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Abstract—In a mesh network, to ensure high reliability and
low latency, we can explore path diversity. In other words, a
packet can be transmitted using all active links in a network
to reach the destination. Here, a critical, difficult issue is to
calculate the end-to-end reliability of a mesh network, given
the reliability of each active link. In this paper, we derive the
mesh network reliability with a new approach, which is of
lower computational cost and more scalable than the state-of-
the-art. Based on a Markov model, the closed-form network
reliability as a polynomial expression of link reliability is obtained
using the Hop-State Algorithm (HSA). Furthermore, we propose
two metrics to assist in selecting the links in a network for
routing to ensure performance while reducing link cost. From the
analysis and simulation evaluations, exploring path diversity can
effectively support Ultra-Reliable Low-Latency (URLL) services.

I. INTRODUCTION

Many emerging applications require Ultra-Reliable and

Low-Latency (URLL) services, and they will be a driving force

for the future growth of communication networks. First, for

many Internet-of-Things applications, real-time sensing and

control information needs to be exchanged among machines

or algorithms which are less intelligent and not error-resilient,

demanding high-reliability and in-time/on-time services. Here

are the delay requirements for such real-time control applica-

tions: industry 4.0 (a few ns to a few ms); in cellular systems,

Common Public Radio Interface (≤ 100 μs), and inter-site

coordinated multipoint (Co-MP) (≤ 250 μs); smart grid (<
5 ms); vehicular communications for autonomous driving (a

few ms). Second, applications such as high-frequency trading

need to compete with each other at the ms level to profit from

the high correlation of financial data distributed globally. For

these applications, reducing a milli-second in delay can lead

to million-dollar profits.

Compared to the previous delay-sensitive multimedia appli-

cations such as voice/video over IP, the above applications not

only have a more stringent delay requirement but also cannot

tolerate packet loss. The combination of high reliability and

low latency brings tremendous challenges to packet-switching

communication networks. It also attracts extensive research

and standardization activities, covering both the backbone,

access networks, and specialized/dedicated network systems.

For the Internet community, IETF Deterministic Networking

(DetNet) and IEEE 802.1 Time-Sensitive Networking (TSN)

working groups closely cooperate with each other, aiming

to support end-to-end service guarantee [1], [2]. In cellular

systems, the 3GPP standard organization investigates how

to provide URLLC services with the 5G New Radio (NR)

radio access networks, 5G core networks, and 5G fron-

(a) Tree topology (b) 2× 2 grid

Fig. 1. Tree vs. mesh networks.

thaul/backhaul [3]. For data center networks, how to apply

priority flow control to ensure URLL services has also been

heavily investigated.

Given the traffic statistics and communication link proper-

ties, how to reserve/allocate resources in a single link to ensure

latency/reliability has been extensively investigated. In a tree-

topology network shown in Fig. 1(a), there is a single path for

each flow, so we can ensure the URLL services of each link

along the path to ensure the end-to-end performance. However,

this approach is ineffective for mesh networks. In a 2×2 mesh

network shown in Fig. 1(b), there are 6 “shortest” paths (in

terms of hop count) between the source and destination pair.

In a 4 × 4 and 9 × 9 one, the number of “shortest” paths

is 70 (eight choose four) and 48, 620 (eighteen choose nine),

respectively. Given the many possible paths, a key issue not

fully explored yet is to deliver the message over multiple paths

to ensure low latency and high reliability simultaneously.

If delivering a message over a mesh network using all

possible paths, the end-to-end delay is the minimum of all

paths. Given each link has only a certain probability to

successfully deliver a packet within a bounded delay (e.g.,

without involving link-layer retransmission), the end-to-end

reliability over the network is a key issue. The fundamental

of this problem is the network reliability problem. In other

words, when a message is geo-casted towards the destination

(i.e., the message will be forwarded toward the destination

hop by hop, so long as the next-hop neighbor is closer to

the destination), given each hop has a probability of p to

successfully transmit the packet, what is the probability that

it can reach the destination.
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Note that we prefer closed-form solutions to guarantee

quality of service (QoS) and optimize network planning and

operation. Since there are many dependent paths in a mesh

network, the calculation of network reliability is prohibitively

complex if using the principle of inclusion and exclusion

(PIE) probability theory, i.e., O(2(
2n
n )) for an n × n lattice

grid network. Note that 2(
2n
n ) ≈ 7.2e75 for n = 5, which

is above the current computation capacity. To tackle the

problem, a recursive approach was devised, which can obtain

the reliability of two-dimensional lattice networks up to the

size of ten by ten [4]. This work published in 2014 is also the

best-known result. How to obtain a closed-form solution for a

larger network remains open.

