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The Additive Increase and Multiplicative Decrease (AIMD) congestion control algorithm of
TCP deployed in the end systems and the Random Early Detection (RED) queue manage-
ment scheme deployed in the intermediate systems contribute to Internet stability and
integrity. Previous research based on the fluid-flow model analysis indicated that, with
feedback delays, the TCP/RED system may not be asymptotically stable when the time
delays or the bottleneck link capacity becomes large [3]. However, as long as the system
operates near its desired equilibrium, small oscillations around the equilibrium are accept-
able, and the network performance (in terms of efficiency, loss rate, and delay) is still sat-
isfactory. In this paper, we study the practical stability of AIMD/RED system with feedback
delays and with both homogeneous and heterogeneous flows. We obtain theoretical
bounds of the flow window size and the RED queue length, as functions of the number
of flows, link capacity, RED queue parameters, and AIMD parameters. Numerical results
with Matlab and simulation results with NS-2 are given to validate the correctness and
demonstrate the tightness of the derived bounds. The analytical and simulation results
provide important insights on which system parameters contribute to higher system oscil-
lations and how to set parameters (such as buffer size and queue management parameters)
to ensure system efficiency with bounded delay and loss. Our results can also help to pre-
dict and control the system performance for Internet with higher data rate links multi-
plexed with heterogeneous flows with different parameters.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The first congestion collapse in the Internet was ob-
served in 1980s, although the Internet was still in its infant
stage. To solve the problem, Van Jacobson proposed the
Transmission Control Protocol (TCP) congestion control
algorithm based on the Additive Increase and Multiplica-
tive Decrease (AIMD) mechanism in 1988: when there is
no network congestion indication (no packet loss), the
TCP congestion window size is increased linearly by-one
. All rights reserved.
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packet per round-trip time; otherwise, it is reduced by-
half. Since then, the TCP congestion control algorithm has
been widely deployed in the end systems to respond to
network congestion indicators and avoid congestion col-
lapses. To support heterogeneous traffic and multimedia
applications, instead of the increase-by-one and de-
crease-by-half strategy, a generalized AIMD controller
can use a pair of parameters ða; bÞ to set the increase rate
and the decrease ratio [17–19], and the parameter pair
can be flexibly chosen according to the TCP-friendly condi-
tion [19] and the quality of service (QoS) requirements of
different applications. On the other hand, to distribute
the network congestion indicators fairly to all on-going
flows, active queue management (AQM) [2,5], e.g., the
ractical stability of AIMD/RED systems with time delays, Comput.
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Random early detection (RED) scheme [6,7], has been
developed and deployed in the intermediate nodes. A
RED-enabled router discards the incoming packets ran-
domly when the average queue length exceeds a certain
threshold ðminthÞ and all incoming packets are discarded
when it exceeds another higher threshold ðmaxthÞ. With
the RED schemes (which has been widely deployed in the
Internet core routers [8,9]), the packet loss rate of each
flow is roughly proportional to its sending rate, so network
transient congestion conditions can be fairly delivered to
the end systems. The AIMD congestion control mechanism
and the RED queue management scheme both contribute
to the overwhelming success of the Internet [16].

With the rapid advances in optical and wireless com-
munications, the Internet is becoming a more diverse
system. It contains heterogeneous links with speeds
varying from tens of Kbps to hundreds of Gbps, with
flow round-trip delays varying from ms to seconds. It
also supports various multimedia applications with dif-
ferent throughput, delay, and jitter requirements. It is
important to understand whether the AIMD/RED system
can be stable, scalable, and efficient for the more diver-
sified Internet.

Internet stability has been an active research topic
since its first congestion collapse was observed. With a
fluid-flow model of the system, it has been proved that,
without feedback delay, the AIMD congestion control
mechanism, coupled with the RED queue management,
can ensure the asymptotic stability of the system [20].
However, with a non-negligible feedback delay, the
AIMD/RED system may not be asymptotically stable when
the delay and/or the link capacity becomes large [3]. On
the other hand, the Internet is a very dynamic system,
and it can tolerate transient congestion events. In fact,
TCP controlled flows aggressively probe for available
bandwidth, and create transient network congestions.
Practically, a concrete system is considered stable if the
deviation of the motion from the equilibrium remains
within certain bounds determined by the physical situa-
tion. The desired state of a system may be mathematically
unstable and yet the system oscillates close enough to
this state for its performance to be acceptable. To deal
with such situations, the notion of practical stability is
more meaningful. The corresponding mathematical defi-
nition below follows that of [24,25].

Definition 1. Consider the dynamic system with time
delays

dx
dt
¼ f ðt; xðtÞ; xðt � s1ðtÞÞ; . . . ; xðt � smðtÞÞÞ;

where x 2 En; f : I � En � En � � � � � En ! En is continuous.
Let s ¼ supi¼1;...;msiðtÞ.

The trivial solution of the above system is said to be
practically stable if given ðk; AÞwith 0 < k < A, we have, for
any nðtÞ 2 C½½t0 � s; t0�;Rn�; knk < k implies kxðt; t0; nÞk <
A; t P t0 for some t0 2 Rþ.

With large time delays or link capacities, the AIMD/RED
system as a whole may not be asymptotically stable [3].
However, it can be practically stable. If the deviation from
the equilibrium is small, the overall system efficiency can
Please cite this article in press as: L. Wang et al., Bounds estimation and
Netw. (2009), doi:10.1016/j.comnet.2009.10.008
still be high, and the packet loss rate and queuing delay
can still be well bounded, i.e., the system performance is
still acceptable. Therefore, the critical issue to investigate
is: does the AIMD/RED system always operate in the area
close to the desired equilibrium state, and what are the
theoretical bounds? To answer these questions, studying
system practical stability and bounds is the key, which is
also the focus of this paper.

