
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005 339

Performance Analysis of TCP-Friendly AIMD
Algorithms for Multimedia Applications

Lin Cai, Student Member, IEEE, Xuemin Shen, Senior Member, IEEE, Jianping Pan, Member, IEEE, and
Jon W. Mark, Life Fellow, IEEE

Abstract—In this paper, the performance of TCP-friendly
generic AIMD (Additive Increase and Multiplicative Decrease) al-
gorithms for Web-based playback and multirate multimedia appli-
cations is investigated. The necessary and sufficient TCP-friendly
condition is derived, and the effectiveness and responsiveness
of AIMD are studied. Due to practical implications, a Dynamic
TCP-friendly AIMD (DTAIMD) algorithm is proposed. Extensive
simulation results are given to verify the derived necessary and
sufficient condition, and to demonstrate the performance of the
proposed DTAIMD algorithm.

Index Terms—Congestion control, Internet, multimedia, AIMD,
quality-of-service, TCP-friendly.

I. INTRODUCTION

WITH THE universal adoption of the Internet as a global
information infrastructure, besides the traditional Web

applications, more and more highly-demanded and media-rich
applications emerge and become very popular. Although the
HTTP-based Web traffic still dominates the Internet, it is
well anticipated that these new applications will claim a large
percentage in the future traffic mix. The success of the Internet
essentially relies on the self-regulated Transmission Control
Protocol (TCP) in its transport layer. TCP does not assume any
explicit knowledge about network internals and other sessions. If
a congestion signal is captured, TCP sender aggressively reduces
its congestion window (cwnd) by a half, or even reinitializes
cwnd for severe congestion. Otherwise, TCP probes for unused
bandwidth conservatively by enlarging cwnd by one segment
per round-trip time (rtt).

Although it has been shown that TCP is very successful for
bulk data transfer, there are several design issues that make it
less attractive for multimedia applications: a) TCP couples flow,
error, and congestion controls together to offer a single reliable
data transfer service, while many multimedia applications have

Manuscript received April 5, 2002; revised August 5, 2003. This work was
supported in part by the Natural Science and Engineering Research Council of
Canada (NSERC) under Grant No: RGPIN7779 and a Postgraduate Scholar-
ship, and grants from the Canadian Institute for Telecommunications Research
(CITR) under the NCE program of the Government of Canada. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Nelson L. S. Fonseca.

L. Cai, X. Shen, and J. W. Mark are with the Department of Electrical
and Computer Engineering, University of Waterloo, Waterloo, ON N2L
3G1, Canada (e-mail: cai@bbcr.uwaterloo.ca; xshen@bbcr.uwaterloo.ca;
jwmark@bbcr.uwaterloo.ca).

J. Pan was with the Department of Electrical and Computer Engineering, Uni-
versity of Waterloo, Waterloo, ON N2L 3G1, Canada. He is now with NTT
Multimedia Communications Laboratories, Palo Alto, CA 94086 USA (e-mail:
jpan@nttmcl.com).

Digital Object Identifier 10.1109/TMM.2005.843360

much tighter and more diverse requirements on delivery time-
liness rather than object integrity; b) TCPs increase by one or
decrease by half strategy produces a highly fluctuating sending
rate which is undesirable for most multimedia applications; and
c) TCP does not have some of the desirable features such as
multipoint communications and group management. Therefore,
the well-behaved TCP is rarely chosen to transport multimedia
traffic over the Internet. Since TCP-transported applications are
anticipated to be the dominant in the near future, it is crucial to
have compatible traffic regulations for non-TCP applications.
These regulations, or congestion control focused in this paper,
are expected to achieve the following objectives: a) different
classes of multimedia applications can coexist and behave prop-
erly and b) these multimedia applications can share network
resource appropriately with ordinary TCP-transported applica-
tions. We refer to these regulations as TCP-friendly conges-
tion control for non-TCP-transported multimedia applications
in this paper. In addition to the fairness and TCP-friendliness is-
sues, any new congestion control scheme should also i) have the
ability to maintain network stability by promptly responding to
congestion and be cooperative with other flows; ii) utilize net-
work resources (e.g., link bandwidth) efficiently; and iii) be ca-
pable to provide better QoS, (e.g., a smoothed flow and bounded
latency for playback multimedia applications); iv) be simple to
implement, compatible with the legacy, and scalable for incre-
mental deployment.

There are two paradigms of TCP-friendly congestion control
schemes proposed in the literature: equation-based rate control
and generic Additive Increase Multiplicative Decrease (AIMD)
based window control. For the equation-based approach, sev-
eral analytical models [9], [10] are used to obtain the long-term
TCP throughput as a function of the measured packet1 loss rate

, round trip time (rtt), Maximum Segment Size (MSS), and
initial timeout value . If these parameters are readily avail-
able, a rate-controlled sender can regulate its long-term sending
rate as a pseudo TCP sender does under the same condition.
TCP-Friendly Rate Control (TFRC) is a representative scheme
in this paradigm [5]. However, it is found that the throughput
model is quite sensitive to parameters (e.g., and rtt) that are
difficult to measure efficiently and to predict accurately. Also,
the long-term TCP throughput equation does not capture the
transit and short-lived TCP behaviors, and it is less responsive
to short-term network and session dynamics. Furthermore, it is
unknown whether the model itself still applies when the mix

1The terms network packets and transport segments are used interchangeably
in this paper since the modern TCP can negotiate for the maximum segment size
on its connection establishment to avoid IP fragmentation.

1520-9210/$20.00 © 2005 IEEE

340 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

of TCP and non-TCP traffic changes dramatically over time as
new applications keep emerging over the Internet. On the other
hand, the Generic AIMD (GAIMD) based approach inherits the
same principle embedded in TCP. Instead of the increase by
one or decrease by half strategy, GAIMD increases its cwnd
by segments additively when no congestion is sensed; oth-
erwise, it multiplicatively decreases the cwnd to of its pre-
vious value. TCP is a special case of GAIMD with

. With an appropriate pair of , it is possible to have a
smoothed sending rate and at the same time to be TCP-friendly.
TCP-Friendly GAIMD (TFGAIMD) [6] is such a scheme in this
paradigm. It derives the and pair from the AIMD response
function, which is an extension of the TCP response function.
However, due to this indirect approach, the only TFGAIMD pair
with the TCP-friendliness and independence of is and

, i.e., TCP itself. There are other variants proposed in
the literature, e.g., RAP [3] explores the inter-packet gap (IPG)
to exercise congestion control. If no congestion is sensed, IPG is
reduced additively; otherwise, IPG is doubled multiplicatively.
This technique can also be applied to inter-acknowledgment
spacing based approaches [4].

In this paper, instead of proposing another scheme either
in the window or rate based control paradigm, we focus on
the generic AIMD algorithms and their and parameters,
in particular for multimedia applications over the Internet.
Since GAIMD inherits many TCP control properties, it is
more feasible to implement and deploy GAIMD in a large
scale for non-TCP applications. Despite some previous work
on GAIMD protocols, the competitive behaviors among TCP
and GAIMD, especially when GAIMD becomes the dominant
component, are still far from being well understood. Therefore,
we pursue a deeper understanding of the intrinsic properties
and performance of GAIMD. Our main contributions are as fol-
lows. Without the constraints of any TCP long-term throughput
equations or response functions, we introduce a novel approach
to obtain the necessary and sufficient condition for a family
of AIMD parameters to be TCP-friendly. Furthermore, we
demonstrate that the condition is not only valid for any two
TCP and AIMD flows but also captures the competitive be-
haviors among any number of multiclass AIMD flows. Based
on the analysis of its built-in effectiveness and responsiveness
properties and the discussion of practical implications, we
propose a Dynamic TCP-friendly AIMD (DTAIMD) algorithm
for Web-based playback and multirate multimedia applications.
The efficacy and performance of the TCP-friendliness condition
and the DTAIMD algorithm are analyzed along with intensive
performance studies.

The rest of this paper is organized as follows. In Section II,
we briefly overview the TCP and TCP-friendly congestion con-
trol schemes. In Section III, we analyze the AIMD algorithms
with a focus on their pairs. The models for one TCP and
one AIMD, and for multiple-class AIMD flows, are established
to obtain the necessary and sufficient TCP-friendly condition.
The effectiveness and responsiveness properties of such con-
dition and its practical implication are also discussed with the
DTAIMD proposal. The DTAIMD-based congestion control for
multimedia playback and multirate applications, including ser-
vice differentiation and low or high multiplexing scenarios, are

then studied in detail in Section IV. Performance studies are pre-
sented in Section V, which includes the simulation results for the
flow fairness, link utilization, convergence speed, service differ-
entiation and QoS provisioning of DTAIMD-based multimedia
applications. Section VI gives concluding remarks and issues
for future work.

II. RELATED WORK

In this section, we first outline the mainstream TCP con-
gestion control mechanisms and Active Queue Management
(AQM) capable routers. We then briefly enumerate the existing
TCP-friendly congestion control schemes.