In this paper, we propose a new, more efficient approach

that can calculate a two-dimensional lattice of the size of

15×15, and it can handle both regular and irregular topology

networks. First, we pre-process a network to a directed graph

with unambiguous hop count (from the source) for each vertex,

so all vertexes with the same hop count can be grouped into

a set. Then, we construct a Markov process to decouple the

end-to-end reliability problem by calculating the reliability

between any neighbor sets, which results in much lower

complexity compared to the existing state-of-the-art solution.

The proposed method is named Hop-State Algorithm (HSA),

which can be applied to obtain the reliability of networks with

both regular and irregular topologies. Furthermore, to reduce

link cost without violating the service guarantee, two metrics

are proposed to assist a trimming process to select a part of the

network to deliver the message under the reliability constraint.

The rest of the paper is organized as follows. Sec. II gives

the related work. The new HSA approach to derive the end-

to-end network reliability is given in Sec. III. Sec. IV applies

the HSA approach in two-dimensional lattice networks to

compare its performance and validate its correctness with the

existing work that can handle 2-D lattice networks. How to

select links considering the tradeoff between cost and connec-

tivity/reliability is also given. Sec. V presents the numerical

validation, followed by the concluding remarks and further

research issues in Sec. VI.

II. RELATED WORK

Network reliability, also named network connectivity in the

literature, is a fundamental network performance metric, and it

has been investigated for different types of networks [5]. In ad

hoc networks, due to the random location of the nodes in ad

hoc networks, the multi-hop forwarding has to be characterized

probabilistically [6]. The approximate formula is presented for

the probability of network connectivity [8]. With the assump-

tion of a uniform distribution of nodes, the exact analytical

expressions of the probability of connectivity were obtained

in one-dimensional networks but only approximate bounds

for the connectivity in two-dimensional networks [7]. The

connectivity of message propagation in the two-dimensional

ladder case was derived [9].

On the other hand, geometric algorithms have been used

in wireless sensor networks [10]. Different techniques based

on stochastic geometry and the theory of random geometric

graphs (including point process theory, percolation theory,

and probabilistic combinatorics) have led to different results

on connectivity, capacity, outage probability, and other fun-

damental limits of wireless networks [11], [12]. Due to the

physical space covered by nodes, networks show a unique

geometric characteristic such as triangles, rectangles, and

hexagons [13]–[15]. Although hexagons and rhombuses are

also used, the square lattices network is most widely used

in city scenarios. In addition, extra nodes can be distributed

to improve connectivity by exploring geometric structures of

sensor network.

Another approach to compute the probability of network

connectivity is percolation theory [16]. Given a destination,

messages flood to the certain directions in geographical for-

warding which is similar to a directed percolation process [19].

For messages with a given destination, or vehicles traveling in

certain directions, geographical forwarding is often deployed

to minimize the network overhead due to flooding [9]. Thus

directed percolation becomes an often-used model in such

scenarios, and most existing work applies the results from

isotropic or directed percolation on square lattices. However,

the directed percolation problem only cares about the existence

of a giant component, while network connectivity has to

determine the exact connectivity to each vertex, which is more

relevant to network performance [17], [18].

The most related existing work is [4]. Considering a 2D

lattice topology, a recursive decomposition approach has been

developed by extending the 2D ladder connectivity to establish

the analytical expression. Instead of splitting up a network into

parts, this approach decomposes a lattice in one path and the

union of all other paths. Although it can determine the network

connectivity, the maximum it can calculate realistically is

10× 10 lattices. We are motivated to develop a more efficient

analytical approach that can handle networks with a larger size

and more general topology.

III. MESH NETWORK RELIABILITY ANALYSIS

In this paper, we assume a message from the source node

can take all possible directed paths in a mesh network to

reach the destination. Assume this message can be carried

in a single packet in any link, and message/packet is used

interchangeably below. This message delivery process mimics

the filtering of fluids through porous materials along a given

direction, due to the effect of gravity. As shown in Fig. 2(a),

at the source and all intermediate nodes, the message will

be duplicated and forwarded to the neighboring nodes using

directed links. To avoid the blindly flooding cost, we assume

that each message will be delivered over each link once. In

other words, if a router receives a duplicated message, it will

discard the message. Then, the link cost to deliver the message

depends on the number of active links in the network.