With clearly defined bounds, a system is considered
practically stable. Using the fluid-flow model of the
AIMD/RED system, instead of applying the Lyapunov-like
method, we derive upper and lower bounds of congestion
window size and queue length by directly studying the
inherent properties of the AIMD/RED system. The derived
bounds provide important insights on which system
parameters contribute to high oscillations of the system
and how to choose system parameters (such as buffer size
and queue management parameters) to ensure system effi-
ciency with bounded delay and loss. Our main findings are:
(1) surprisingly, larger values of delay and link capacity
will actually reduce the oscillation amplitude of window
size and queue length from their equilibrium in steady
state; (2) although TCP and AIMD flows can adapt their
sending rates according to available bandwidth, larger
number of flows leads to longer queueing delay. Thus, it
is desirable to limit the number of flows in a link or pro-
mote to use more conservative AIMD parameters to bound
the queueing delay and loss; and (3) if we proportionally
increase the link capacity and the number of TCP or AIMD
flows, the queueing delay will be slightly reduced, thanks
to the multiplexing gain. Thus, AIMD/RED should be suit-
able in the Internet with higher bandwidth and more
flows.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly discusses the related work. The fluid-flow
models of homogeneous and heterogeneous AIMD/RED
systems are introduced in Sections 3 and 4, respectively;
upper and lower bounds of the systems with feedback de-
lays are also obtained. In Section 5, numerical results with
Matlab and simulation results using NS-2 are presented to
validate the derived bounds, and the impacts of different
system parameters on the system performance are also
discussed, followed by concluding remarks in Section 6.

2. Related work

Internet stability analysis has received wide attention
[1–4]. For delay-free marking scheme, the fluid-model of
the AIMD/RED system has been proved to be asymptoti-
cally stable [20]. However, as pointed out in [3], the system
may become asymptotically unstable in the presence of
time delays. In [21,22], sufficient conditions for the asymp-
totic stability of AIMD/RED system with feedback delays
over single and multiple bottlenecks are given. On the
other hand, simulation results show that even though the
system is not asymptotically stable, it oscillates around
the steady state periodically. Motivated by this phenome-
non, different from many previous work on the sufficient
conditions for the asymptotic stability of AIMD/RED or
other network control systems, in this paper, we study
the practical stability of the AIMD/RED systems with both
practical stability of AIMD/RED systems with time delays, Comput.
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homogeneous flows and heterogeneous flows, and derive
their theoretical bounds, i.e., bounds of flows’ congestion
window size and intermediate systems’ queue length, gi-
ven the number of flows sharing the link, their AIMD
parameter pairs and round-trip times (RTTs), link capacity,
and RED queue parameters.

The boundedness issue has been studied in [11–13]
without giving the bounds estimate, by applying Lyapu-
nov-like method for some TCP-like congestion control
algorithms. Using deterministic fluid model for studying
Internet congestion control was justified in [14], and the
upper bounds on the transmission rate for two kinds of
TCP-like traffic was given in [10]. However, to the best of
our knowledge, the theoretical bounds of window size
and queue length of AIMD/RED system with homogeneous
and heterogeneous flows considering feedback delays have
not been reported in the literature.1

3. Bounds and practical stability of homogeneous-flow
AIMD/RED system with time delay

3.1. A fluid-flow model of Homogeneous AIMD/RED system

A stochastic model of TCP behaviors is developed using
fluid-flow and stochastic differential equation analysis in
[15]. Simulation results have demonstrated that this model
accurately captures the dynamics of TCP. We extend the
fluid-flow model for general AIMD ða; bÞ congestion con-
trol: the window size is increased by a packets per RTT if
no packet loss occurs; otherwise, it is reduced to b times
its current value. TCP is a special case of AIMD with
a ¼ 1 and b ¼ 0:5.

For all AIMD-controlled flows with the same (a; b)
parameter pair and round-trip delay, the AIMD fluid-model
relates to the ensemble averages of key network variables
[4,15], and is described by the following coupled, nonlinear
differential equations:

dWðtÞ
dt

¼ a
RðtÞ �

2ð1� bÞ
1þ b

WðtÞWðt � RðtÞÞ
Rðt � RðtÞÞ pðt � RðtÞÞ;

dqðtÞ
dt
¼

NðtÞ�WðtÞ
RðtÞ � C; q > 0;

NðtÞ�WðtÞ
RðtÞ � C

n oþ
; q ¼ 0:

8<
: ð1Þ

where fagþ ¼maxfa;0g; a > 0; b 2 ð0; 1Þ; W 2 ½1; Wmax�
is the AIMD window size (packets), and q 2 ½0; qmax� is
the queue length (packets), where qmax and Wmax denote
buffer size and maximum window size, respectively. W
and q in the fluid-flow model can approximate the ensem-
ble averages of flow’s congestion window size and queue
length respectively in the real system. RðtÞ is the round-trip
time, C is the link capacity (packets/s), NðtÞ is the number
of AIMD flows, and pðtÞ is the probability of a packet being
dropped or marked by an intermediate system. With ever-
increasing link capacity and appropriate congestion
control mechanism, variation of queuing delays becomes
relatively small to propagation delays. In fact, recent work
[23] reveals that the variable nature of round-trip time due
to queueing delay variation helps to stabilize the TCP/RED
1 Part of this paper was presented in IEEE ICC’08.

Please cite this article in press as: L. Wang et al., Bounds estimation and p
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system. Therefore, we ignore the effect of the delay jitter
on the round-trip time and assume RðtÞ ¼ R for simplicity.

The first differential equation of system (1) describes
the AIMD (a; b) window control dynamic. a=R represents
the window’s additive increase, whereas 2ð1� bÞW=

ð1þ bÞ represents the window’s multiplicative decrease
in response to packet dropping or marking probability p.
Since, in steady state, the AIMD flow’s window size in a
practical system oscillates between bWmax and Wmax, its
average window size W over a round2 is ð1þ bÞWmax=2.
Each time, the window size is decreased by ð1� bÞWmax ¼
2ð1� bÞW=ð1þ bÞ. The second equation models the bottle-
neck queue length as simply an accumulated difference be-
tween packet arrival rate NW=R and link capacity C. f�gþ in
the model guarantees that the queue length is non-negative.