A. TCP Congestion Control

Congestion control was incorporated into TCP flow and error
controls in the late 1980s when a series of congestion collapses
were observed even when the Internet was relatively small at that
time [1]. The main principle of TCP congestion control is packet
conservation (also known as acknowledgment self-clocking): a
new segment is injected into network only after an old one has
left. This is an ideal case in the network and session equilibrium
state. However, changes in available network resources and
number of sessions always deviate TCP away from the ideal
case. Therefore, TCP congestion control is necessary to maintain
network stability [2], and the Internet evolution in the last two
decades has proved this. For TCP congestion control, initially,
after a timeout, or being idle for a while, TCP probes for available
network resource with a small cwnd. It is known as Slow Start.
In order to reach the target equilibrium quickly, TCP increases
cwnd exponentially every rtt, until cwnd is above the slow start
threshold (ssthresh) or when congestion occurs. When

, TCP probes for the unused bandwidth conservatively,
i.e., increasing cwnd by one segment per rtt without delayed
acknowledgment. This is referred to as Congestion Avoidance,
until eventually congestion occurs. For the mainstream TCP
variants, timeout and duplicated acknowledgment (dupack)
are two common congestion indications. Timeout indicates
severe congestion, and forces TCP to reinitialize cwnd and
halve ssthresh. Normally, the occurrence of three dupacks
are considered to signify moderate congestion, so cwnd is
halved (or more precisely, reduced to a half amount of current
outstanding data) and . Therefore, TCP is
characterized as AIMD(1, 0.5).

With the wide adoption of TCP/IP protocols in the Internet,
TCP congestion control also continues its evolution. New
algorithms, e.g., Partial Acknowledgment [12] and Selective
Acknowledgment [13], have been proposed and incorporated
into TCP endpoints. For intermediate systems, traditionally
Drop-Tail routers drop incoming packets whenever their output
buffer overflows, as a congestion signal to notify responsive
transport endpoints. Drop-Tail queuing is known to produce
bursty packet losses and a bias against flows with long rtts
and small packets. Currently, modern AQM-capable routers
can detect congestion even before buffer overflow actually
occurs. Random Early Detection (RED) is a well-known AQM
scheme [11]. RED-capable routers monitor the queue length
(and the speed at which it increases). If the length is below a

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 341

lower threshold, no packet is dropped; if it is above an upper
threshold, all packets are dropped. When the queue length
is between these two thresholds, packets are dropped with a
certain probability. With RED, it is very likely that the packet
loss probability of a flow is proportional to its packet rate, and
the congestion signals can be distributed among different flows
more fairly. Furthermore, Explicit Congestion Notification
(ECN) [14] is proposed in both the network and transport
layers. ECN-capable RED routers can advertise the incoming
congestion without dropping packets, and ECN-capable end-
points can exercise congestion control proactively. There are
other queuing mechanisms such as Fair Queuing (FQ) and
Weighted FQ (WFQ) in the literature that offer better fairness
with higher complexity [15].

B. TCP-Friendly Congestion Control

TCP is rarely chosen for emerging multimedia applications,
but the traffic regulation is necessary for these applications.
Therefore, TCP-friendly congestion control has become an
active research topic recently [3]–[7]. Since the instantaneous
TCP sending rate is highly complicated due to network and
session dynamics, TCP-friendliness is defined as the average
throughput of non-TCP-transported applications over a large
time scale does not exceed that of any conformant TCP-trans-
ported ones under the same circumstance [8]. We use this
definition in our work.

Many studies have been done on the quantitative modeling of
the TCP long-term throughput as a function of , rtt, MSS, and

. A simple TCP throughput equation [9] which assumes that
dupack is the only congestion signal during Congestion Avoid-
ance is , where without the de-
layed acknowledgment policy. A more sophisticated equation
[10], referred to as the TCP response function, is

(1)

which also takes the sender timeout into account.
TFRC [5] utilizes the TCP response function directly and

regulates its sending rate by calculating sending rate with the
measured , rtt, and the negotiated MSS. With this equation-
based rate control, it is possible to have a smooth sending
rate, given the assumption that the product of and rtt
will also remain smooth. TFRC is still a closed-loop control
mechanism since it needs to measure the latest and rtt
periodically, although it has more flexibility on generating
acknowledgment than the AIMD-based mechanisms. Since
TFRC relies on the TCP response function, the accuracy of
the measured and rtt becomes crucial. In practice, these two
parameters are very difficult to measure effectively and predict
accurately. TFGAIMD [6] also utilizes this response function
to derive the TCP-friendly pairs in an indirect approach.
With their approach, the only pair being TCP-friendly
and independent of is just TCP itself, i.e., and .
This pair only produces a highly fluctuating sending rate that
is undesirable for most multimedia applications.

RAP [3] also adopts the generic AIMD approach by adjusting
the IPG additively or multiplicatively, depending on whether or
not congestion signal is captured. The window-based AIMD ap-
proaches can potentially introduce burstiness into flows when
cwnd is advanced or inflated rapidly. As a rate-based control,
RAP avoids this problem by spacing outgoing packets evenly to
produce a smoothed flow. Our work focuses on the relation be-
tween and which can be translated into the additive and
multiplicative parameters to adjust IPG. Therefore, our work
is separate from RAP and can be used to enhance the RAP
performance.

Besides AIMD-based congestion control, other schemes
based on binomial congestion control were proposed in the
literature [7], for instance, Inverse Increase and Additive De-
crease (IIAD), Square-root Increase and Square-root Decrease
(SQRT), etc. These schemes can increase or decrease cwnd
more smoothly and are attractive for multimedia applica-
tions. However, although they are TCP-friendly under certain
circumstances, it is impossible for them to be TCP-friendly
independent of the bottleneck link capacity. We have further
comparison on AIMD and the binomial-based schemes in
Section III-A2.

Different from these previous approaches, we study the com-
petitive behaviors of TCP and AIMD flows, and directly derive
the necessary and sufficient condition for the AIMD increase
and decrease parameter pairs to be TCP-friendly. This condition
itself is independent of link capacity due to the inherited prop-
erties of AIMD algorithms. Our direct approach avoids the TCP
response function as well as its assumptions and limitations.
With the TCP-friendly condition, a family of parameter pairs
can be chosen for different applications with respect to their
own traffic characteristics. The derived parameter pairs are also
applicable for other AIMD-based congestion control schemes,
e.g., TCP and RAP. We demonstrate that better quality of ser-
vice provisioning, in terms of smoother packet flow, less buffer
underruns, and less delay jitter, is achievable with the dynamic
TCP-friendly AIMD algorithm. Furthermore, based on the de-
rived parameter family, we can effectively provide service dif-
ferentiation to multiclass multimedia applications, without any
additional changes in the core network.

III. ANALYSIS ON AIMD ALGORITHMS

We first model the AIMD algorithms to derive their TCP-
friendly condition in this section, and analyze the properties of
AIMD on effectiveness and responsiveness. Practical implica-
tions are then discussed, and a dynamic TCP-friendly AIMD
algorithm is proposed.

A. TCP-Friendly AIMD Parameters

Generic AIMD has the identical Slow Start process initially
or after timeout as that of TCP. However, in Congestion Avoid-
ance, instead of using TCPs increase by one or decrease by half
strategy, GAIMD adjusts its cwnd according to two parameters:

and . Therefore, we only need to examine the competitive
behaviors between TCP and AIMD in Congestion Avoidance.
For window-based schemes, an AIMD sender increases cwnd
by packets per rtt to probe for unused bandwidth when there

342 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

is no congestion, and decreases to times its previous cwnd if
a congestion signal is captured. For spacing-based schemes like
RAP, the sender decreases IPG to of its previous IPG
if no congestion presents; otherwise, it increases IPG to of
the previous value. For presentational simplicity, we only use
the window-based one as an example in this paper, and our re-
sults are also applicable to the spacing-based schemes.

1) One TCP and One AIMD Flows: Let one TCP flow and
one flow share a link with capacity packets per
rtt (i.e., packets can be transmitted during one rtt)2. Assume
that both flows have the same rtt and MSS, and the effects due
to different rtt and MSS will be discussed in Section III-A2.
Fig. 1(a) shows their cwnd trajectory. The cwnds of the AIMD
flow and TCP flow at time are denoted as and ,
respectively. When , it is referred to as the
underload region, and and evolve as follows

(2)

(3)

Combining (2) and (3), we have

(4)

Therefore, the cwnd trace in the underload region follows a line
segment with a slope .

If , it is referred to as the overload region.
Denote the time when the trace enters the overload region for
the -th time, where . Assume that both flows receive the
congestion signal once the sum of their sending rates overshoots
the link capacity, and decrease their cwnds simultaneously, we
have

(5)

(6)

(7)

As indicated in (6)–(7), the cwnd trace has a slope of
when congestion oc-

curs. Consequently, the cwnd trace is in the underload region
again. The duration between and is referred to as the
-th cycle. The increase and decrease cycles repeat as the TCP

and AIMD keep probing for unused bandwidth.
Based on (2)–(7), we have

(8)

If , the cwnd decrease slope of
the -th cycle is greater than , and ,
i.e., monotonically decreases and converges to

. If ,
the decrease slope in the -th cycle is less than , and

, i.e., monotonically increases and
again converges to . Similarly,

2In this paper, cwnd is calculated in the number of full size packets, and time
is in the number of rtts.

