBLEM IN EACH SLOT

In this section, we employ the branch-and-bound method
to design an efficient algorithm to solve the instantaneous
resource management problem embedded in the DUSPA.

A. Problem Transformation

As shown in Algorithm 1, a key step of the DUSPA is to
acquire the optimal solution of (18), otherwise the constraint
C1 in (10) cannot be strictly satisfied. However, (18) is a
mixed-integer and non-convex programming, which is difficult
to tackle. To deal with this difficulty, we first transform (18)
into another form without changing its nature. In particular,
we define R(t) = {rm (t)} where rm (t) is defined as

rm (t) = B0log (1 + γm (t)) . (28)

Through variable substitution, we can reformulate (18) as
given in the following Lemma.

Lemma 4. Problem (18) can be equivalently reformulated as

min
R(t),A(t)

V
∑
m∈U

Wm(t)2
∑m

i=1
rm(t)
B0 + V

∑
m∈U

am (t) pcm

−
∑
m∈U

Qm(t)rm(t)

s.t. C1 :
∑
m∈U

Wm(t)2
∑m

i=1
rm(t)
B0 − σ2

g0 (t)
≤ Pmax

C2 : 0 ≤ rm (t) ≤ am (t) rmax
m (t) , ∀m

C3 : am (t) = {0, 1} , ∀m, (29)

where Wm(t) = σ2

gm(t) −
σ2

gm+1(t)
, gM+1 (t) = +∞, and

rmax
m (t) = B0log

(
1 + Pmax(t)gm(t)

σ2

)
.

Proof: According to (1) and (28), we can obtain

pm (t) =
(

2
rm(t)
B0 − 1

) ∑
i∈U,i>m

pi(t)+
σ2

gm (t)

 . (30)

Rearranging the above formula, we have

M∑
i=m

pi(t)= 2
rm(t)
B0

M∑
i=m+1

pi(t) +
σ2

gm (t)

(
2

rm(t)
B0 − 1

)
. (31)

Adopting the recursive method for (31), we can acquire the
total transmit power of the BS as

∑
m∈U

pm(t) =
M−1∑
m=1

(
σ2

gm (t)
− σ2

gm+1 (t)

)
2
∑m

i=1
rm(t)
B0

+
σ2

gM (t)
2
∑M

i=1
rm(t)
B0 − σ2

g0 (t)

=
∑
m∈U

Wm(t)2
∑m

i=1
rm(t)
B0 − σ2

g0 (t)
. (32)

Besides, it can be easily proofed

rm (t) =B0log

1 +
pm(t)gm (t)∑

i∈U,i>m
pi(t)gm (t) + σ2


≤B0log

(
1 +

Pmax(t)gm (t)

σ2

)
. (33)
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Replacing R(t) by P(t) and removing σ2

g0(t)
from the

objective function, we can transform (18) into the following
form.

min
R(t),A(t)

V
∑
m∈U

Wm(t)2
∑m

i=1
rm(t)
B0 + V

∑
m∈U

am (t) pcm

−
∑
m∈U

Qm(t)am (t) rm(t)

s.t. C1 :
∑
m∈U

Wm(t)2
∑m

i=1
rm(t)
B0 − σ2

g0 (t)
≤ Pmax

C2 : 0 ≤ rm (t) ≤ rmax
m (t) , ∀m

C3 : am (t) = {0, 1} , ∀m. (34)

Considering the feature that when am (t) = 0, Rm(t) = 0
and when am (t) = 1, Rm(t) = rm (t), we can equivalently
recast (34) as (29), such that the product term am (t) rm(t) is
eliminated from the objective function.

To this end, we have proofed Lemma 4.
For the optimization problem (29), we have the following

Lemma.

Lemma 5. If each am (t) is relaxed to [0, 1], i.e., am (t) ∈
[0, 1],∀m, then (29) becomes a convex optimization problem.

Proof: Because of gm (t) ≤ gm+1 (t) ,∀m, Wm(t) =
σ2

gm(t)−
σ2

gm+1(t)
is thus non-negative for each m. If am (t) ,∀m

is relaxed to [0, 1], the objective function in (29) becomes
convex as it is the sum of some convex and linear functions.
Furthermore, all constraints in (29) are either convex or
linear. Therefore, the relaxed problem of (29) (i.e., am (t) ∈
[0, 1],∀m) is a convex optimization problem.