Note that, in the fluid-flow model, q and W are positive
and finite quantities which approximate the ensemble
averages of queue length and window size in practical sys-
tems. In ergodic systems, ensemble average equals time
average. The values of q and W in the fluid-flow model
can be used to predict its time average over a round in a
practical system. Given the AIMD window size oscillating
between bWmax and Wmax in a round, the average duration
of a round equals 2ð1� bÞWR=½ð1þ bÞa�.

We consider the popular Active Queue Management
(AQM) scheme, RED, in system (1). With RED, the packet
dropping or marking probability, p, is determined by the
average queue length qact:

p ¼
0; 0 6 qact 6minth;

Kpðqact �minthÞ; minth < qact 6 maxth;

1; qact > maxth;

8><
>: ð2Þ

where Kp > 0. When qact 6 minth;
dWðtÞ

dt ¼ a
R, the window size

of AIMD flows will keep increasing and will not converge
to any value. Thus, in the following, we will discuss the sta-
bility of this model when qact > minth. Without loss of gen-
erality, let qðtÞ ¼ qactðtÞ �minth. In addition, since the
queue behaves in the same way as a Drop–Tail queue once
qact exceeds maxth, we choose maxth to be sufficiently large
such that Kpðmaxth �minthÞ ¼ 1.

Eq. (1) is a generalized AIMD/RED congestion control
model, which includes the models studied in [2,4,15]. If
we choose a ¼ 1; b ¼ 0:5, (1) is equivalent to the tradi-
tional TCP/RED model in [15].

The equilibrium point ðW�; q�Þ for (1) and (2) is given
by

W� ¼ R � C
N

; q� ¼ að1þ bÞN2

2ð1� bÞR2C2Kp

:

Remark 1. At the equilibrium, the total arrival rate equals
the total link capacity, so the link bandwidth can be fully
utilized. In other words, the equilibrium point is also the
most desired operating point of the system. If the window
size is larger than W�, the queue will build up which
results in a longer queueing delay; if the window size is
2 A round is defined as the interval between two time instants that the
flow reduces its congestion window size consecutively.

ractical stability of AIMD/RED systems with time delays, Comput.
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less than W�, the network load is smaller than its capacity,
so the network resources are not fully utilized.
3.2. Upper bound on window size

In this section, we show that even though the system
may become asymptotically unstable because of the effects
of time delay, its window size and queue length are still
bounded, and the upper bound of window size is close to
the equilibrium.

We study the delayed homogeneous AIMD system de-
fined by (1) with RED defined by (2) and derive the upper
and lower bounds of the system. We set minth ¼ 0 in RED
and assume that the traffic load (i.e., the number of AIMD
flows) is time-invariant, i.e., NðtÞ ¼ N. As mentioned ear-
lier, we ignore the effect of the delay jitter on the round-
trip time and derive the bounds of AIMD/RED system
assuming RTT to be constant. Simulation results with NS-
2 in Section 5 shows that the obtained bounds estimate
is still applicable when RTT is actually time-varying.

Notice that the AIMD/RED system defined by (1) and (2)
are described by delayed differential equations. The initial
conditions are given by 1 6WðtÞ 6W� and 0 6 qðtÞ 6 q�

on the interval t 2 ½�R; 0�. According to (1), it is also rea-
sonable that we let _WðtÞ 6 a

R for t 2 ½�R; 0�.

Theorem 1. Let UB > 0 be the largest real root of

UB � ðUB � aÞ � UB �
R � C

N
� a

� �2

¼ a2ð1þ bÞ
ð1� bÞNKp

; ð3Þ

then WðtÞ 6 UB for t P 0.

The proof can be found in Appendix A.
If all AIMD flows are TCP-friendly, i.e., the average

throughput of non-TCP-transported flows over a large time
scale equals that of any conformant TCP-transported ones
under the same circumstance [16], the ða; bÞ pair should
satisfies the TCP-friendly condition a ¼ 3ð1� bÞ=ð1þ bÞ
derived in [19,20]. Thus, the above equality (3) becomes

UB � ðUB � aÞ � ðUB � R � C=N � aÞ2 ¼ 3a
NKp

: ð4Þ

By the continuity property of UB � ðUB � aÞ � ðUB � R�
C=N � aÞ2 and the fact that the RHS of (3) is always greater
than zero, we can conclude that the largest root of (3) must
be greater than R � C=N þ a, where R � C=N is the equilib-
rium value of the window size for AIMD/RED system.
Therefore, the oscillation of the window size from its equi-
librium value will increase with the increment of a and the
decrement of Kp.

3.3. Lower bound on window size and upper bound on queue
length

In the previous subsection, we proved that the AIMD
window size WðtÞ is bounded from above, and an upper
bound, UB, is defined by (3). In this subsection, we show
that the window size is also bounded from below while
the queue length is upper bounded.
Please cite this article in press as: L. Wang et al., Bounds estimation and
Netw. (2009), doi:10.1016/j.comnet.2009.10.008
Theorem 2. Define A :¼ a
R�

2ð1�bÞ
1þb

U2
B

R and let LB1 > 0 be the
root of

LB1 � ðLB1 � ARÞ ¼ að1þ bÞ
2ð1� bÞ ;

then WðtÞP LB1 for t P 0.

The proof can be found in Appendix B.
Notice that LB1 in Theorem 2 is the lower bound of WðtÞ

for all t P 0, which is a global one. By similar analysis to
the upper bound of window size UB, it is easy to check that
the window size WðtÞ will not go below LB1 for any t > t2.
However, the value of LB1 is actually very small since
að1þ bÞ=ð2ð1� bÞÞ is fairly small compared to �AR. There-
fore, the global lower bound does not provide much infor-
mation about the performance of AIMD/RED systems.