Fig. 1. The cwnd traces for one TCP flow and one AIMD flow: (a) static link
capacity and (b) dynamic link capacity.

converges to . Therefore, in-
dependent of the initial values of and , after a
sufficient number of cycles, the cwnd trace of these two flows
in the overload region converges to

(9)

(10)

where represents the time of overload in steady state. From
(9) and (10), in steady state, and increase and decrease
periodically, oscillating along the line segment with the slope

, as shown in Fig. 1(a). Their average throughputs are propor-
tional to their average cwnds in steady state, i.e.,

(11)

(12)

To guarantee that the TCP and AIMD flows have a fair share
of the link capacity3, the necessary and sufficient condition is

. From (11) and (12), we have

(13)

where and . The larger the is, the
smaller the should be.

Using the same technique, the TCP-friendly condition
can be extended for any two classes of AIMD flows. For

and , they are friendly if

(14)

where and .
Equations (13) and (14) are valid as long as the competing

flows have the same chance to reduce their cwnds. With RED-

3For presentational simplicity, we assume all flows have the same weight
or priority in this section. When they have different weights as discussed
in Section IV-C, the friendly conditions need to be updated with a scalar
factor.

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 343

capable routers, packets are discarded or marked proportionally
when the queue length exceeds a threshold. Therefore, it is rea-
sonable to assume the competing flows receive a fair share of
congestion signals, unless cwnd of one flow is much larger than
the others. If so, that flow has a better chance to receive conges-
tion signals and reduces its cwnd more frequently. Therefore,
the cwnd trace converges to the steady state even faster.

a) Dynamic link capacity: Equation (13) indicates that
the TCP-friendly condition is actually independent of the link
capacity . As shown in Fig. 1(b), when the link capacity
changes from to , the cwnd trace converges to a new line
segment with the slope . One endpoint of the line segment is
on the line , and the other endpoint is
on the line . As far as (13) is satisfied,
the midpoint of the new segment always sits on the fair share
line, which means that the average throughputs of the AIMD
and TCP flows are the same in steady state.

Yang et al. [6] also obtained the same equation as (13) by
simplifying the AIMD response function. The simplification is
based on the assumption that the packet loss rate should
be very small. Equation (13) was interpreted as a partial TCP-
friendly condition for AIMD flows if triple-dupack is the only
congestion signal. When timeouts are considered, they gave an-
other condition as follows

(15)

The only pair satisfies both (13) and (15) is just (1,
0.5), i.e., the pair for TCP only. However, after timeout, both
TCP and AIMD have the same Slow Start process and thus
the same throughput. We believe that it is sufficient to get the
TCP-friendly condition by just focusing on Congestion Avoid-
ance and exponential backoff due to triple-dupack. Reference
[6] obtained (13) with the constraint and assumption of a small

. On the contrary, our straightforward approach derives (13)
without any simplification and has no constraint on . More
discussions on the validation of the TCP-friendly condition
(13) are presented in the following section, and the simulation
studies in Section V-A1 confirm our analysis.

2) Multiclass AIMD Flows: Due to the heterogeneous
nature, different multimedia applications can choose different

pairs, according to their unique traffic characteristics.
Although the TCP-friendly condition is derived by studying
the competitive behaviors of two flows, it will be demonstrated
that multiclass AIMD flows can also co-exist friendly. Let
AIMD flows share a link with capacity packets per rtt, the

-th AIMD flow have the pair , and its cwnd at time
be . pairs should satisfy the following equation to
be friendly pairwisely

(16)

In the underload region, their cwnds evolve as

(17)

In the overload region, assume that all flows get the congestion
signal. We have

(18)

(19)

Initially, the cwnd of the -th flow is . Let denote the
time when the cwnd trace enters the overload region for the -th
time, and . is the time from the be-
ginning to the first time in the overload region. From (17)–(19),
we have

(20)

where . Since when is large.
Therefore, the contribution of the initial value of cwnd fades
out exponentially and becomes negligible after several cycles.

According to the analysis in Section III-A1, for two arbitrary
flows, and , their cwnd trace in the overload region satisfies
the following equation in steady state, no matter what the link
capacity is

(21)

By substituting (21) into (18), in steady state, the cwnd of the
-th flow in the overload region is

(22)

Thus, the average cwnd of the -th flow in steady state is

(23)

Since all pairs satisfy the friendly condition (16),
is a constant for all . In conclusion, as long
as their pairs satisfy the friendly condition, in a long
term, all AIMD flows eventually have an equal share of the link
capacity, no matter how large the link capacity is, how many
AIMD classes may exist, and how many flows are from each
class.

b) Variable packet size and rtt: TCP is known for its bias
against flows with small packets and long rtts, and the same
is true for the TCP-friendly AIMD. The TCP-friendly AIMD
flows have the same packet rate as the competing TCP flows.
However, the throughput of an individual AIMD or TCP flow, in
terms of bit per second, is proportional to its average packet size.
One possible remedy is to give the small packet flows a higher
weight to have a higher packet rate as discussed in Section IV-C.
For different rtts, since the AIMD flow increases its cwnd by
packet per rtt, the effective increase rate is inversely proportional
to its rtt. How to achieve fairness for small packet and long rtt

344 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Fig. 2. The cwnd versus throughput for AIMD flows.

flows is beyond the scope of this paper and is one issue in our
future work.

c) Comparison with binomial schemes: In steady state,
the ratio of average cwnd of competing AIMD flows is inde-
pendent of link capacity. With this important property, we can
choose multiple pairs according to the TCP-friendly
condition. The flows in different classes with different
pairs can co-exist friendly. Although binomial increase/de-
crease schemes, e.g., IIAD and SQRT, etc., are attractive to
multimedia applications for their smooth throughput, they
cannot achieve the TCP-friendliness independent of link ca-
pacity, since in steady state, the ratio of bandwidth share of an
AIMD flow and a co-existing non-AIMD flow depends on the
bottleneck link capacity.

In the Appendix, we study the case when an IIAD flow com-
petes with a TCP flow. No matter what parameters are chosen,
the link capacity affect the bandwidth share of these two flows.
Therefore, they cannot be friendly all the time. Another property
of the IIAD scheme (derived in the Appendix) is: unlike AIMD,
two IIAD flows can be friendly independent of link capacity if
and only if these two IIAD flows have the same increase and
decrease parameters.

B. Properties of AIMD Algorithms

Based on the analysis in Section III-A, the TCP-friendliness
property is obvious for AIMD flows satisfying the TCP-friendly
condition. Next, we explore two other important properties for
AIMD flows: effectiveness and responsiveness.

1) AIMD Effectiveness: One effectiveness benchmark is
network utilization, i.e., how effectively the AIMD-based
protocols can utilize the available bandwidth when comparing
with TCP.

a) Single AIMD flow: Let one flow occupy
a link with fixed capacity. Without considering queuing delay,
the rtt is constant and denoted as . The link can transmit
packets per , and the bottleneck buffer size is packets. For
RED-capable routers, is defined as the mean value of queue
length when packet loss occurs. As shown in Fig. 2, in steady
state, there are two stages. In stage , there is no
queuing delay and . In stage and the
queue builds up. For each rtt, cwnd increases by packet and so
does the queue. Therefore, rtt increases for every round4.
The link utilization is 1 in stage since the queue is nonempty
all the time. When the cwnd increases to , there are

4A round is defined as the time successfully transmitting and receiving a
whole cwnd of packets and acknowledgments.

packets in the queue, and packet loss occurs. Consequently, the
cwnd is throttled to . In stage , the number of packets
being transmitted is . The time duration
in stage is . Therefore the link utilization
in stage , is

when
otherwise

(24)

where .
Equation (24) indicates that TCP-friendly AIMD flows with a

larger only require a smaller buffer to fully utilize the link. On
the other hand, although a large buffer can further improve the
link utilization, it also introduces more delay and jitter, which
is undesirable for delay sensitive multimedia applications. For
these reasons, it is preferable to have a moderate network buffer
size, especially for multimedia applications.

Without network buffering, the link utilization for an AIMD
flow is

(25)

which indicates that the effective link utilization of an AIMD
flow is proportional to .

b) Multiple AIMD flows: When there are
flows sharing a link, the link utilization becomes much more
complicated to analyze since it also depends on how these flows
synchronize in response to congestion signals.

The worst case scenario is that all flows simultaneously in-
crease and decrease their windows. The link utilization in such
case is exactly the same as when one flow tra-
verses the link. Without network buffering, the link utilization
in the worst case, , is the same as (25).

The best case scenario is shown in Fig. 3, where the cwnd
of each flow increase and decrease periodically, while the
decreasing moments of each flow are evenly distributed. Ne-
glecting network buffering, we have the following equation in
the overload region

(26)

After a flow reduces its cwnd, the sum of all cwnds is
, and the sum will increase by packets per rtt in the

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 345

Fig. 3. n AIMD(�; �) flows in best scenario.

underload region. Therefore, the link utilization in the best case
is

(27)

Equation (27) shows that AIMD flows with a large still have
better performance in terms of link utilization in the best case
scenario. However, the effect of becomes negligible when
becomes very large.

On the other hand, when there is a large number of flows
sharing a link, the link is frequently overshot. Flows with a large

produce congestion more frequently. For instance, assume
that (of) flows receive congestion signals when overshooting
the link capacity . The time duration to the next congestion mo-
ment is . Since when is large, the
congestion frequency is approximately proportional to . Fre-
quent congestion reduces the throughput of all flows, because
they have to recover from more packet losses. Therefore, when
the multiplexing is high, flows with a smaller have higher ef-
ficiency in terms of link utilization. In summary, TCP-friendly
AIMD flows with a large and a small have a higher band-
width utilization, no matter whether the bottleneck link is highly
or lowly multiplexed, as shown later in Section V-A2.