Based on Lemma 5, we will adopt the branch-and-bound
method [42], [43] to design a low-complexity algorithm to
acquire the optimal solutions of (29). The designed algorithm
consists of three main procedures, i.e., branching, bounding,
and pruning. In what follows, we will introduce these proce-
dures in detail.

B. Branching

The branching procedure is to create smaller subproblems
by constantly trying the scheduling schemes for each MD.
In our concerned problem, each MD has two states, i.e.,
scheduled state am (t) = 1 or unscheduled state am (t) = 0,
thereby the branching procedure can be described by a binary
tree as shown in Fig. 2. The whole binary tree is denoted
by T , wherein Tk represents the set of branches in the k-
th layer. As depicted in Fig. 2, Tk contains at most 2k

branches, each of which records a user scheduling scheme
for the k tested users. Particularly, let Sj (j = 1, 2, · · · , |Tk|)
denote the user scheduling scheme corresponding to the j-
th branch in Tk. For instance, in T2 of Fig. 2, S1 represents
the user scheduling scheme {ak1 (t) = 0, ak2 (t) = 0} and S4
represents {ak1 (t) = 1, ak2 (t) = 1}.

For each branch Sj , we should solve the following convex

( )
1
k
t =a ( )

1
k
t =a

( )k
t =a ( )k

t =a ( )k
t =a

( )k
t =a ( )k

t =a ( )k
t =a

( ) ³) ³f

( )k
t =a

( )k
t =a

Figure 2. Illustration for the branch-and-bound procedure.

problem, the optimal value of which is denoted by f (Sj).

min
R(t),A(t)

V
∑
m∈U

Wm(t)2
∑m

i=1
rm(t)
B0 + V

∑
m∈U

am (t) pcm

−
∑
m∈U

Qm(t)rm(t)

s.t. C1 :
∑
m∈U

Wm(t)2
∑m

i=1
rm(t)
B0 − σ2

g0 (t)
≤ Pmax

C2 : 0 ≤ rm (t) ≤ am (t) rmax
m (t) , ∀m

C3 : 0 ≤ am (t) ≤ 1, ∀m /∈ Sj
C4 : am (t) is the given value, ∀m ∈ Sj . (35)

In the branching procedure, it is of great importance to
decide which user should be selected for testing. This is
because it directly affects the updating rate of U, the criterion
of the pruning operation, and thus affects the computational
complexity of the whole algorithm. To find a feasible solution
of (29) as soon as possible, we primarily choose the MD who
has the most uncertainty in the scheduling state. Specifically,
the user selection rule in the k-th layer is

mk = arg max
m∈U

|Tk−1|∑
j=1

|ajm (t)− 0.5|, (36)

where aim (t) represents the scheduling solution of MD m
obtained by solving the relaxed problem (35) with the j-th
branch Sj in layer Tk−1. By this rule, the number of non-
binary solutions of {am (t)} can be quickly reduced, and thus
accelerates the speed of finding the optimal solution.

C. Bounding

In our designed algorithm, an upper bound of (29) is
preserved and updated constantly, which is denoted by U. The
main role of U is utilized to prune the branches without the
optimal solutions, which will be discussed in the following
subsection. Specifically, U is set to the objective function value
of (29) derived by its feasible solutions. During the execution
of the algorithm, if a better feasible solution is obtained (that
is, f (Sj) < U and all am (t) , ∀m are binary), U will be
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updated as f (Sj), otherwise U remains unchanged. As such,
U is reduced gradually and equal to the optimal value of (29)
at the end of the algorithm.

D. Pruning

The pruning procedure is to prune the branches that do not
contain the optimal solutions. By this way, the searching space
can be greatly reduced, and hence improving the efficiency of
the proposed algorithm. As illustrated in Fig. 2, two branches
are pruned in T3, such that the searching space is reduced
by half. In our designed algorithm, there are two cases that a
branch can be pruned. One case is that the optimal value of
the relaxed problem (35) is still smaller than the upper bound
U. In this case, the objective function value of all feasible
solutions must be smaller than U as well, that is, the optimal
solution cannot exist in this branch, an hence this branch can
be pruned with no need for further searching. Another case is
that a better feasible solution of (29) is obtained. In this case,
all am (t) , ∀m are binary, thereby it is also no need to test
the user scheduling schemes for the remainder MDs.