This network can be viewed as a directed graph where

vertexes are network nodes (e.g., routers), and edges are the

links between the vertexes. There is no loop given the directed

routing in this directed graph. At any moment, each link or
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(a) (b)

Fig. 2. Hop count ambiguity: (a) unambiguous; (b) ambiguous.

edge (used interchangeably) can reliably deliver a packet with

a probability. This probability is defined as link reliability.

The physical meaning of the link reliability can be defined in

different applications, e.g., the probability that a packet can

be successfully delivered over the link within a delay bound.

We also assume that the volume of traffic for URLL services

is limited so network congestion losses are ignored.

To calculate the end-to-end reliability in a directed graph,

we first define hop count of each vertex or node (used

interchangeably), and pre-process the network graph based on

hop count. Then, we apply a Markov process to calculate the

network reliability.

A. Unambiguous hop count

Node with unambiguous hop count: Similar to topological

sort, if every directed path from the source to reach a vertex

has the same number of hops, the vertex has an unambiguous
hop count. For example, in Fig. 2(a), V1 is the source, and

there are two paths to reach vertex V5, i.e., V1 → V2 → V5

and V1 → V3 → V5. The hop count of both paths is two, so

V5 has an unambiguous hop count of two.

Network with unambiguous hop count: If all vertexes

in a network have an unambiguous hop count, we define the

network as an unambiguous hop count network; otherwise, it

is an ambiguous one. For example, in Fig. 2(a), the source

vertex V1 has the hop count of 0, the hop counts of vertex

V2 and V3 are both 1, those of vertex V4, V5, and V6 are 3,

and so on. Thus, this network has unambiguous hop count. In

Fig. 2(b), the hop count to reach vertex V5 can be either 2 or 3
when taking different paths, so it is an ambiguous hop-count

network.

In an unambiguous hop-count network, the vertexes can be

grouped into sets Gh where h is the hop count to reach the

vertexes from the source. For instance, in Fig. 2(a), the dotted

line hi passes all vertexes in group Gi.

B. Pre-process network graph

We take two steps below to pre-process the network graph.

First, to simplify the analysis, we can convert a network

to an equivalent one with a simpler topology by combining

(a) (b) (c)

Fig. 3. Pre-process network graph: (a) simplification; (b) converting to
unambiguous network as shown in (c).

chained links passing through the nodes with a single link in

and a single link out. For example, as shown in Fig. 3(a), V2

and V4 each has a single link in and a single link out, so the

links in and out from them, b1, b3, and b7 can be combined

into one, named b1,3,7 as shown in Fig. 3(b). The reliability

probability of b1,3,7 equals the multiplication of the reliability

probabilities of b1, b3, and b7.

Second, an ambiguous hop-count network can be converted

to an unambiguous one as follows. For a vertex, if it can

be reached by several paths with different hop counts, virtual

links (each has the reliability of 1) should be inserted into

the shorter paths until all paths have the same hop count to

reach the vertex. For instance, the network in Fig. 3(b) is an

ambiguous hop-count network. Two paths to reach vertex V7

are V1 → V7 and V1 → V3 → V7. Thus, we add a virtual

link b0 into the first path by adding a virtual vertex Vt1 , as

shown in Fig. 3(c). Similarly, we add a virtual vertex Vt2 in

the bottom link between V3 and V9 to make V9 unambiguous.

Then, the network becomes an unambiguous one as shown in

Fig. 3(c).

With the two-step pre-processing, we can obtain the sim-

plified unambiguous network with the same reliability as the

original one. In the following, we can focus on the reliability

analysis of unambiguous networks.

C. Markov chain model

Next, we build a Markov chain sequenced by hop count to

assist the reliability analysis. We first define the states of this

Markov chain, and then derive the state transition probabilities.

1) Label states for each hop set: For an unambiguous

network, we can partition all the vertexes into sets, Gh, based

on their hop count h from the source.

For a given set Gh, considering whether or not each vertex

in Gh received the message, there are 2rh different states,

where rh is the number of vertexes in Gh. For example, the

vertex set G1 in Fig. 2(a) has 2 vertexes V2 and V3. Thus,

one of the following three states should be reached to ensure

end-to-end reliability: a) V3 receives the message but V2 not,

b) V2 receives the message but V3 not, and c) both of them

receive the message.

Obviously, if a message can reach its destination, the

message must successfully reach at least one vertex in each

vertex set Gi, where i is smaller than or equal to the hop count

of the destination. The state of Gi depends on the states of

200

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on September 22,2023 at 17:07:15 UTC from IEEE Xplore.  Restrictions apply. 



Gi−1 and the reliability of links between the two sets only, and

we do not need to consider how the state of Gi−1 is reached.

This is in fact an important Markov property that can help us

to simplify the end-to-end reliability analysis substantially.