2) AIMD Responsiveness: Another property for congestion
control is how quickly the AIMD-based algorithms respond to
network and session dynamics, e.g., when the available band-
width and number of flows change. The responsiveness bench-
mark that we use here for AIMD flows is convergence.

Convergence is generally measured by the speed at which the
system approaches the steady state condition from any initial
states [16]. For two AIMD flows, their cwnd traces converge to
and oscillate in a line segment in steady state. If these two AIMD
flows have the same pair, this line segment coincides with
their fair share line; or, if these two AIMD flows are friendly to
each other, the converged line segment intersects the fair share
line at its midpoint.

a) Single AIMD class: We first consider two flows from
the same class, and , sharing a link with
capacity . takes the whole capacity before shares the
link. Initially, their cwnd trace is at the point , as shown in
Fig. 4(a). After decrease and increase cycles, their cwnd trace
is at the point . Since both flows

have the same pair, each cycle takes the same time, which
equals rtts. The convergence speed, denoted as
, is the speed of bandwidth gained by , which equals the

amount of bandwidth gained by over the time in rtts that it
takes, i.e.,

(28)

From (28), the larger the or is, the faster the convergence
is. However, if the pair is under the constraint of the
TCP-friendly condition in (13), we cannot increase both and

simultaneously to get a higher convergence speed. By intro-
ducing (13) into (28), the convergence speed of TCP-friendly
AIMD flow is

(29)

Therefore, the speed for to gain portion of the total band-
width is

(30)

where . From (29) and (30), , in packet per
, increases when decreases. Therefore, when one-class

TCP-friendly AIMD flows compete, the convergence speed is
higher if is smaller.

If the cwnd is a continuous variable, it will take infinite
time for the cwnd trace to reach the steady state (when

). However, in reality, the cwnd
is a nonnegative integer due to packetization, so within finite
increase and decrease cycles, the cwnd trace falls into the
steady state, as shown in Fig. 4(b).

b) Multiple AIMD classes: Let two flows from different
AIMD classes, and , share the link, as
shown in Fig. 5. Initially, their cwnd trace hits the capacity line
at the point , where . After one decrease and
increase cycle, the cwnd trace is at the point , where
and are

(31)

(32)

After this cycle, the bandwidth gained by is , and
the number of rtt it takes is . Then, the con-
vergence speed in this cycle is

(33)

The partial derivatives of with respect to and are both
positive, while the partial derivatives of with respect to
and are both negative. It means for to gain the bandwidth
faster, its own should be larger, while the pair for
the competing flow should be smaller. Furthermore, if the

346 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Fig. 4. Convergence of two AIMD flows from the same class: (a) cwnd is a continuous variable; (b) cwnd is an integer.

Fig. 5. Convergence of two AIMD flows from different classes.

of are under the constraint of the TCP-friendly condition
(13), the convergence speed becomes . The partial
derivative of with respect to is always positive,
which means is larger if is larger and is smaller. The
analysis of the bandwidth gain speed for the new arrival flow
considers the worst situation that both flows throttle their cwnds
simultaneously when they overshoot the available bandwidth. In
reality, when the new flow has a much smaller cwnd than that
of the old flow, it is likely that only the old flow suffers packet
losses and shrinks its cwnd. In that case, the bandwidth gain
speed for the new arrival is even faster.

In conclusion, for a new TCP-friendly AIMD flow to get its
fair share bandwidth faster, its should be larger, or its should
be smaller. Results in Section V-A3 confirm this observation.
Although a new AIMD flow starts its competition by exponen-
tially exploring the bandwidth through the Slow Start process,
the above analysis is helpful to determine how fast the AIMD
flow responds to the change of available network bandwidth.

C. Practical Implications

The achievable cwnd of an AIMD flow is determined by the
available link capacity and rtt. When cwnd is very small due
to the limited link capacity, the AIMD flow with a larger has
less throughput than the competing TCP flow, even its
pairs satisfy the friendly condition. In the following section, we

discuss some practical implications that affect the TCP-friend-
liness of AIMD flows.

1) Sender Timeout: Timeout occurs when there are insuffi-
cient (less than 3) duplicated acknowledgments after a packet
is lost. When timeout occurs, the TCP or AIMD flow will
reinitialize its cwnd, and go through the Slow Start process. If
timeouts occur simultaneously for both competing flows, their
cwnd traces during Slow Start coincide with the fair share line.
However, if timeout only occurs to one flow, that flow has a
much lower throughput during its Slow Start than the other
flow. Intuitively, timeout is less likely for flows with a large
cwnd that have enough dupacks after a single packet loss. If
cwnd is very small when congestion happens, timeout may
occur and its effect on throughput should be further studied.

As shown in Fig. 1, when congestion occurs, the cwnd of
AIMD flows is not equal to the cwnd of TCP flows in the over-
load region: the cwnd of the flow is
and the cwnd of the TCP flow is . If
is larger than , the AIMD cwnd is less than the TCP cwnd
in the overload region. Therefore, AIMD flows with a large
probably suffer more timeouts and thus have a lower throughput
than TCP flows.

2) AIMD Parameters: The derivation of the friendly condi-
tion assumes that the cwnd is a continuous variable. In reality,
due to packetization, the effective cwnd is always rounded to
the maximum integer no greater than the algorithmic cwnd.
When cwnd is small, the effect of this rounding is nontrivial. If
cwnd is smaller than when congestion occurs, it has
to be reduced at least by 1 packet to respond to the congestion
signal although theoretically times cwnd is less than
one. Therefore, the effective decrease ratio is
which is smaller than . When the available link capacity
to each flow is so small that the average cwnd of each flow
is smaller than , the throughput of AIMD flows is
much less than the analytical result. The larger the is, the
larger the is, and thus there is more negative effect
on the throughput.

In addition, for TCP-friendly AIMD flows, if is larger than
0.5, should be less than 1. If there is no congestion, it takes

rtts to increase the effective cwnd by 1. During this time, if

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 347

Fig. 6. Filling and draining phases: (a) without network buffer; (b) with network buffer.

a single packet loss occurs, the cwnd has no chance to increase
before it actually decreases, i.e., the effective increase rate is less
than . If the cwnd is small when congestion occurs, the differ-
ence between and the effective increase rate is nonnegligible.
Therefore, AIMD flows with a large and a small may have
a lower throughput than the competing TCP flows, especially
when cwnd is small.

3) An Enhanced AIMD Algorithm—DTAIMD: To miti-
gate these practical implications, we propose a new Dynamic
TCP-friendly AIMD (DTAIMD) algorithm. Since the effective
decrease ratio, , is when
should be adjusted based on , instead of , according to the
TCP-friendly condition. When , the increase
ratio is the preset value , which equals ;
when , the increase ratio should be

, or , i.e., should be
dynamically adjusted according to the current cwnd to ensure
the practical TCP-friendliness.

The core pseudo code for the proposed DTAIMD algorithm
based on the above analysis to enhance the TCP-friendliness of

flows is

If cwnd is large enough (i.e.,), the regular
TCP-friendly condition applies . Otherwise, cwnd is ad-
justed according to the effective , unless
cwnd is minimized already . The algorithm is generic and
adjusts adaptively and dynamically, and it still preserves the
desired AIMD properties. We will apply it to multimedia appli-
cations in Section IV. Later, we will evaluate its performance
and compare it with the ordinary AIMD and TCP in Section V.

IV. DTAIMD-BASED MULTIMEDIA APPLICATIONS

In this section, we study how efficiently to apply the
DTAIMD-based algorithms to support playback and multirate
multimedia applications with service differentiation.

A. Multimedia Playback Applications

Web-based multimedia playback applications become pop-
ular in the Internet, and are advocated as the future of home
entertainment. The stream length varies over a wide range,
from a few second clips to hour length movies. Users desire
the best affordable quality in terms of higher application
throughput, minimum start-up latency, and less interruptions
during playback. Let the DTAIMD-based protocol transport
multimedia playback applications. Appropriate pairs
should be chosen to achieve the TCP-friendliness and better
quality provisioning for these applications.

To simplify our analysis, let the playback application con-
sume a stream at constant rate . This assumption is reasonable
as a starting point [18], and many schemes [19] have been pro-
posed to smooth streams for easier resource reservation. These
schemes can also be used in our context.

As shown in Fig. 6(a), if the packet arrival rate at the re-
ceiver (i.e., the transmission rate when the network buffering
is ignored) is above , the excess data are filled in the receiver
buffer. This time period is referred to as the filling phase. At time

, packet loss occurs and the transmission rate is reduced below
; some data must be drained from the receiver buffer until the

transmission rate reaches again, and this time interval is re-
ferred to as the draining phase.