E. Description of the Proposed Algorithm

The proposed algorithm is summarized in Algorithm 2, re-
ferred to as BBA. In the initialization phase, we set U = +∞,
such that U can be updated by any feasible solutions of (29).
At the beginning of the algorithm, we first solve the relaxed
problem (35) with Sj = ∅. If all am (t) are binary, that is the
optimal solution is obtained, the algorithm can be terminated
directly. Otherwise, the aforementioned branching, bounding,
and pruning operations will be repeated by the BBA until
all control policies {P(t), A(t)} are tested or removed. By
this way, the optimal control policy {P∗(t), A∗(t)} can be
obtained at the termination of the BBA.

Remark 3. From Algorithm 2, we can find that every user
scheduling scheme is tested or pruned at the end of the
algorithm. Thus, the BBA can obtain the same solution with
the exhaustive search method, but the computational complex-
ity is greatly reduced through the well-designed branching,
bounding, and pruning operations.

VI. SIMULATION RESULTS

In this section, we present simulation results to evaluate
the performance of the proposed algorithm (DUSPA). The
common simulation parameters are listed in Tab. I. In the
simulations, the mobile devices are uniformly distributed in
the coverage area of the BS. Firstly, we investigate the
convergence of the DUSPA as well as the effect of the control
factor V on the network performance. Then, we compare the
DUSPA with another two schemes (namely OFDMA-RR and
NOMA-PA) to demonstrate the performance gain brought by
jointly optimizing user scheduling and power allocation. More
detailedly, the OFDMA-RR adopts the traditional orthogonal
multiple access technique OFDMA with round-robin user
scheduling policy so as to accommodate all MDs. As such,
each MD can only be served in one M -th of the time. To

Algorithm 2 Branch-and-bound based algorithm (BBA)
1: Initialization:

• Set U = +∞ and T0 = {S1 = ∅}.
• Set {P∗(t) = ∅, A∗(t) = ∅}.

2: Solve the relaxed problem (35) with Sj = ∅. If all am (t)
are binary, update {P∗(t), A∗(t)} and go to step 12.

3: for k = 1 : M do
4: for j = 1 : |Tk−1| do
5: Select the branch Sj from Tk−1.
6: Choose MD mk according to (36).
7: Split Sj into two branches S1j and S2j , where S1j =

Sj ∪ {amk
(t) = 0} and S2j = Sj ∪ {amk

(t) = 1};
8: Solve the relaxed problem (35) with Sj = S1j and get

the objective function value f
(
S1j
)
. If f

(
S1j
)
< U

and all am (t) are binary, update U = f
(
S1j
)

and
{P∗(t), A∗(t)}. If f

(
S1j
)
< U and but not all am (t)

are binary, add S1j into Tk.
9: Solve the relaxed problem (35) with Sj = S2j and get

the objective function value f
(
S2j
)
. If f

(
S2j
)
< U

and all am (t) are binary, udpate U = f
(
S2j
)

and
{P∗(t), A∗(t)}. If f

(
S2j
)
< U and but not all am (t)

are binary, add S2j into Tk.
10: end for
11: end for
12: Output: The optimal control policy {P∗(t), A∗(t)}.

Table I
SIMULATION PARAMETERS

Cell radius 1000 m
Path loss 128.1+37.6log10 (d[km])

Shadowing Log normal as N
(
0, 82

)
Fading Rayleigh fading with 1 variance

Noise Power, σ2 1.8× 10−13 Watt
Spectral mask, Pmax 4 Watt

Circuit power consumption, pcm 0.2 Watt
Channel bandwidth, B0 180 KHz

Simulation times 5000

satisfy the long-term rate requirement of each MD, the instan-
taneous rate constraint for the scheduled MDs is promoted
to M × Rreq

m . Additionally, for the NOMA-PA, all MDs are
scheduled in each slot with optimized power allocation aiming
to minimize the transmit power of the BS [20].