To denote the state of each set, we first use a binary number

to label whether or not a vertex receives the message by 1
and 0, respectively. Then the sequence of the binary labels of

all vertexes in a set can be converted to its state label. For

instance, the three states of G1 in the above example can be

labelled by state 012 = 1, 102 = 2, and 112 = 3, respectively.

Denote all states for the message reaching at least one vertex

in set Gh as Sh
k , where k is the state label. We have 1 ≤ k ≤

2rh − 1 where rh is the number of vertexes in Gh. Using this

notation, S2
5 implies that in G2, the first and third vertexes

receive the message, and the rest do not.

2) State transition probabilities: We define P (Sh
k ) as the

probability of reaching state Sh
k and P (bn) as the probability

of link bn is reliable.

Considering the links between two neighbour vertex sets,

the state transition probability from Sh
k to Sh+1

k′ is denoted by

Hh
k,k′ .

For instance, as shown in Fig. 2(a), for state S2
k , given four

links b3, b4, b5, and b6, and the states in G1, we can obtain

the states S2
k (1 ≤ k ≤ 2rh − 1) in G2 as follows.

For S1
1 , V2 is connected to the source V1, so we need to

consider its outgoing links b3 and b4. If b3 is reliable but b4
is not, V4 is reached, and thus state S2

1 can be reached from

S1
1 . We have H1

1,1 = P (b3)(1− P (b4)).
For S1

2 , only V3 received the message and it cannot deliver

the message to V4.

For S1
3 , V2 and V3 both received the message, so b3, b4, b5,

and b6 should be considered. When b3 is reliable but others

are not, only V4 received message and state S2
1 is reached. We

have H1
3,1 = P (b3)(1− P (b4))(1− P (b5))(1− P (b6)).

Then, P (S2
1) is given by

P (S2
1) = P (S1

1) ·H1
1,1 + P (S1

3) ·H1
3,1. (1)

Similarly, all probabilities of states in G3 can be given, as

shown in Fig. 4(a).

Using the Markov property, given the states in the Gh,

and the connectivity of links between Gh and Gh+1, the

probability to reach states in Gh+1 is given by

P (Sh+1
k′ ) =

2rh−1∑

k=1

P (Sh
k ) ·Hh

k,k′ . (2)

Next, we elaborate how to obtain the state transition prob-

ability Hh
k,k′ . Using the binary sequence of state k, we define

vertex set A includes those who have received the message

and can send it to their next hop as

A = {V a1, V a2, V a3, ..., V aα}, (3)

where α is the number of vertexes in A.

For instance, in Fig. 4(b), to reach Hh
7,10, 7 = 1112

means that V h
1 , V h

2 , V h
3 can send messages to vertexes in

Gh+1. Given the links from Gh to Gh+1, we have E =

{V e1, V e2, V e3, ..., V eε} who may receive the message,

where ε is the number of vertexes in E.

In the above example, given α = 3, A = {V h
1 , V h

2 , V h
3 },

and thus E = {V h+1
1 , V h+1

2 , V h+1
3 , V h+1

4 } with ε = 4.

Using the binary number of k′, we have vertexes C =
{V c1, V c2, V c3, ..., V cδ} (δ > 0) who may receive the mes-

sage corresponding to this state. Obviously, C should be a

subset of E.

We define set I = {V l1, V l2, V l3, ..., V lι} (ι ≥ 0), which

contains the vertexes in E but not in C, i.e., E = C ∪ I and

∅ = C ∩ I . In the example shown in Fig. 4(b), 10 = 10102,

so C = {V h+1
2 , V h+1

4 } and δ = 2. Correspondingly, I =
{V h+1

1 , V h+1
3 } and ι = 2.

From the definitions, vertexes in C receive the message,

and vertexes in I do not receive the message. Define P (Ci)
as the probability of at least one message is received by vertex

V ci, and P (Ij) as the probability of vertex V lj receiving no

message. We have

Hh
k,k′ = Πδ

i=1P (Ci) ·Πι
j=1P (Ij). (4)

For set A defined in (3), define {V ac1, V ac2, ..., V acpi
} as

the vertexes who are linked with V ci, and pi is the number

of these links, as shown in Fig. 4 (c). For the example shown

in Fig. 4(b), {V h
1 , V h

2 } (p2 = 2) are linked with V h+1
2 and

the two links are b1 and b2. 1 Following the same principles,

for V h+1
4 , it is linked with {V h

3 } (p4 = 1) through link b6.