1) Low Multiplexing Scenario: Consider a static situation
that only one AIMD flow traverses a link of capacity . The
transmission rate of the AIMD flow increases and decreases pe-
riodically. When the transmission rate reaches , the cwnd de-
creases to . If the amount of data stored during the filling
phase, , is less than the data drawn from the buffer during
the draining phase, , the receiver will starve and the play-
back will freeze for a while, which is undesirable for playback

348 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

applications. To guarantee , the consumption rate
should be bounded as follows:

(34)

From (34), the maximum consumption rate of an
flow is proportional to . The minimum

receiver buffer size required (maximum queue length) is
, i.e., with a larger , the receiver

buffer size can be reduced significantly, and so do the max-
imum delay and delay jitter. For instance, of an AIMD(1,
0.5) flow is 25% less than that of an AIMD(0.2, 0.875) flow. A
higher permissible consumption rate allows potentially higher
application throughput and better audio or video quality. In
other words, the AIMD protocol with a larger can provide
better QoS. However, if network buffer is considered, it has
the effect of flattening the arrival rate to the receiver, shown in
Fig. 6(b), and the advantage of the AIMD flow with a large
may become less significant.

2) High Multiplexing Scenario: When many AIMD flows
with different pairs compete for a highly multiplexed
bottleneck, the of a flow cannot be determined only by its
own as in (34). If the pairs of competing flows satisfy the
friendly condition, each flow has the same average throughput
and . However, in a highly multiplexed dynamic network,
AIMD flows with different pairs have different response
patterns to transient changes of network resources. AIMD
flows with a small and a large are very sensitive to
bandwidth variation, and their instantaneous throughput changes
quickly. (It has been shown that the convergence speed of
the TCP-friendly AIMD flow is inversely related to in
Section III-B2.) Therefore, during the playback, they are more
likely to be interrupted. The frequency of interruption, or buffer
underrun, is an important QoS index for multimedia playback
applications, and the AIMD protocol with a larger is desirable
for these applications, as we will show in Section V-B.

B. Realtime Multirate Applications

The increasing demand for realtime video services has gener-
ated great research interests recently. Realtime multimedia ap-
plications are time-sensitive and cannot tolerate excessive delay
and delay jitter. Therefore, many scalable multirate and layered
video coding and decoding schemes are developed to cope with
the variability of available bandwidth [21]. Given the resource
available to them, heterogeneous receivers can tune into dif-
ferent coding layers to obtain the best quality.

Fig. 7 shows a multirate video flow under AIMD congestion
control. When the AIMD sender increases its cwnd, the video
source increases its coding rate accordingly. When there is a
packet loss at time , the AIMD sender reduces its cwnd from

to , and informs the video coder about this change. After
an unavoidable delay , the video coder reduces the coding rate
at time . We are interested in the maximum sending delay
since the packet is useless for realtime applications if its delay

Fig. 7. AIMD for realtime multirate video applications.

exceeds a certain threshold. We focus on the queuing delay in-
side the sender. In Fig. 7, the packet generated at time will
suffer the longest sender queuing delay. During , the sending
queue increases by about packets. , the queuing
time for packet to be sent, can be calculated as follows

(35)

From (35), the maximum sender queuing delay, due to the mis-
match between sending rate and coding rate, depends on the de-
crease parameter . Let be 0.875 instead of 0.5, the delay can
be reduced by a factor of , which is significant for realtime
video.

In summary, choosing a large value of has two advantages.
First, it supports a scalable video coder to gracefully degrade
user perceived quality when packet loss is detected. Secondly,
the sending delay and delay jitter can be reduced considerably.
On the other hand, under the TCP-friendly condition, the larger
the is, the smaller the should be. Flows with a smaller have
lower convergence speed. Therefore, the application should
make a trade-off to choose a suitable parameter pair according
to its own traffic characteristics and QoS requirements.

C. Service Differentiation

Different multimedia applications can have different service
requirements. To provide heterogeneous services, it is proposed
to define several traffic classes and to allocate each class with
a different priority of occupying network resources (e.g., band-
width). If a family of AIMD parameters can be used to provide
such differentiation, no major upgrades in the core network are
required. It is a scalable and economical approach to incremen-
tally deploy and offer service differentiation over the Internet.

From the analysis in Section III, the cwnd trace of co-existing
AIMD flows must converge to a steady state. The average cwnds
of two flows in steady state purely depend on their pairs
and are independent of link capacity. For two traffic classes, let
class have a higher priority than class , i.e., class flows be
weighted as 1 and class flows be weighted as an integer .
When they compete for the same bottleneck link, the throughput
of the class flows can be times of that of the
class flows if their average cwnd ratio is .

Denote and the -th time and
in the overload region, respectively. is

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 349

Fig. 8. Normalized throughput (RED;Link BW = 15 Mbps): (a) TAIMD(0.2, 0.875) versus TCP; (b) DTAIMD(0.2, 0.875) versus TCP.

the time duration between and . Their cwnds are given
by

(36)

(37)

From (36) and (37), we can get the average cwnds of two flows
in steady state

(38)

(39)

The average sending rate of the flow is
times that of the flow. With RED-capable

routers, the packet loss rate of is also times
that of . In other words, the average duration
of increase and decrease cycle of ,
is of . Therefore, according to (38) and (39), to
ensure , their pairs should satisfy

(40)

For instance, let the data traffic be class with and
, and the multimedia traffic be class with .

From (40), takes the values 0.8, 1.8, 3.2 for ,
respectively. With the pair of (3.2, 0.875), a multimedia
flow can have 4 times higher packet transmission rate than the
co-existing data flows. In Section V-B3, we will illustrate this
property with the simulation.

a) Implementation concerns: To achieve TCP-friendli-
ness and service differentiation, applications should set
pairs according to their QoS requirements. However, to prevent
abusive users or misbehaving applications, we suggest that an
application can only choose one parameter according to its
traffic characteristics. The operating system and protocol stack
calculate the other one according to the TCP-friendly condition
and the service differentiation weight. Obviously, this still
cannot fully prevent malicious users from abusing the network

by hacking the transport protocol or operating systems. The
stability of the Internet relies on the voluntary cooperations
from all end users. How to protect the network from malicious
users is beyond the scope of this paper, since the DTAIMD
protocol does not introduce any additional risks than the current
TCP/IP stack.

V. PERFORMANCE EVALUATION

To validate the TCP-friendly condition derived in Sec-
tion III-A, examine the bandwidth utilization and convergence
speed analyzed in Section III-B, and compare with TCP the
QoS provided by DTAIMD-based algorithms for multimedia
applications detailed in Section IV, extensive simulations have
been performed by using the Network Simulator [17].
The logical simulation topology is the widely used shared
bottleneck topology. The simulations use the following param-
eters unless otherwise explicitly stated. The routers adjacent to
the bottleneck link are RED-capable, and the link has 20 ms
propagation delay. The number of competing flows ranges
from 2 to 128, which covers the low multiplexing and high
multiplexing (congestion) scenarios. To avoid the phase effect
among competing flows, the rtt of each flow is made slightly
different. MSS is 1000 bytes.

A. Performance of AIMD Algorithms

1) Flow Fairness: First, we evaluate the fairness among
TCP, TCP-friendly AIMD (TAIMD), and DTAIMD flows in
terms of normalized throughput. In Fig. 8, the -axis repre-
sents the number of flows, and -axis is the ratio of the flow
throughput to their fair share. The normalized throughput
should be 1 if the flow throughput equals the fair share, and
the sum of the normalized average throughput is always 2 for
two-class flows. Fig. 8(a) shows that TCP flows consistently
have a higher average throughput than that of the TAIMD(0.2,
0.875) flows when they compete for the same link, especially
when is large and their average cwnd is small. This obser-
vation reveals the practical fairness problem between TCP
and the ordinary TAIMD as we discussed in Section III.C.
Fig. 8(b) shows that the normalized throughputs of TCP and
DTAIMD(0.2, 0.875) are both close to 1, i.e., the average
throughput of TCP and DTAIMD flows are close to each other,
which implies better fairness when comparing to Fig. 8(a).
This demonstrates that the proposed DTAIMD algorithm works

350 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Fig. 9. Fairness index (RED;Link BW = 15 Mbps).

properly and does improve the fairness between the TCP and
AIMD flows.

We further clarify this point by plotting the fairness index in
Fig. 9 for TCP, TAIMD(0.2, 0.875), and DTAIMD(0.2, 0.875)
flows. Fairness index is defined as ,
where is the number of total flows sharing the link and is the
throughput of the -th flow. Fairness index has a range from
to 1, and reaches 1 when all flows have the same throughput.
Fig. 9 shows that the fairness index of DTAIMD(0.2, 0.875)
flows with TCP flows is much better than TAIMD(0.2, 0.875)
flows with TCP flows. It also shows that the fairness index of
DTAIMD flows mixed with TCP flows is almost the same as
that of TCP flows alone, which indicates that DTAIMD is truly
TCP-friendly over a wide range of network and session dy-
namics. In the simulations, when there are more than 32 flows
sharing the link of 15 Mbps, the average cwnd is less than three
packets, and the congestions are mostly signified by timeouts.
Simulation results show that the throughputs of DTAIMD flows
are still close to those of TCP flows, which echos our statement
that the derived TCP-friendly condition is valid even with fre-
quent timeouts. Simulations with other TCP-friendly AIMD pa-
rameter pairs have the similar results, which are not presented
here due to space limitation.