A. Convergence Performance

Fig. 3 shows the convergence of the average total power
consumption and the average virtual queue backlog versus the
number of iterations. From this figure, we can find that given
the rate requirement, our designed algorithm can converge to
a balance point with the increment of the number of iterations.
This is because at the beginning of the algorithm, the virtual
queue backlog of each MD is zero. According to the drift
plus penalty equation (13), we can know that the DUSPA is
more inclined to reduce the total power consumption in the
early phase. As a consequence, the achievable data rate of
each MD is usually smaller than its demand, which results
in the rapid increment of the the virtual queue backlog as
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Figure 3. Convergence of the average total power consumption and the
average vitrual queue backlog (M = 6, V = 0.5, Rreq

m = Rreq,∀m, one
channel).
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depicted in Fig. 3. To restrain the sustained increment of the
queue backlog, more power will be consumed by the DUSPA
to enhance the data rate of each MD, and thus the total
power consumption will increase as well. Fig. 3 shows that
the total power consumption and the virtual queue backlog
increase continually until a balance between them is striked.
Furthermore, since large rate requirement leads to large queue
backlog, more power and convergence time will be consumed
accordingly.

Fig. 4 plots the convergence of the average data rate of
each MD versus the number of iterations. It can be observed
from this figure that the average data rate of each MD is
dynamically changing at the early stage and then levels off
with the increment of iterations. The reason is that MDs are
dynamically scheduled by the DUSPA in each slot. If their rate
requirements are not met, large data rate will be achieved for
the scheduled MDs, while none for the unscheduled MDs. As
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Figure 5. Effect of the control factor V on the total power consumption and
the queue backlog (M = 6, V = 0.5, Rreq

m = Rreq, ∀m, one channel).

such, the average data rate of each MD fluctuates obviously
at the early stage. However, as the algorithm proceeds, the
gap between the rate requirement and acquisition narrows
gradually, and hence the average data rate levels off when the
number of iterations is large. This simulation result confirms
that our algorithm can satisfy the long-term rate requirements
of all MDs (i.e., Lemma 3).

Fig. 5 depicts the effect of the control factor V on the total
power consumption and the queue backlog. As can be seen, the
total power consumption decays with V exponentially, while
the queue backlog increases with V linearily. Along with the
increment of V , the total power consumption reaches a certain
value asymptotically, but the queue backlog becomes infinite.
Since Little’s Theorem [31] indicates that average delay is
proportional to average queue length for a stable system, the
delay in NOMA networks will become intolerant for users
when V is very large. Therefore, it is irrational to set V too
large even for minimizing the total power consumption. In a
practical system, V should be selected with full consideration
of the tradeoff between the power consumption and the delay.

B. Performance Comparison

Fig. 6 illustrates the average total power consumption of
different algorithms versus the number of MDs5. The simula-
tion results indicate that our algorithm can greatly reduce the
power consumption compared with the other two schemes.
With respect to the OFDMA-RR, our algorithm can fully
exploit user diversities in the power domain, thereby it can
use less power to serve more users in one slot. However,
the OFDMA-RR can only serve one user on each time-
frequency resource block. Thus, to satisfy the long-term rate
requirements of all MDs, the OFDMA-RR should utilize very
large transmit power to meet the amplified instantaneous rate

5It is assumed that the MDs are uniformly distributed on each channel.
We do not formulate the channel assigenment into the considered problem,
mainly because the channel assignemt is not the main concern of this paper
and taking it into account will complicates the algorithm design.
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requirement (i.e., M ×Rreq
m ). In comparison with the NOMA-

PA, our algorithm can choose appropriate users to be served
in each slot via dynamic user scheduling. By this way, the
near-far effect of users can be fully exploited, and meanwhile
the intra-cell interference is controlled at a tolerable level. In
contrast, serving all users at the same time not only makes the
near-far effect non-obvious but also results in large intra-cell
interference and hence large power consumption especially for
large number of users. This also accounts for why the NOMA-
PA consumes more power than the OFDMA-RR when the
number of users is large.