Since the window size oscillates around its equilibrium
in the steady state, the amplitude of the oscillation is more
important than the global lower bound. Next, we will show
the local lower bound of the window size after the first
time it reaches the peak value at moment t1. This local low-
er bound is more useful for understanding the performance
of AIMD/RED systems.

Theorem 3. Define T1 and UQ as
T1 ¼
UB � R�C

N
2ð1�bÞ

1þb �
C�Kp

N � R�C
N Dqþ DWðq�0 þ DqÞ
� �

UQ ¼ inf
Dq>0;

DW2 0;UB�R�C
N½ �
ðq�0 þ DqÞ þ N

R
� UB � C

� �
� ðT1 þ RÞ

� �
;

where UB is defined in Theorem 1. Let LB2 > 0 satisfy

LB2 � LB2 þ
2ð1� bÞ

1þ b
U2

B � Kp � UQ � a
� �

� Kp � UQ ¼
að1þ bÞ
2ð1� bÞ ;

then qðtÞ 6 UQ for t P 0 and WðtÞP LB2 for t P t1.

The proof can be found in Appendix C.
Therefore, the homogeneous-flow AIMD/RED system is

practically stable with the bounds derived in Theorems 1
and 3.

4. Bounds and practical stability of heterogeneous
AIMD/RED systems with time delays

4.1. A fluid-flow model of Heterogeneous AIMD/RED system

In this section, we study the AIMD/RED system with
heterogeneous flows, considering time delays. We here
consider the case when there are two classes of flows with
parameters ða1; b1Þ; ða2; b2Þ, time-invariant traffic loads
N1; N2, respectively, as depicted in Fig. 1. We assume that
all the flows have the same round-trip time. The model
in this section can be extended to any certain number of
flows in multiple classes with heterogeneous AIMD
parameters.

Taking time delays into consideration, a heterogeneous
AIMD/RED system shared by two classes of flows can be
modeled as
practical stability of AIMD/RED systems with time delays, Comput.
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dWIðtÞ
dt

¼ a1

RðtÞ �
2ð1� b1Þ

1þ b1

WIðtÞWIðt � RðtÞÞ
Rðt � RðtÞÞ Kpqðt � RðtÞÞ;

dWIIðtÞ
dt

¼ a2

RðtÞ �
2ð1� b2Þ

1þ b2

WIIðtÞWIIðt � RðtÞÞ
Rðt � RðtÞÞ Kpqðt � RðtÞÞ;

dqðtÞ
dt
¼

N1WIðtÞ
RðtÞ þ

N2WIIðtÞ
RðtÞ � C; q > 0;

N1WIðtÞ
RðtÞ þ

N2WIIðtÞ
RðtÞ � C

n oþ
; q ¼ 0:

8<
: ð5Þ

Again, we simplify the above system by assuming RðtÞ ¼ R.
It is shown in [2] that WiðtÞWiðt � RÞ in (5) can be approx-
imated by W2

i ðtÞ for i ¼ I; II when the window size is much
larger than one. We apply this approximation in the fol-
lowing analysis for the convenience of computation.

For the heterogeneous system (5), the equilibrium point
W�

I ;W
�
II; q

�
0

� 	
is given by

W�
I ¼

GCR
N1GþN2

; W�
II ¼

CR
N1GþN2

; q�0¼
a1ð1þb1Þ

2ð1�b1ÞW�2
I Kp

;

where G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ð1þb1Þð1�b2Þ
a2ð1�b1Þð1þb2Þ

q
:

The physical significance of studying the stability prop-
erties of the equilibrium point of AIMD/RED system is be-
cause the equilibrium point is the most desired operating
point of the system. At the equilibrium, the total window
size is N1W�

I þ N2W�
II and the total arrival rate equals the

total link capacity, thus the link bandwidth is fully utilized.
In (5), we take WðtÞ ¼ N1 �WIðtÞ þ N2 �WIIðtÞ;M1 ¼

ð1�b1Þ
1þb1

;M2 ¼ ð1�b2Þ
1þb2

; r1 ¼ M1=N1, and r2 ¼ M2=N2, then

_W ¼ ðN1a1 þ N2a2Þ=R� 2½r1 � ðN1WIÞ2ðtÞ
þ r2 � ðN2WIIÞ2ðtÞ� � Kpqðt � RÞ=R: ð6Þ

Note that WiðtÞP 0 for i ¼ I; II. Taking rmin ¼minðr1; r2Þ,
and rmax ¼ maxðr1; r2Þ, the following inequality can be
obtained:

�2rmax
W2ðtÞ

R
6

_WðtÞ � N!a1þN2a2
R

Kpqðt � RÞ 6 �rmin
W2ðtÞ

R
: ð7Þ

Also, we have

_qðtÞ ¼ WðtÞ=R� C; q > 0;
fWðtÞ=R� Cgþ; q ¼ 0:

(
ð8Þ

Thus, with the new variable pair ðWðtÞ; qðtÞÞ, the original
heterogeneous AIMD/RED system (5) can be rewritten by
(6) and (8). We will study the properties of ðWðtÞ; qðtÞÞ
Please cite this article in press as: L. Wang et al., Bounds estimation and p
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in the following to show the practical stability and derive
the bounds of the system.

Remark 2. Our focus in the analysis below is WðtÞ, the
total window size at t. This is because WðtÞ indicates the
entire throughput of the heterogeneous AIMD/RED system,
which is more useful than the throughput of each individ-
ual flow.
4.2. Upper bound on window size

The bounds estimate of the heterogeneous AIMD/RED
system are given in the following.

Theorem 4. Let UB > 0 be the largest real root of

U2
B � ½UB � R � C � ðN1a1 þ N2a2Þ�2 ¼

4ðN1a1 þ N2a2Þ2

rmin � Kp
; ð9Þ

then WðtÞ 6 UB for t P 0.