2) Link Utilization: To examine the link utilization derived
in Section III-B1, four pairs, i.e., (0.2, 0.875), (0.4,
0.765), (0.6, 0.667), (1, 0.5), are chosen according to the TCP-
friendly condition. Each simulation runs 30 s and the results
are collected after 5 s from the beginning to avoid the skew
introduced by the warming up effect.

a) Single AIMD flow: In this set of simulations, one
AIMD flow traverses along a 3 Mbps link with a Drop-Tail
queue. The rtt is around 40 ms. The buffer size is set to be two,
five, ten, or 20 packets, respectively. Two is the minimum buffer
size used in the simulation since the AIMD sender sometimes
sends two packets back-to-back, e.g., when it receives an ack
in Slow Start.

Fig. 10 enumerates four different pairs along
the -axis, and plots the bottleneck utilizations in the -axis. It
is shown that the simulation results match the analytical calcu-
lation. In addition, it shows that link utilization is proportional
to , and AIMD flow with a larger needs less buffer to achieve
a higher utilization.

b) Multiple AIMD flows: Now let two or four AIMD
flows share the link. The buffer size is two, five, ten, or 20

Fig. 10. Link utilization for one AIMD(�; �) flow.

packets for the two or four flows cases, respectively. Fig. 11(a)
and (b) compare the link utilization with Drop-Tail and RED
queues when there are four flows. When these flows share
the link with the Drop-Tail queue, the link utilization with the
minimum buffer size is very close to the analytical results of
the worst case scenario, since all flows are synchronized when
buffer overflows. However, the link utilization with the RED
queue is very close to the analytical results of the best case
scenario. It shows the RED-capable router can improve the link
utilization by letting the competing flows react to congestion
evenly in different phases.

We further increase the number of flows in the link to eight
and 16. The minimum buffer size is five packets since it is very
likely that more flows may simultaneously transmit two packets
back-to-back and need more buffer to accommodate the traffic
burst. The link utilizations with both Drop-Tail queue and RED
queue are similar to the best case analytical results, as shown in
Fig. 12(a) and (b). It reveals that when the link is highly mul-
tiplexed with a larger buffer size, the flows are not strictly syn-
chronized as that in the worst case scenario, and higher link uti-
lization can be achieved.

c) TCP versus TAIMD versus DTAIMD: To examine the
link utilization for both low and high multiplexing scenarios
when TCP flows compete with TAIMD or DTAIMD flows, the
following five groups of flows sharing a 15 Mbps link are sim-
ulated: i) TCP flows; ii) TAIMD flows; iii) DTAIMD
flows; iv) TCP flows and TAIMD flows, and v) TCP flows
and DTAIMD flows. ranges from 1 to 64, which covers from
the low multiplexing to high multiplexing scenarios. The RED
queue thresholds are 25 and 125 packets.

As shown in Fig. 13, the link utilization is quite high when
more than four TCP or DTAIMD(0.2, 0.875) flows share the
link. The utilization is around 99% when there are more than
four flows sharing the link. Fig. 13 shows that the link utiliza-
tion remains high when TCP flows compete with DTAIMD(0.2,
0.875) flows. This fact indicates that is as effi-
cient as TCP in terms of link utilization. Fig. 13(a) and (b) show
that the link utilization is even better for TAIMD(0.2, 0.875)
flows only or TAIMD(0.2, 0.875) flows mixed with TCP flows.
This is because TAIMD(0.2, 0.875) has a large and a small

, which is more efficient than TCP in link utilization no matter

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 351

Fig. 11. Link utilization for four AIMD(�; �) flows: (a) Drop-Tail queue; (b) RED queue.

Fig. 12. Link utilization for eight AIMD(�; �) flows: (a) Drop-Tail queue and (b) RED queue.

Fig. 13. Link utilization (RED;Link BW = 15 Mbps): (a) homogeneous flows and (b) heterogeneous flows.

whether the link multiplexing is high or low, as shown in the
discussions in Section III-B1.

3) Convergence Speed: Fig. 14(a) shows the results for the
case with one AIMD class. The solid line is the analytical result
for the convergence speed obtained in (30) and the dash line
is the simulation result. Let one AIMD flow occupy the whole
link at the beginning and the other one share the link later. The
bandwidth gain speed of the second one is measured. To focus
on the AIMD scheme, we freeze the Slow Start phase, and both
flows increase and decrease their cwnds following the AIMD

mechanism only. We set the link buffer to the minimum value;
therefore, both flows receive the congestion signals once the
sum of their sending rates exceeds the link capacity. The for
AIMD flows enumerated in the -axis varies from 0.5 to 0.875,
and is set according to the TCP-friendly condition. Fig. 14(a)
shows how fast a new AIMD flow gains 35% of total link ca-
pacity from an existing homogeneous AIMD flow. For TCP, or
AIMD(1, 0.5), it is fairly quick to grab resources from com-
peting flows. In addition, the convergence speed drops quickly
when grows, and it confirms that is inversely proportional to

352 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

Fig. 14. Bandwidth gain speed for F , (link capacity 20 packets/rtt): (a) 35% bandwidth, one AIMD class; (b) first two cycles, two AIMD classes.

, as derived in (29). In the analysis, we assume that the cwnds
are continuous variables while in reality the cwnds are rounded
when decreasing. Therefore, the simulation results are slightly
lower than the we derived.

Similar simulations have been done for multiclass AIMD
flows. Fig. 14(b) shows the bandwidth gain speed for a new
TCP-friendly AIMD flow competing with an existing TCP flow
for the same bottleneck. The speed for the AIMD flow to gain
bandwidth in the first two cycles is plotted in Fig. 14(b), since
TCP gains most of its share in the first two cycles and its band-
width gain speed approaches to zero after that. Since the AIMD
flow rounds its cwnd when decreasing, the simulation results
are slightly lower than the analytical one, especially when
is much larger than the decrease ratio of the co-existing TCP.
However, it reveals a similar trend that the larger the is, the
slower the convergence speed an AIMD flow has, as it becomes
less aggressive to grab resources from others.

B. Performance for AIMD-Based Playback Applications

Fig. 15 shows the simulation configuration for multimedia ap-
plications: playback streams are stored as files in the server
which is connected to a router . The receiver is connected to
the network through a router . The target multimedia applica-
tion shares network resources with other background traffic. In
the current Internet, there are two kinds of dominant background
traffic, elephants and mice. The elephants, such as the long-lived

connections, share the link with the target flow throughout
the simulation. The mice, such as web transactions, usually have
a very short lifetime. We consider both kinds of background
traffic. Mice start randomly during the simulation and their life-
time follows an exponential distribution with a mean of 5 s.

1) Access Bottleneck: Let the connection bottleneck be the
dedicated access line. Examples include a dialup modem con-
necting a home PC to ISP, or a wireless link connecting a PDA to
the Internet. The access link bandwidth, , is 56 Kbps. There
are ten cross traffic connections, which are elephants, sharing
the backbone link that has the capacity of 10 Mbps. In addi-
tion to the multimedia flow, there are short-lived mice sharing
the access link and backbone link with the target flow.

varies from 0 to 10. The packet size is 100 bytes for mul-
timedia traffic and 1000 bytes for other traffic. DTAIMD(0.2,

Fig. 15. Topology of the simulation with cross traffic.

Fig. 16. Average throughput for the multimedia flow.

0.875) and TCP are chosen to transport the multimedia flow sep-
arately. Fig. 16 compares their average throughputs. It shows
that the average throughput of the DTAIMD(0.2, 0.875) flow is
consistently higher than that of the TCP flow, i.e., DTAIMD(0.2,
0.875) can have a higher playback rate than TCP for multimedia
applications, with changing background flows. Fig. 16 also indi-
cates that the number of simultaneous connections in the access
link should be minimized to achieve a higher playback rate for
multimedia applications.

2) Backbone Bottleneck: Now let the connection bottleneck
be the highly multiplexed backbone link. The multimedia
receiver buffers data for several seconds before playback.
(Several algorithms have been introduced in [20] to estimate

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 353

the playback start-up delay.) Ideally, the consumption rate
equals the mean transmission rate. When the buffer becomes
empty, the playback is interrupted and freezes for a while. In
the simulation, one DTAIMD(0.2, 0.875) flow competes with
10 TCP elephants and 20 TCP mice, sharing the bottleneck
link . The simulation lasts 600 s. The multimedia receiver
of the DTAIMD(0.2, 0.875) flow initially stores the data for 3 s
before it starts to playback at a constant rate, which equals its
mean throughput. The DTAIMD(0.2, 0.875) flow and the TCP
elephants are set to support multimedia playback applications
separately. To compare the application performance transported
by DTAIMD(0.2, 0.875) and TCP, the number of interruptions,
the maximum queue length (KB) in the receiver end, and the
average transmission rate (KB/s) of each flow are listed in
Table I.

It shows that the DTAIMD(0.2, 0.875) flow can successfully
playback the whole stream without any interruption, while 50%
of the TCP flows have one to 12 interruptions. In the receiver
end, the maximum queue length of the DTAIMD(0.2, 0.875)
flow is less than that of 80% of the TCP flows. On the other
hand, the average transmission rate of the DTAIMD(0.2, 0.875)
flow is close to that of the TCP flows, which indicates that it is
indeed TCP-friendly. By repeating the simulation several times,
similar results are obtained. It implies that the DTAIMD(0.2,
0.875) protocol can have better QoS provisioning than the TCP
protocol for supporting multimedia playback applications.