These links are denoted as bci,κ (1 ≤ κ ≤ pi), and their link

reliability probability is P (bci,κ), respectively. For VCi to be

reached, at least one link of bci,κ should be reliable, so we

have

P (Ci) = 1−Πpi

κ=1(1− P (bci,κ)). (5)

Following the approach, using the example in Fig. 4(b),

C = {V h+1
2 , V h+1

4 } has two vertexes. The first vertex V h+1
2

can be reached through links b2 and b3, so P (C1) = 1− (1−
P (b2))(1 − P (b3)). The other vertex V h+1

4 can only receive

the message from link b6 because vertex V h
4 is not connected,

so P (C2) = P (b6).
As shown in Fig. 4(d), similarly, vertex V lj can receive

messages from {V al1, V al2, ..., V alqj}, where qj is the num-

ber of these links. The probability of link blj,κ(1 ≤ κ ≤ qj)
is reliable is denoted by P (blj,κ). For vertexes in I which are

not connected, we have

P (Ij) = Π
qj
κ=1(1− P (blj,κ)). (6)

In the example in Fig. 4(b), group I has two vertexes, V h+1
1

and V h+1
3 . If V h+1

1 is not connected, link b1 is not reliable, and

P (I1) = 1−P (b1). If V h+1
3 is not connected, links b4 and b5

are both unreliable, we have P (I2) = (1−P (b4))(1−P (b5)).
Then the state transition probability Hh

k,k′ can be expressed

as
Hh

k,k′ = Πδ
i=1[1−Πpi

j=1(1− P (bci,j))]

×Πι
i′=1Π

qi
′

j′=1(1− P (bli′,j′)).
(7)

1Note that pi is equal to or less than 2 in lattice networks, but in other
networks, e.g., in triangle networks, pi can be larger.
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(a) (b) (c) (d)

Fig. 4. State transitions

The state transition probability of the example in Fig. 4(b)

is
Hh

7,10 =P (C1)P (C2)P (I1)P (I2)

=[1− (1− P (b2))(1− P (b3))]P (b6)

(1− P (b1))(1− P (b4))(1− P (b5)).

D. Hop-State Algorithm (HSA)

Based on the above analysis, we devise the Hop-State

Algorithm (HSA) shown in Algorithm 1 to calculate the

end-to-end reliability of mesh networks which are hop-count

unambiguous. In the Algorithm, the termination condition is

when the final hop reaches the destination. When we calculate

for a network with one destination, the final hop set has one

vertex only, and the corresponding connected state probability

is also the end-to-end reliability.

Algorithm 1 Hop-State Algorithm (HSA)

1: h = 0 # hop count number

2: for not reach the destination do
3: k′ = 0 # state number

4: for k′ < 2rh+1 do
5: k′ = k′ + 1
6: P (Sh+1

k′ ) = 0
7: k = 0 # state number

8: for k < 2rh do
9: k = k + 1

10: if The corresponding C belongs to E then
11: # add the probability contributing to state

k′ in hop h+ 1 from state k in hop h
12: P (Sh+1

k′ ) = P (Sh+1
k′ ) + P (Sh

k ) ·Hh
k,k′

13: end if
14: end for
15: end for
16: h = h+ 1
17: end for

IV. TWO-DIMENSIONAL LATTICE NETWORK RELIABILITY

Different network scenarios correspond to different topol-

ogy. As lattice networks have a wide range of applications, we

here focus on analyzing 2-dimensional (2D) lattice networks

in this section. We first present the complexity analysis of the

proposed method for 2D regular lattice networks and compare

it with the state-of-the-art. We then analyze the complexity

and efficiency in dealing with other irregular lattice networks.

A. Regular 2D lattice networks

In an m × n lattice network for directional percolation

routing as shown in Fig. 5(a), each path from the source (at the

origin) to the destination (at (m,n)) has m west-east links and

n south-north links. Given the combinations of an arbitrary

sequence of m west-east links and n south-north links, the

number of the paths between the source and destination equals(
m+n
m

)
.

O

(m,n)

(a) m× n lattice network

(b) PIE principle

Fig. 5. Lattice networks

To reach the destination successfully, at least one of the

paths should be reliable, i.e., all links along this path should

be reliable. Using the Principle of Inclusion-Exclusion (PIE),

to calculate the network reliability, we need to sum the

probabilities of each path is reliable, minus the probabilities

that any pair of paths is reliable, plus the probabilities that

any triple of paths is reliable, and so on. For instance, a

1 × 1 lattice network has two paths as shown in Fig. 5(b).