Proof. With (6), _WðtÞ 6 ðN1a1 þ N2a2Þ=R for t P 0. For
s > 0, take integration on both sides from t � s to t:

WðtÞ �Wðt � sÞ 6 ðN1a1 þ N2a2Þ � s=R: ð10Þ

We show that UB > 0 in the theorem is an upper bound of
WðtÞ for t P 0, i.e., if WðtÞ ¼ UB for some t ¼ �t1 P 0, then
_Wð�t1Þ 6 0.

Integrating on both sides of (8) from �t1 � a � R to �t1 � R
for a > 1 givesZ �t1�R

�t1�aR

_qðsÞds P
1
R

Z �t1�R

�t1�aR
WðsÞds� ða� 1ÞR � C:

Note that (10) implies Wð�t1 � sÞP UB � a � ðN1a1 þ N2a2Þ
when s 2 ½R; aR�. Thus,

qð�t1�RÞP ½UB�a � ðN1a1þN2a2Þ� � ða�1Þ�R �C � ða�1Þ;
ð11Þ

since qðtÞP 0.
Taking f ðaÞ ¼ ða� 1Þ � ½UB � a � ðN1a1 þ N2a2Þ � R � C�

and computing the maximum value of f ðaÞ by letting
f 0ðaÞ ¼ 0 gives

f ðaÞ ¼ ½UB � R � C � ðN1a1 þ N2a2Þ�2=½4ðN1a1 þ N2a2Þ�;
ð12Þ

with a ¼ ½UB � R � C þ ðN1a1 þ N2a2Þ�=½2ðN1a1 þ N2a2Þ� and
f 00ðaÞ < 0.

Therefore, it follows from (7), (11) and (12) that,
_Wð�t1Þ 6 0 if UB satisfies

U2
B � ½UB � R � C � ðN1a1 þ N2a2Þ�2 ¼

4ðN1a1 þ N2a2Þ2

rmin � Kp
;

ð13Þ

which implies WðtÞ 6 UB for t P 0.
It is also noted that the upper bound derived here is

global for the time t, i.e., the window size WðtÞ will not go
above UB for any t > �t1. If we assume, instead, that there
exists �t01 > �t1 and DW > 0, such that W �t01

� 	
¼ UB þ DW ,

there must be some s0 2 ð0;�t01 � �t1Þ such that
W �t01 � s0
� 	

¼ UB and _W �t01 � s0
� 	

> 0. However, similar to
ractical stability of AIMD/RED systems with time delays, Comput.
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the proof of Theorem 4, we have _W �t01 � s0
� 	

6 0, which is a
contradiction. Therefore, the window size is upper
bounded by UB for all t P 0. h

By the continuity property of U2
B � ½UB � R � C�

ðN1a1 þ N2a2Þ�2 and the fact that the RHS of (9) is always
greater than zero, we can conclude that there exists at least
one real root for (9) and the largest root must be greater
than R � C þ ðN1a1 þ N2a2Þ. Therefore, the upper bound UB

itself will increase with the increment of R � C and
ðN1a1 þ N2a2Þ. In addition, the oscillation of the window
size from its equilibrium value will increase with the incre-
ment of N1a1 þ N2a2 and the decrement of Kp.

4.3. Lower bound on window size and upper bound on queue
length

In this subsection, we prove that the window size of
heterogeneous-flow system is also lower bounded while
the queue length is upper bounded.

Theorem 5. Let LB1 :¼ N1a1þN2a2
2�rmax

� �1=2
, then WðtÞP LB1 for

t P 0.

Proof. Showing that LB1 > 0 is the lower bound of WðtÞ for
t P 0, we should prove that if WðtÞ ¼ LB1 at time t ¼ �t2 P
0, then _Wð�t2ÞP 0.

Since the dropping/marking probability
pðtÞ ¼ Kp � q 6 1 for all t, then

_Wð�t2ÞP
N1a1 þ N2a2

R
� 2 � rmax

W2ðtÞ
R

Kpqðt � RÞ

P
N1a1 þ N2a2

R
� 2 � rmax

W2ðtÞ
R

:

Therefore, _Wð�t2ÞP 0 when WðtÞ ¼ LB1 with LB1 defined in
the theorem, which implies WðtÞP LB1 for t P 0.

Note that LB1 in Theorem 5 is the lower bound of WðtÞ
for all t P 0, which is a global bound. To show this, similar
analysis to the upper bound of window size UB can be
applied to check that the window size WðtÞ will not go
below LB1 for any t > �t2. h

The local lower bound of the window size after the first
time it reaches the peak value at �t1 is derived below.

Theorem 6. Define T1 and UQ as

T1 :¼ UB � R � C
rmin � RC2 � Kp � q�0 þ Dq

� 	
� N1a1þN2a2

R

;

UQ :¼ inf
Dq>0

q�0 þ Dq
� 	

þ UB

R
� C

 !
� ðT1 þ RÞ

( )
;

where UB is defined in Theorem 4. Let LB2 > 0 satisfy

L2
B2 � Kp � UQ ¼

N1a1 þ N2a2

2rmax
; ð14Þ

then qðtÞ 6 UQ for t P 0 and WðtÞP LB2 for t P �t1.

Proof. We first derive the upper bound of qðtÞ for t P 0.
Suppose that WðtÞ reaches its peak value at moment
t ¼ �t1. To get a loose upper bound of qðtÞ, we introduce
the comparison theorem [26]. Instead of following system
Please cite this article in press as: L. Wang et al., Bounds estimation and
Netw. (2009), doi:10.1016/j.comnet.2009.10.008
(6) and (8), we consider its comparison system: _qðtÞ ¼
UB=R� C; and WðtÞ � UB for t 2 �t1;�t01

� �
. Note that the solu-

tions of the comparison system are larger than those of the
original system, so the bounds derived in the following are
also the bounds for system (6) and (8).