If without the random mice flows, DTAIMD and TCP ele-
phants will reach a steady state, i.e., each flow additively
increases and multiplicatively decreases its transmission rate
periodically. When the random mice flows introduce distur-
bances to the network, TCP flows are more sensitive and have
more prompt response to the disturbances than DTAIMD(0.2,
0.875) flows, as the convergence results shown in V-A3. More-
over, the number of TCP flows is much larger than that of
DTAIMD(0.2, 0.875) flows, which is true in general. There-
fore, the DTAIMD flow is immunized from the disturbances
by the dominant TCP flows and can keep its flow smooth.
On the other hand, although mice are more likely to grab
bandwidth from TCP flows when they enter the network, TCP
flows are more aggressive to grab it back after the mice leave
the network. In a long term, the DTAIMD(0.2, 0.875) protocol
can be TCP-friendly, and provide better QoS for multimedia
playback applications.

3) Service Differentiation: We show the actual performance
of utilizing the different pairs to offer service
differentiation. Assume the multimedia flows (class) have a
weight over data flows (class). As derived in Section IV.C,
their parameter pairs should satisfy (40). Fig. 17 shows the
simulation results of the throughput ratio for multimedia flows
over data flows with different . The -axis gives the total
number of flows, and of them are multimedia flows. This
figure is intended to show that the throughput of class 2 AIMD
flows (for multimedia) is times that of the
class 1 flows. Since there is no additional upgrade in the core
network, different pairs are very effective to offer service
differentiation over the Internet, especially when flows are
highly aggregated.

In summary, the TCP-friendly condition derived through the
theoretical modeling in Section III offers satisfactory properties

TABLE I
COMPARING TCP AND DTAIMD

Fig. 17. Ratio of class 1 and class 2 average throughput.

on TCP-friendliness, effectiveness, and responsiveness. Fur-
thermore, the DTAIMD-based algorithm can efficiently support
multimedia playback applications with service differentiation.
These properties meet the design goals listed in Section I, and
promise a scalable deployment over the Internet.

VI. CONCLUSION

We have studied the TCP-friendly AIMD algorithms for
multimedia playback and multirate applications. A novel ap-
proach has been used to derive the necessary and sufficient
TCP-friendly condition directly, and to analyze the effective-
ness and responsiveness of AIMD. Performance studies show
that the DTAIMD-based protocol can be truly TCP-friendly
over a wide dynamic range, and offer better QoS provisioning
for playback and multirate applications. Since AIMD-based
schemes are simple, compatible, and scalable, incremental de-
ployment over the global Internet is feasible. The investigation
on other TCP fairness issues like flows with different round-trip
time and packet size, as well as some practical issues like
fairness in a noncooperative environment, is under way.

APPENDIX

In the underload region, IIAD cwnd, , increases as follows:

(A.1)

354 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 7, NO. 2, APRIL 2005

In the overload region, IIAD cwnd changes in the following
way:

(A.2)

When an IIAD flow co-exists with a TCP flow in a
link with capacity packets per rtt, in steady state, the
IIAD cwnd oscillates between
and , and TCP cwnd oscillates
between and

. Therefore, the ratio
of average IIAD cwnd and TCP cwnd depends on , i.e., no

pair can allow the IIAD flow to be TCP-friendly for
arbitrary link capacity.

Let two IIAD flows, one has parameter pair and the
other has parameter pair , compete for a bottleneck link.
In steady state, their average window ratio is

(A.3)

Therefore, to achieve the ratio to be 1 and independent of , the
only solution is and . In other words, for IIAD
flows to be friendly with each other, only one pair can be
chosen for all flows.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
insightful comments and suggestions.

REFERENCES

[1] V. Jacobson and M. Karels, “Congestion avoidance and control,” in Proc.
ACM SIGCOMM’88, 1988, pp. 314–329.

[2] F. P. Kelly, “Stochastic models of computer communication systems,” J.
Royal Statistical Soc., vol. B47, no. 3, pp. 379–395, 1985.

[3] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-based
congestion control mechanism for realtime streams in the Internet,” in
Proc. IEEE INFOCOM’99, Mar. 1999, pp. 1337–1345.

[4] S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, “TCP rate
control,” ACM Comput. Commun. Rev., vol. 30, no. 1, 2000.

[5] S. Floyd, M. Handle, J. Padhye, and J. Widmer, “Equation-based conges-
tion control for unicast applications,” in Proc. ACM SIGCOMM’2000,
2000, pp. 43–56.

[6] Y. R. Yang and S. S. Lam. (2000, May) General AIMD Congestion Con-
trol. Univ. Texas, Austin. [Online]. Available: http://www.cs.utexas.edu/
users/lam/NRL/TechReports/

[7] D. Bansal and H. Balakrishnan, “TCP-Friendly Congestion Control for
Real-Time Streaming Applications,”, MIT Tech. Rep. MIT-LCS-TR-
806, May 2000.

[8] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion con-
trol in the Internet,” IEEE/ACM Trans. Networking, vol. 7, no. 4, pp.
458–472, Aug. 1999.

[9] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the TCP congestion avoidance algorithm,” ACM Comput. Commun.
Rev., vol. 27, no. 3, 1997.

[10] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proc. ACM
SIGCOMM’98, 1998, pp. 303–314.

[11] S. Floyd and V. Jacobson, “Random Early Detection gateways for con-
gestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, no. 4, pp.
397–413, Aug. 1993.

[12] S. Floyd and T. Henderson, “The NewReno modification to TCPs fast
recovery algorithm,” in IETF RFC 2582, 1999.

[13] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP Selective Ac-
knowledgment option,” in IETF RFC 2018, 1996.

[14] K. Ramakrishnan and S. Floyd, “A proposal to add explicit congestion
notification (ECN) to IP,” in IETF RFC 2481, 1999.

[15] H. Zhang, “Service disciplines for guaranteed performance service in
packet-switching networks,” Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
Oct. 1995.

[16] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for
congestion avoidance in computer networks,” J. Comput. Networks
ISDN, vol. 17, no. 1, pp. 1–14, Jun. 1989.

[17] S. Floyd and S. McCanne. Network Simulator, LBNL public domain
software. Available via ftp from ftp.ee.lbl.gov. [Online]. Available:
http://www.isi.edu/nsnam/ns/

[18] R. Rejaie, M. Handley, and D. Estrin, “Quality adaption for conges-
tion controlled video playback over the Internet,” in Proc. ACM SIG-
COMM’99, 1999, pp. 189–200.

[19] Z. Zhang, Y. Wang, D. H. C. Du, and D. Su, “Video staging: A proxy-
server-based approach to end-to-end video delivery over wide-area net-
works,” IEEE/ACM Trans. Networking, vol. 8, no. 4, pp. 429–442, Aug.
2000.

[20] R. Ramjee, J. F. Kurose, D. F. Towsley, and H. Schulzrinne, “Adaptive
playout mechanisms for packetized audio applications in wide-area net-
works,” in Proc. IEEE INFOCOM’94, 1994, pp. 680–688.

[21] H. M. Radha, M. van der Schaar, and Y. Chen, “The MPEG-4 fine-
grained scalable video coding method for multimedia streaming over
IP,” IEEE Trans. Multimedia, vol. 3, no. 1, pp. 53–68, Mar. 2001.

Lin Cai (S’00) received the M.A.Sc. degree in
electrical and computer engineering from the Uni-
versity of Waterloo, Waterloo, ON, Canada, in
2002. She is currently pursuing the Ph.D. degree
in the same field at the University of Waterloo.
She received a Postgraduate Scholarship from the
Natural Sciences and Engineering Research Council
of Canada (NSERC) in 2003. Her research interests
span several areas in wireless communications and
networking, with a focus on network protocol and
architecture design supporting emerging multimedia

traffic over wireless, mobile, ad hoc, and sensor networks.
Her research work has published in prestigious journals and conferences such

as the IEEE TRANSACTIONS ON MULTIMEDIA, IEEE TRANSACTIONS ON MOBILE

COMPUTING, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, ACM Mo-
biCom, and IEEE Infocom).

Xuemin (Sherman) Shen (M’97–SM’02) received
the B.Sc. degree from Dalian Maritime University,
China, in 1982 and the M.Sc. and Ph.D. degrees
from Rutgers University, Piscataway, NJ, in 1987
and 1990, respectively, all in electrical engineering.

From September 1990 to September 1993, he
was first with Howard University, Washington DC,
and then the University of Alberta, Edmonton,
AB, Canada. Since October 1993, he has been
with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, ON,

Canada, where he is a Full Professor. His research focuses on mobility and
resource management in interconnected wireless/wireline networks, UWB
wireless communications systems, wireless security, and ad hoc and sensor
networks. He is a coauthor of two books, an editor of ten journal special issues,
and has published more than 150 papers in wireless communications and
networks, control, and filtering.