The reliability of the network is the sum of probabilities

of two paths minus the probabilities of two paths are both

reliable, as shown in the gray area of the Venn diagram. The

complexity is dominated by the number of path combinations,

i.e.,
∑(n+m

n )
i=1

((n+m
n )
i

)
= 2(

n+m
n )−1. Thus, the total complexity

of the PIE approach is O(2(
n+m

n )). For an n × n lattice, the

PIE complexity is asymptotically O(2
4n√
πn ), extremely high.
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In [4], a recursive approach (REC) to calculate the connec-

tivity (reliability) of lattice networks was developed. With this

approach, the network is decomposed step by step, and the

connectivity of a network (whether with the lattice topology

or a decomposed tower topology) can be calculated based on

the decomposed network connectivity. For an m × n lattice

network, the complexity of the REC algorithm in [4] is given

by
∑n−1

i=1

(
m+i−1

i

) · [1 + (m − 1)(n − i)]. Using the big-O
notation, the complexity of this algorithm for an n×n network

is O
Ä
n2 2n!

n!(n+1)!

ä
, which is asymptotically O(

√
n4n), much

lower than that of PIE.

In our proposed approach, decoupling the network vertexes

into sets with the same hop count, links are also divided into

m+ n groups, where the links in each group connecting two

neighboring vertex sets. We then can consider cases one by

one in an m × n (m ≥ n) lattice. The complexity of the

proposed hop-state algorithm is

2
n−1∑

i=1

[
(2i − 1)(2i+1 − 1)

]
+ (m− n) · (2n − 1)2. (8)

In other words, the complexity of the proposed algorithm is

O(4n) for a regular n×n lattice. Comparing to the state-of-the-

art in [4], we achieve a
√
n reduction. Furthermore, the space

complexity of the recursive approach in [4] is much higher,

resulting in a much slower speed overall when compared with

our solution.

We use different approaches to calculate the closed-form

network reliability for homogeneous m × n lattice networks

where each link has a reliability of p, and the end-to-end relia-

bility is a polynomial function of p. For instance, the reliability

of 2×2 network is p4−6p6−4p7+2p8+4p9+2p10−4p11+p12.

The coefficients of the polynomial functions can be obtained

by different approaches and we can compare them to validate

the correctness of the new approach. First of all, we have

compared the results of lattice networks up-to 10 × 10 using

HSA and REC, and they give the same results. This validates

the correctness of the two approaches.

Second, the detailed complexity performance comparisons

for regular m × n lattice networks are given in Fig. 6(a).

Here, the x-axis represents n, the size of one dimension

of the lattice. The dashed lines are for the cases the other

dimension size m = 7, the solid lines are for the cases m = n.

From the figure, the complexity (super-)exponentially grows

with min{m,n} for all approaches. The green line is the

PIE approach which has explosive growth and it reaches our

computation capacity limit for 4× 4 lattice networks. For the

other two approaches, they can handle larger networks so long

as min{m,n} is reasonably small.

As shown in Fig. 6(b), comparing to [4], the proposed HSA

algorithm has substantially lower running time and is more

scalable. Note that the coefficient of the reliability expression

becomes extremely large when the size of the network is

large. For example, if 10 × 10, the largest coefficient is

5.0537e36 and if 18×18, the largest coefficient is 2.8092e125.

Due to the coefficient sensitivity, these coefficients should be
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Fig. 6. Complexity comparison, for lattice network

exact integers. Thus, it costs a lot of time for Big-number

calculation. The blue line is HSA for calculating analytical

expressions (the coefficients of the polynomial expression

of end-to-end reliability) and the red line is with the REC

approach.

On the other hand, if we know the numerical link probability

p of each link, the numerical calculation of reliability is much

faster. Orange line in Fig. 6 (b) gives the running time for

numerical calculation of reliability using the proposed HSA.

B. Irregular lattice networks

In realistic network scenarios, due to the physical limits

or given the trade-off of link cost and reliability/delay per-

formance, not all links in a lattice network are used for data

transmission. When we use a part of the network links for

routing, these active links can be viewed as an irregular lattice

network. An important, difficult question is how to select the

links for routing to ensure the performance while minimizing

the cost.

1) Joint vs. disjoint vertexes: If two paths passing the same

vertices other than the source and destination, we name the

vertices as joint vertices. In Fig. 7, the source vertex is O and

the destination vertex is D. The paths in Fig. 7(a) do not pass

any common vertex other than O and D, but paths in Fig. 7(b)

are joint at vertex J .

Given the same number of links, if there are more joint

vertexes, the total number of paths will be higher. For example,

Figs. 7(a) and (b) can be viewed as selecting 8 edges in a
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Fig. 8. Active links of disjoint (a-d) vs. joint network (d-h)

2 × 2 lattice network for delivering messages from O to D.