Assume that WðtÞ does not decrease for some time after
�t1, and thus qðtÞ increases at the rate of UB=R� C. �t01 is
chosen such that q �t01

� 	
¼ q� þ Dq with Dq > 0, then WðtÞ

decreases from �t01 while qðtÞ keeps increasing till �t2 such
that _qð�t2Þ ¼ 0 (Wð�t2Þ ¼ RC) with �t2 P �t01 þ R. Therefore,
qð�t2Þ is the local maximum value of qðtÞ. This estimate of
qðtÞ might be greater than the real maximum value of qðtÞ
since WðtÞ may not stay at its peak value after �t1, and qðtÞ
will still increase after �t1, but with the rate less than
UB=R� C.

From the above analysis, for t 2 ½�t01; t2�; _qðtÞ 6 UB
R � C,

which implies

qð�t2Þ 6 q �t01
� 	
þ UB

R
� C

 !
� �t2 � �t01
� 	

¼ q�0 þ Dq
� 	

þ UB

R
� C

 !
� �t2 � �t01
� 	

: ð15Þ

To estimate the length of the interval �t01;�t2
� �

, for
t 2 �t01 þ R;�t2

� �
, it follows from the analysis above that

WðtÞP Wð�t2Þ ¼ RC;

qðt � RÞP q �t01
� 	
¼ q�0 þ Dq;

for some Dq > 0.
Thus,

_WðtÞ 6 N1a1 þ N2a2

R
� rmin �

ðRCÞ2

R
� Kp � q�0 þ Dq

� 	
; ð16Þ

for t 2 �t01 þ R;�t2
� �

.
On the other hand,

Z �t2

�t01þR

_WðsÞds ¼Wð�t2Þ �Wð�t01 þ RÞP RC � UB: ð17Þ

It follows from (16) and (17) that,

RC � UB 6 ðN1a1 þ N2a2Þ=R� rmin � RC2 � Kp � q�0 þ Dq
� 	h i

� �t2 � �t01 � R
� 	

;

i.e.,

�t2 � �t01 � R 6
UB � RC

rminRC2Kp q�0 þ Dq
� 	

� ðN1a1 þ N2a2Þ=R
:

With the definition of T1 in Theorem 6, we have
�t2 � �t01 6 T1 þ R. Therefore, it follows from (15) that

qðtÞ 6 inf
Dq>0

q�0 þ Dq
� 	

þ UB

R
� C

 !
� ðT1 þ RÞ

( )
; ð18Þ

i.e., qðtÞ 6 UQ for t P 0; which indicates that UQ is the
upper bound of the RED queue length. Since the packet loss
in a RED queue is proportional to the queue length, the de-
rived queue length upper bound also reflects the maxi-
mum packet loss rate.
practical stability of AIMD/RED systems with time delays, Comput.
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We finally show that LB2 > 0 is a lower bound of WðtÞ
for t P �t1, i.e., if WðtÞ ¼ LB2 at time t ¼ �t3 > �t1, then
_Wð�t3ÞP 0.

With (7) and (18),

_Wð�t3ÞP
N1a1 þ N2a2

R
� 2rmax �

L2
B2

R
� Kp � UQ :

Thus, _Wð�t3ÞP 0 if LB2 is chosen to satisfy (14).
Therefore, LB2 is the lower bound of WðtÞ for t P �t1. h

Therefore, the heterogeneous AIMD/RED system is prac-
tically stable with the bounds derived in Theorems 4 and 6.

Remark 3. The approach applied in this section can also be
extended to obtain the theoretical bounds for the AIMD/
RED system when it is shared by more than two classes of
flows. Details are omitted here due to space limit.
5. Performance evaluation

In this section, we first use Matlab to simulate the
AIMD/RED system described by the fluid-flow model to
get the maximum and minimum window size and queue
length, and compare them with the derived bounds. We
then use NS-2 [27] to simulate a more realistic AIMD/
RED system to validate the bounds. How the system per-
formance is affected by different parameters is also evalu-
ated by the simulations.

5.1. Verify the bounds of the fluid-flow model using Matlab
simulations

5.1.1. AIMD parameter pair
First, we investigate how the AIMD parameter pair ða; bÞ

affects the bounds. Let N;R;C and Kp be constants:
N ¼ 10;R ¼ 0:1 s, C ¼ 1000 packet=s and Kp ¼ 0:01. The
Table 1
Bounds with different ða; bÞ.

ða;bÞ Wmax UB Wmin LB2 Qmax UQ

(9/5,1/4) 12.22 12.44 1.06 0.06 24.70 39.20
(1,1/2) 11.33 11.50 3.32 0.26 17.30 26.50
(3/7,3/4) 10.65 10.76 6.87 1.28 10.95 17.70
(1/5,7/8) 10.36 10.43 8.68 2.90 7.70 12.80
(3/31,15/16) 10.21 10.26 9.42 3.58 5.88 10.10

Table 2
AIMD/RED system bounds with ða; bÞ ¼ ð1; 1=2Þ.

# N R C Kp ðW�; q�Þ W

1 10 0.02 1e3 1e�2 (2, 37.5) 4.0
2 10 0.05 1e3 1e�2 (5,6) 6.6
3 20 0.05 2e3 5e�3 (5,12) 6.6
4 10 0.05 1e3 5e�3 (5,12) 6.8
5 10 0.4 1e3 5e�3 (40,3/16) 41
6 10 0.05 1e4 5e�3 (50,3/25) 51
7 20 0.05 2e4 5e�3 (50,3/25) 51
8 1e2 0.05 1e4 5e�3 (5,12) 6.2
9 1e3 0.1 1e6 1e�3 (100,3/20) 10
10 1e4 0.1 1e6 1e�3 (10,15) 11
11 1e4 0.1 1e6 5e�3 (10,3) 11
12 1e4 0.1 1e6 1e�2 (10,3/2) 11

Please cite this article in press as: L. Wang et al., Bounds estimation and p
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AIMD ða; bÞ pairs are chosen to be TCP-friendly, varying
from (9/5,1/4) to (3/31,15/16). The derived bounds and
the numerical results with Matlab are given in Table 1. It
can be seen that for the window size and the queue length,
the numerical results (Wmax;Wmin; and Qmax) are all within
the bounds (UB; LB2; and UQ ) given by Theorems 1 and 3,
which verifies the correctness of the Theorems. In addition,
the derived upper bound of the window size is very tight.
The one for queue length is a loose bound as mentioned
in the proof of Theorem 3. The theoretical lower bound
of window size is also loose because of the approximation
of _WðtÞ in (C.5). How to find a tight lower bound for win-
dow size requires further research.