Dr. Shen was the Technical Co-Chair for IEEE Globecom’03 Symposium
on Next Generation Networks and Internet, and ISPAN’04. He serves as the
Associate Editor for IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS;
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY; ACM Wireless Networks;
Computer Networks; Dynamics of Continuous, Discrete and Impulsive -
Series B: Applications and Algorithms; Wireless Communications and Mobile
Computing (Wiley); and the International Journal Computer and Applications.
He also serves as Guest Editor for IEEE JOURNAL ON SELECTED AREAS IN IN
COMMUNICATIONS. IEEE Wireless Communications, and IEEE Communica-
tions Magazine. He received the Premier’s Research Excellence Award (PREA)
from the Province of Ontario, Canada, for demonstrated excellence of scientific
and academic contributions in 2003, and the Distinguished Performance Award
from the Faculty of Engineering, University of Waterloo, for outstanding
contribution in teaching, scholarship, and service in 2002. He is a registered
Professional Engineer of Ontario.

CAI et al.: PERFORMANCE ANALYSIS OF TCP-FRIENDLY AIMD ALGORITHMS 355

Jianping Pan (S’96–M’99) received the B.S. and
Ph.D. degrees in computer science from Southeast
University, Nanjing, China in 1994 and 1998,
respectively.

From 1999 to 2001, he was a Postdoctoral Fellow
and Research Associate with the Centre for Wireless
Communications, University of Waterloo, Waterloo,
ON, Canada. From 2001 to 2003, he was a Member of
Research Staff with Fujitsu Laboratories of America,
Sunnyvale, CA. Since 2003, he has been a Research
Scientist at NTT MCL, Palo Alto, CA. His research

interests include protocols and applications for high-speed, multimedia, and mo-
bile networks.

Dr. Pan is a member of the ACM.

Jon W. Mark (M’62–SM’80–F’88–LF’03) received
the B.A.Sc. degree from the University of Toronto,
Toronto, ON, Canada, in 1962, and the M.Eng. and
Ph.D. degrees from McMaster University, Hamilton,
ON, in 1968 and 1970, respectively, all in electrical
engineering.

From 1962 to 1970, he was an Engineer and then
a Senior Engineer at Canadian Westinghouse Co.
Ltd., Hamilton. In September 1970, he joined the
Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, where he

is currently a Distinguished Professor of Emeritus. He served as Department
Chairman from July 1984 to June 1990. In 1996, he established the Centre
for Wireless Communications (CWC) at the University of Waterloo, and is
currently serving as its founding Director. He has been on sabbatical leave at
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, as a Visiting
Research Scientist (1976–1977); AT&T Bell Laboratories, Murray Hill, NJ, as
a Resident Consultant (1982–1983): Laboratoire MASI, Universite Pierre et
Marie Curie, Paris France, as an Invited Professor (1990–1991); and Depart-
ment of Electrical Engineering, National University of Singapore, as a Visiting
Professor (1994–1995). He has previously worked in the areas of adaptive
equalization, image and video coding, spread spectrum communications, com-
puter communication networks, ATM switch design and traffic management.
His current research interests are in broadband wireless communications, re-
source and mobility management, and cross domain interworking. He recently
co-authored a text entitled Wireless Communications and Networking (Upper
Saddle River, NJ: Prentice-Hall, 2003).

Dr. Mark is a Life Fellow of the IEEE. He is the recipient of the 2000 Canadian
Award for Telecommunications Research and the 2000 Award of Merit of the
Education Foundation of the Federation of Chinese Canadian Professionals, an
editor of IEEE TRANSACTIONS ON COMMUNICATIONS (1983–1990), a member
of the Inter-Society Steering Committee of the IEEE/ACM TRANSACTIONS ON

NETWORKING (1992–2003), a member of the IEEE Communications Society
Awards Committee (1995–1998), an editor of Wireless Networks (1993–2004),
and an associate editor of Telecommunication Systems (1994-2004).

	toc
	Performance Analysis of TCP-Friendly AIMD Algorithms for Multime
	Lin Cai, Student Member, IEEE, Xuemin Shen, Senior Member, IEEE,
	I. I NTRODUCTION
	II. R ELATED W ORK
	A. TCP Congestion Control
	B. TCP-Friendly Congestion Control

	III. A NALYSIS ON AIMD A LGORITHMS
	A. TCP-Friendly AIMD Parameters
	1) One TCP and One AIMD Flows: Let one TCP flow and one ${\rm AI

	Fig.€1. The cwnd traces for one TCP flow and one AIMD flow: (a)
	a) Dynamic link capacity: Equation (13) indicates that the TCP-f
	2) Multiclass AIMD Flows: Due to the heterogeneous nature, diffe
	b) Variable packet size and rtt: TCP is known for its bias again

	Fig.€2. The cwnd versus throughput for AIMD flows.
	c) Comparison with binomial schemes: In steady state, the ratio
	B. Properties of AIMD Algorithms
	1) AIMD Effectiveness: One effectiveness benchmark is network ut
	a) Single AIMD flow: Let one ${\rm AIMD}(\alpha, \beta)$ flow oc
	b) Multiple AIMD flows: When there are n ${\rm AIMD}(\alpha, \

	Fig. 3. $n\ {\rm AIMD}(\alpha, \beta)$ flows in best scenario.
	2) AIMD Responsiveness: Another property for congestion control
	a) Single AIMD class: We first consider two flows from the same
	b) Multiple AIMD classes: Let two flows from different AIMD clas

	Fig.€4. Convergence of two AIMD flows from the same class: (a) c
	Fig.€5. Convergence of two AIMD flows from different classes.
	C. Practical Implications
	1) Sender Timeout: Timeout occurs when there are insufficient (l
	2) AIMD Parameters: The derivation of the friendly condition ass

	Fig.€6. Filling and draining phases: (a) without network buffer;
	3) An Enhanced AIMD Algorithm DTAIMD: To mitigate these practica
	IV. DTAIMD-B ASED M ULTIMEDIA A PPLICATIONS
	A. Multimedia Playback Applications
	1) Low Multiplexing Scenario: Consider a static situation that o
	2) High Multiplexing Scenario: When many AIMD flows with differe

	B. Realtime Multirate Applications

	Fig.€7. AIMD for realtime multirate video applications.
	C. Service Differentiation
	Fig. 8. Normalized throughput (${\rm RED, Link\ BW}=15$ Mbps):
	a) Implementation concerns: To achieve TCP-friendliness and serv

	V. P ERFORMANCE E VALUATION
	A. Performance of AIMD Algorithms
	1) Flow Fairness: First, we evaluate the fairness among TCP, TCP

	Fig. 9. Fairness index (${\rm RED, Link\ BW}= 15$ Mbps).
	2) Link Utilization: To examine the link utilization derived in
	a) Single AIMD flow: In this set of simulations, one AIMD flow t
	b) Multiple AIMD flows: Now let two or four AIMD flows share the

	Fig. 10. Link utilization for one ${\rm AIMD}(\alpha, \beta)$ fl
	c) TCP versus TAIMD versus DTAIMD: To examine the link utilizati

	Fig. 11. Link utilization for four ${\rm AIMD}(\alpha,\beta)$ fl
	Fig. 12. Link utilization for eight ${\rm AIMD}(\alpha,\beta)$ f
	Fig. 13. Link utilization (${\rm RED}, {\rm Link\ BW}=15$ Mbps)
	3) Convergence Speed: Fig.€14(a) shows the results for the case

	Fig.€14. Bandwidth gain speed for F_1, (link capacity 20 packe
	B. Performance for AIMD-Based Playback Applications
	1) Access Bottleneck: Let the connection bottleneck be the dedic

	Fig.€15. Topology of the simulation with cross traffic.
	Fig.€16. Average throughput for the multimedia flow.
	2) Backbone Bottleneck: Now let the connection bottleneck be the
	3) Service Differentiation: We show the actual performance of ut

	TABLE I C OMPARING TCP AND DTAIMD
	Fig.€17. Ratio of class 1 and class 2 average throughput.
	VI. C ONCLUSION
	V. Jacobson and M. Karels, Congestion avoidance and control, in
	F. P. Kelly, Stochastic models of computer communication systems
	R. Rejaie, M. Handley, and D. Estrin, RAP: An end-to-end rate-ba
	S. Karandikar, S. Kalyanaraman, P. Bagal, and B. Packer, TCP rat
	S. Floyd, M. Handle, J. Padhye, and J. Widmer, Equation-based co
	Y. R. Yang and S. S. Lam . (2000, May) General AIMD Congestion C
	D. Bansal and H. Balakrishnan, TCP-Friendly Congestion Control f
	S. Floyd and K. Fall, Promoting the use of end-to-end congestion
	M. Mathis, J. Semke, J. Mahdavi, and T. Ott, The macroscopic beh
	J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, Modeling TCP th
	S. Floyd and V. Jacobson, Random Early Detection gateways for co
	S. Floyd and T. Henderson, The NewReno modification to TCPs fast
	M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective A
	K. Ramakrishnan and S. Floyd, A proposal to add explicit congest
	H. Zhang, Service disciplines for guaranteed performance service
	D. Chiu and R. Jain, Analysis of the increase/decrease algorithm
	S. Floyd and S. McCanne . Network Simulator, LBNL public domain
	R. Rejaie, M. Handley, and D. Estrin, Quality adaption for conge
	Z. Zhang, Y. Wang, D. H. C. Du, and D. Su, Video staging: A prox
	R. Ramjee, J. F. Kurose, D. F. Towsley, and H. Schulzrinne, Adap
	H. M. Radha, M. van der Schaar, and Y. Chen, The MPEG-4 fine-gra