The number of four-hop paths in Fig. 7(a) is two, and the path

number in Fig. 7(b) is four, which results in a higher reliability

according to the PIE principle.

Therefore, comparing the reliability of two same-sized net-

works with the same number of links, we generally prefer the

one with more joint vertexes. It is difficult to quantify how

joint paths affecting the overall reliability though. We define

a simple metric, Jd =
Ab

Av
, to describe the degree of joint

vertexes in a network, where Ab is the number of links and

Av is the number of vertexes in the network. If using the

same number of links, we prefer the network with a larger

Jd, which may lead to a higher reliability. This can be used

as a guideline when we have the freedom to choose a limited

number of links to be activated in a network while maintaining

high connectivity/reliability.

Here are some examples to demonstrate the above guideline.

We create networks with few joint vertices that follow the style

of Fig. 8(a), (b), (c), and (d). Then, we create joint vertices

networks with the same active link number that follows the

style of Fig. 8(e), (f), (g), and (h). It takes more time to

calculate the reliability for disjoint networks than the joint

networks, as shown in Fig. 9(a). Setting all link probabilities

as 0.99, the end-to-end reliabilities are obtained. From the

results, the networks with a larger Jd have a higher reliability,

as shown in Fig. 9(b), which supports the proposed guideline.

2) Variance of the group size for each hop count: In

addition to Jd, another metric affects the reliability is the

variance of set size of different hop counts. For instance, as

shown in Fig. 10, both networks are joint networks but the

reliability of the network in (a) is higher than the network
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Fig. 10. Networks with different variances in terms of the size of hop
count set

in (b) because of the bottleneck marked by the red circle. In

order to quantify the degree of the bottleneck, we define the

variance of the number of vertices in each hop set, σ2, as

another metric.

Using the variance formula,

σ2 =
Σhmax

1 (rh − r̄)2

hmax − 1
, (9)

where r̄ is the mean value of all hop sets, and hmax is

the hop number of the destination. For example, for the

networks in Fig. 10, the hop set sizes for G0, ... Gh

are 1, 2, 3, 3, 3, 3, 3, 3 . . . and 1, 2, 3, 3, 4, 3, 3 . . . , respectively,

and their variances are approximately 0.4 and 0.8, respectively.

We run the simulation using a joint network following the

style of Fig. 10(a) and some random joint networks following

the style of Fig. 10(b). The simulation results are shown in

Fig. 11. A larger variance often leads to some large size sets,

resulting in longer computing time, as shown in Fig. 11(a). A

smaller variance can generally lead to a higher reliability, as

shown in Fig. 11(b). Thus, we can rely on the metric to select

the links to achieve a higher reliability.

40 60 80 100 120 140 160

Number of active links

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
o
m
p
u
t
i
n
g
 
t
i
m
e
 
(
s
)

Random1
Random2
Random3
Min-variance

40 60 80 100 120 140 160

Number of active links

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

E
n
d
-
t
o
-
e
n
d
 
r
e
l
i
a
b
i
l
i
t
y

Random1
Random2
Random3
Min-variance

(a) Computing time (b) Reliability

Fig. 11. Simulation results, with different variance
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(a) nt = 4 (b) nt = 6

Fig. 12. 12× 10 lattice network, without hot spot

(a) Strategy of selecting link (b) Avoiding hot spot

Fig. 13. 12× 10 lattice network, with hot spots

C. Selecting links to ensure reliability

First, considering a two-dimensional 12×10 lattice network

where the links are homogeneous, and there is no hot-spot in

the network. As analyzed in Sec. IV-B, we prefer to choose

the links leading to a large Jd and small σ2. We thus prefer

the cases where the number of active links between each

neighbour hop is the same except at both ends. Then, we can

choose active links as shown in Fig. 12 (a). If the network

needs a higher reliability, links between each neighbour hop

can be added as shown in Fig. 12 (b).

Next, considering a more complicated case, where there are

a few hot spots in the network, so a few links are congested

which have a longer delay and a higher loss rate. When we

select links for message delivery, we can avoid the busy links

to achieve better load balancing and performance. We use

an example to demonstrate how we select links. As shown

in Fig. 13, we consider a 12 × 10 lattice network with hot

spots. In the corners, the two links connected to the source and

destination can be selected first, as shown in Fig. 13(a). In the

middle, let the number of active links between neighbour hop

be nt. We start with one corner and choose the active links step

by step. The end vertexes can be nt/2+1 or nt/2. When the

end vertexes are nt/2, we prefer the links in the middle unless

they are busy links. In each step, as shown in Fig. 13(a), if all

blue links are not busy and at least one green link is not busy,

we can choose them; if one of the blue links or both green

links are busy, we need to take a step back, and re-select the

previous hop’s links to probe for other better choices. With

this recursive algorithm, the resulting link selection is shown

in Fig. 13 (b), where the black links are selected for routing

and the red links are the busy ones being avoided.