Fig. 7 illustrates the effect of user number on the BS power
consumption. It can be observed that the trend of the BS power
consumption versus the number of MDs is almost identical
with that given in Fig. 6. This is mainly because the total
power consumption of the whole network is dominated by the
transmit power of the BS. From this figure, we can find that the
NOMA-PA can save more power than the proposed algorithm
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Figure 8. Average user power consumption versus the number of MDs
(V = 1, Rreq

m = Rreq,∀m, 10 channels).

when the number of users is small. The reason is that the goal
of the NOMA-PA is to minimize the transmit power of the BS,
while the DUSPA aims to reduce the power consumption of the
whole network (i.e., the BS and all MDs). With small number
of users, the NOMA-PA can use less transmit power to serve
all users, but the condition will reverse with the increment
of users. Besides, this figure shows that in the scenario with
massive connections, NOMA outperforms OFDMA in terms
of the BS power consumption and the transmit power of the
BS can be further reduced by appropriate user scheduling.
Furthermore, from this figure, we can find that when the
number of MDs is larger than 70 for Rreq=0.6 Mbps, the
consumed power of the BS under all algorithms has reached
the upper bound of the transmit power. At this point, the
network cannot strictly satisfy the rate requirements of all
MDs. Due to this reason, our algorithm has no advantages in
respect of the power consumption (as shown in Fig. 6 and Fig.
7), however we will demonstrate in the following (as shown in
Fig. 10) that even in this case, our algorithm can still provide
better service compared with the other two schemes.

Fig. 8 shows the average user power consumption versus
the number of users. It is noted that the power consumption
of a user depends on the frequency of the user scheduled in the
time domain. More frequency the user scheduled, more power
will be consumed accordingly. From this figure, we can find
that the power consumed by each user under the NOMA-PA is
always 0.2 Watt. This is because in the NOMA-PA, all users
must keep awake for data reception, just as depicted in Fig. 9
which shows the average number of users scheduled in each
slot. The NOMA-PA schedules users without regard to their
achievable data rate, thus this scheme is inefficiency. On the
other hand, users are scheduled in a round-robin manner under
the OFDMA-RR. As shown in Fig. 9, the number of users
scheduled by the OFDMA-RR is always equal to the number
of channels, thereby the normalized serving time acquired
by each user (or average user power consumption) decreases
with the number of users by the law of 1/M. Although the
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Figure 9. Average number of users scheduled in each slot versus the number
of MDs (V = 1, Rreq

m = Rreq, ∀m, 10 channels).
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Figure 10. User satisfaction versus the number of MDs (V = 1, Rreq
m =

Rreq, ∀m, 10 channels).

OFDMA-RR produces the lowest user power consumption,
it also generates the largest BS power consumption shown in
Fig. 7. In conclusion, the NOMA-PA and the OFDMA-RR are
two extremes in user scheduling, both of which cannot achieve
the optimal network performance. By contrast, our algorithm
can make a tradeoff between them and thus exhibits good
performance in power consumption at both the BS side and
the user side. Besides, it can be observed from Fig. 9 that
the optimal number of users scheduled on each channel is 2-
3, which is a valuable conclusion for the design of practical
NOMA networks.

Fig. 10 presents the user satisfaction of different algorithms
versus the number of MDs, where the user satisfaction is de-
fined as min

{
1, Rm/R

req
m

}
. From this figure, we can observe

that with Rreq
m = 0.4Mbps, our algorithm can satisfy all users’

rate requirements, while the other two schemes cannot guaran-
tee this demand. Besides, we can find that NOMA outperforms
OFDMA in terms of user satisfaction, as NOMA can serve

more users in each slot. This result indicates that NOMA is
more suitable for the scenario with massive connections. For
Rreq
m = 0.6Mbps, all schemes cannot guarantee the long-term

rate requirements of all users especially when the number of
users exceeds 60. However, by contrast, our algorithm can
still achieve a good performance in comparison with the other
two schemes. In this case, our algorithm can accommodate at
most 60 users under the power constraint of the BS. When the
number of users exceeds 60, the maximum power constraint
Pmax is reached, and thus our algorithm cannot satisfy the rate
requirements of all users. The simulation results verify that our
algorithm can save more power in low traffic condition and
provide better user satisfaction in high traffic condition.

VII. CONCLUSION

In this paper, we have investigated the total power consump-
tion minimization problem for NOMA downlink networks
by jointly considering user scheduling and power allocation.
Particularly, this problem has been formulated as a stochastic
optimization problem. To tackle this intractable problem, we
have exploited the Lyapunov optimization technique and the
branch-and-bound method to devise a low-complexity and
easy-implemented online algorithm. Only according to the
instantaneous system state, the proposed algorithm can make
real-time decisions to guarantee the long-term network per-
formance. Finally, simulation results have verified the effec-
tiveness of the proposed algorithm by comparing it with other
schemes.
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