Another observation is that the difference between the
numerical results and the derived bounds is getting smal-
ler as ða; bÞ pair varies from (9/5,1/4) to (3/31,15/16),
which shows that the derived bounds become tighter
when the value of b gets larger.

In ideal cases, the window size should converge to
R � C=N, which is 10 packets per RTT in the above cases.
The results in Table 1 show that with a smaller value of
a and a larger value of b, the AIMD flows have less oscilla-
tion amplitude around the optimal operation point, so they
can utilize network resources more efficiently with less de-
lay and loss in steady state. This is because, with a smaller
value of a, the AIMD flows overshoot the available band-
width in a slower pace; with a larger value of b, the AIMD
flows will not decrease drastically for any single packet
loss. Also, as shown in Table 1, the upper bound of the
queue length becomes smaller w.r.t. b; thus, the average
queueing delay (and thus loss rate) becomes smaller in
steady state.
5.1.2. Round-trip delay and link capacity
In the following, we study how the system parameters

N;R;C and Kp affect the bounds. We choose ða; bÞ pair to
be (1,1/2) and (1/5,7/8), and obtain the results with differ-
ent network parameters as shown in Tables 2 and 3,
respectively.

First, compare rows 1 and 2 in Tables 2 and 3. By enlarg-
ing the delay from 0.02 s to 0.05 s (by 2.5 times), the upper
bound of window sizes only increases by 1.54 times and
1.86 times for TCP and AIMD (1/5,/,7/8), respectively,
which means a larger delay reduces the relative oscillation
amplitude of window size. In addition, the upper bound of
max UB Wmin LB2 Qmax UQ

4 4.41 1.52 0.09 51 147.5
0 6.80 2.13 0.32 28 43.3
0 6.80 2.12 0.38 56 78
2 7.10 2.78 0.66 39 54.6
.30 42.02 14.14 0.11 10 23.2
.09 51.15 23.22 0.18 8 14.1
.00 51.20 8.91 0.068 15 23.1
8 6.41 0.72 0.04 153 241.6

1.0 101.02 3e�2 2e�4 577 1024
.04 11.05 2e�2 2e�4 6731 10785
.017 11.023 5e�3 7e�6 5942 10349
.011 11.016 2e�3 2e�6 5714 10248
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Table 3
AIMD/RED system bounds with ða; bÞ ¼ ð1=5; 7=8Þ.

# N R C Kp ðW�; q�Þ Wmax UB Wmin LB2 Qmax UQ

1 10 0.02 1e3 1e�2 (2,37.5) 2.81 3.03 1.76 0.59 55.39 135.5
2 10 0.05 1e3 1e�2 (5,6) 5.50 5.63 4.19 1.77 17.64 31.20
3 20 0.05 2e3 5e�3 (5,12) 5.51 5.65 4.19 1.65 35.3 65.2
4 10 0.05 1e3 5e�3 (5,12) 5.62 5.80 4.27 2.10 29.13 48.70
5 10 0.4 1e3 5e�3 (40,3/16) 40.25 40.29 36.79 5.38 3.10 5.21
6 10 0.05 1e4 5e�3 (50,3/25) 50.23 50.26 45.93 6.31 2.48 3.85
7 20 0.05 2e4 5e�3 (50,3/25) 50.23 50.26 43.99 3.24 4.28 7.10
8 1e2 0.05 1e4 5e�3 (5,12) 5.34 5.46 3.76 1.39 67 84
9 1e3 0.1 1e6 1e�3 (100,3/20) 100.20 100.21 39.26 0.025 127 211
10 1e4 0.1 1e6 1e�3 (10,15) 10.22 10.23 2.02 0.02 1667 2361
11 1e4 0.1 1e6 5e�3 (10,3) 10.208 10.211 0.07 9.7e�4 1355 2159
12 1e4 0.1 1e6 1e�2 (10,3/2) 10.205 10.207 0.015 2.4e�4 1266 2112
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queue length decreases. Similar trend can be found if com-
paring rows 4 and 5 in both tables. This is a surprising re-
sult. From [3], a longer delay may drive the system from
stable to unstable. We can explain it as follows. A larger de-
lay means that the window size increasing speed (in terms
of packet per second) during the additive increase period is
smaller, and the AIMD flows will overshoot the network
capacity in a slower pace (similar to the effect of a smaller
value of a); thus, the upper bound of window size is closer
to the optimal operating point, and the maximum queue
length is smaller.

Another surprising result is found if we compare rows 4
and 6 in both tables. By enlarging the link capacity by 10
times, the upper bound of window size is increased by
7.5 and 8.9 times, for TCP and AIMD (1/5, 7/8), respectively.
Although enlarging the link capacity may drive the system
from stable to unstable [3], the oscillation amplitude of
window size (relative to the equilibrium W�) and queue
length will actually decrease. Simulation results with NS-
2 also demonstrate the same tendency, as shown in Fig. 2
in Section 5.3.
5.1.3. Number of flows
Comparing rows 3 and 4, or rows 6 and 7 in Tables 2

and 3, we conclude that if we increase the number of flows
and the link capacity proportionally, the bounds of window
size are almost un-affected. With twice the flows multi-
plexed in a twice capacity link, the upper bound of queue
length increases less than twice. Therefore, the queuing de-
lay bound is slightly reduced because of the multiplexing
gain.