V. PERFORMANCE EVALUATION

p is the link reliability. If each packet is transmitted over

a link once, the packet loss rate of a link equals 1 − p.
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Fig. 14. Active link number vs. end-to-end reliability, 10× 7 lattice

Given the lattice grid and the reliability of each link, the

end-to-end reliability (or connectivity) can be calculated using

the HSA algorithm in Sec. III. Based on the end-to-end

reliability obtained using HSA, we can further select active

links in the network to make a tradeoff of transmission cost

and performance. Such a tradeoff can be observed from the

performance evaluation below.

A. End-to-end reliability

To investigate the tradeoff of link cost and performance,

we can activate a part of links in a network. We use the

number of active links instead of path number for performance

comparison. Here, the number of active links is proportional

to the communication cost.

We consider the 10×7 lattice network as an example, where

there are in total 157 links in the network. To deliver a message

from the source to the destination, the least number of active

links is 17 when a single 17-hop path is used. We chose the

optimal single-path to obtain the path-reliability and tuned p
for all links from 0.9 to 0.99, and we also investigated the

scenario where the reliability of each link is randomly chosen

between 0.9 and 0.99.

As shown in Fig. 14, using single-path routing, when

p = 0.99, the end-to-end reliability is 0.85 only, not desirable

for URLL services. With the increase of the number of active

links, we can achieve a higher reliability. When p = 0.99,

using 61 active links can achieve a close to one reliability,

so we can turn off the rest 97 to save cost. In the situation

of congestion, we can inactivate those links with higher traffic

loads. When p is as low as 0.9, we can still achieve above 0.98
end-to-end reliability when we activate about 100 links. Fig. 14

also shows that the simulation results match the analysis well.

The dotted line shows the results with heterogeneous link

reliability (average of 0.95). The performance is similar to

the homogeneous link reliability case (p = 0.95) when there

are more than 37 active links.

B. Delay performance

Next, we simulated the shortest path routing and the one

using all active links for routing to compare the delay per-

formance. For shortest single-path routing, we chose the path
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Fig. 15. Delay distributions (blue: single path; orange: all active links)

with the smallest delay between the source and destination,

and the lost packet in each link will be retransmitted in the

link layer. On the other hand, when using all active links to

deliver the packet, we disabled the link-layer retransmission,

and the packet will be retransmitted only if timeout happens

(when zero copy is reached in the destination and no end-to-

end ACK is received by the source). For each setting, 10, 000
packets were transmitted and their delays were measured.

The resulting delay distributions when p = 0.99 and p =
0.999 are shown in Fig. 15(a) and (b), respectively, where the

blue bars are the delay distributions with single-path and the

orange bars are those using all active links. From the figures,

not only the average delay using all active links is lower, more

importantly, using the single path with shortest-path routing,

about 10% of packets suffer a delay jitter more than 20 ms

when p = 0.99 due to link layer retransmissions, while only

0.02% of packets suffering delay outage when we explore the

path diversity. When p = 0.999, about 1% of packets suffering

a delay jitter around 14 ms using the shortest-path routing, and

all packets can reach the destination within 50 ms using all

active links, which is more desirable for URLL services.

VI. CONCLUSION

In a mesh network, to ensure high reliability and low

latency, we can explore path diversity. In this paper, based

on a Markov model, the closed-form network reliability as

a polynomial expression of link reliability has been obtained

using the proposed HSA, which is of lower computational

complexity and more scalable than the state-of-the-art in the

literature. Furthermore, we proposed two metrics that can be

used for selecting the links in a network for routing to ensure

performance while reducing link cost. From the analytical and

simulation evaluation, exploring path diversity is an effective

approach to ensure the reliability and delay performance for

URLL services.
There are many open issues beckoning further investigation.

For instance, how to further reduce the computation com-

plexity to analyze the reliability of an even larger network,

how to optimize the link selection process to minimize the

link cost given the reliability and delay constraints, how to

jointly optimize link parameters (such as transmission power,

modulation and coding configuration) and the link selection

in routing for URLL services, and how to handle network

congestions if URLL traffic volume is high.
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