Comparing rows 6 and 8 in Tables 2 and 3, if we in-
crease the number of flows in the same link, the NUB be-
comes larger. In other words, the oscillation of window
size will increase significantly if the number of flows in a
link increases, and the queueing delay will also increase
significantly. This can be understood as N AIMD (a; b) flows
will increase their windows by Na packets per RTT, and the
larger the increasing rate during the Additive Increase
stage, the more significantly the flows will overshoot the
link capacity. This suggests that we may limit the number
of TCP/AIMD connections in a highly-multiplexed link or
promote to use more conservative AIMD parameter pairs
Please cite this article in press as: L. Wang et al., Bounds estimation and
Netw. (2009), doi:10.1016/j.comnet.2009.10.008
to ensure that the queueing delay (and also the loss rate)
is less than certain threshold.

5.1.4. Kp

Comparing rows 2 and 4 in Tables 2 and 3, with a smal-
ler value of Kp, the bounds of both window size and queue
length are larger.

5.1.5. High capacity delay link
The last four rows of Tables 2 and 3 are the upper

bounds of the TCP/AIMD window size and queueing delay
in a highly-multiplexed, high bandwidth (tens of Gbps),
and long delay (0.1 s RTT) link. It can be seen that, for
TCP flows, the queuing delay can be bounded to
10.785 ms if the Kp is chosen to be 0.001. The delay bound
can be slightly reduced to 10.349 ms and 10.248 ms if Kp is
increased to 0.005 and 0.01, respectively. The results show
that although Kp can be adjusted to control the queueing
delay in system, the impact is limited for high bandwidth
cases.

On the other hand, limiting the number of flows or
using more conservative AIMD pairs are more effective in
reducing queueing delay. For instance, if the number of
flows is reduced to 100 or 1000, the queueing delay bound
can be reduced to 0.241 ms or 1.079 ms, respectively. If
using an AIMD parameter pair of (1/5,7/8), the queueing
delay for 10,000 flows with Kp ¼ 0:001 can be bounded
to 2.361 ms only.

5.2. NS-2 simulations with homogeneous flows

In the following, we conduct extensive NS-2 simula-
tions with more realistic TCP and AIMD protocols and net-
work settings to verify the bounds derived. In the
simulation, TCP and AIMD agents use TCP SACK congestion
control. All senders are saturated, i.e., they always have
data to send. All flows share the same bottleneck link. To
eliminate the phase effect, the access links have slightly
different propagation delays.

Fig. 2 shows the traces of TCP flows with AIMD parameter
pair of (1, 1/2) and those of AIMD (1/5,7/8) flows. Here,
N ¼ 10;R ¼ 0:05 s and Kp ¼ 0:005. C ¼ 1000 packet=s in
Fig. 2a and C ¼ 10;000 packet/s in Fig. 2b and c. For NS-2
simulations, we set Qmin of the RED queue to be 20 packets.
practical stability of AIMD/RED systems with time delays, Comput.
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Fig. 2. Traces of flows window size and queue length, N ¼ 10, C ¼ 10; 000 packet/s, R ¼ 0:05 s and Kp ¼ 0:005.
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Therefore, the upper bound of each flow’s window size
should be enlarged by Qmin=N ¼ 2 packets, and the upper
bound of the queue length should be enlarged by
Q min ¼ 20 packets. We compare the theoretical bounds with
both the average window size among all flows and its time
average over a round.

Simulation results demonstrate the tightness of the
upper bound of window size. Also, although the window
variation of AIMD (1/5,7/8) in steady state is smaller, it
takes longer time for AIMD (1/5,7/8) flows to converge to
the steady state. Another interesting observation is that
although the upper bound of queue length is not tight
comparing to the time average of queue length, it is close
to the maximum instantaneous queue length in steady
state.
Please cite this article in press as: L. Wang et al., Bounds estimation and p
Netw. (2009), doi:10.1016/j.comnet.2009.10.008
5.3. NS-2 simulations with heterogeneous flows

Considering that the Internet might contain mixed traf-
fic with different AIMD parameters, we further study the
performance of the AIMD/RED system with heterogeneous
flows. Parameters are firstly chosen as C ¼ 10;000 packet/
s, Kp ¼ 0:005, and R ¼ 0:05 s for 5 TCP flows competing
with 5 AIMD (1/5,7/8) flows. For comparison, we also
choose C ¼ 20;000 packet/s, Kp ¼ 0:005, and R ¼ 0:05 s
for 10 TCP flows competing with 10 AIMD (1/5,7/8) flows.

For the case of 5 TCP flows competing with 5 AIMD (1/
5,7/8) flows, the upper bound of N1WI þ N2WII is 508.9
packets, the lower bound LB2 is 28.28 packets, and the
upper bound of the queue length is 10.2 packets. For the
case of 10 TCP flows competing with 10 AIMD (1/5,7/8)
ractical stability of AIMD/RED systems with time delays, Comput.
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flows, the upper bound of N1WI þ N2WII is 1016.1 packets,
the lower bound LB2 is 55.80 packets, and the upper bound
of queue length is 19.6 packets. In the NS-2 simulations,
since the RED threshold minth is set to 20 packets, the
upper bounds of total window size and queue length are
enlarged by 20 packets accordingly. The correctness of
our theoretical bounds and the tightness of the upper
bound of window size are demonstrated by the simulation
results, as shown in Fig. 3.

Similar to the observation with homogeneous flows, as
shown in Fig. 3, if the number of flows and the link capacity
are increased proportionally, the upper bound of per-flow
window size is closer to its optimal value, and the upper
bound of the queue length over link capacity is reduced.
Therefore, the queuing delay bound is slightly reduced be-
cause of the multiplexing gain.

Fig. 4 shows the window trace and queue length when
20 TCP flows share the bottleneck with 40 AIMD (1/5,7/8)
flows with Kp ¼ 0:005 and Kp ¼ 0:001, respectively. For the
case of Kp ¼ 0:005, the upper bound of N1WI þ N2WII is
3034.4 packets and the upper bounds of queue length is
43.1 packets; while for the case of Kp ¼ 0:001, the upper
bound of total window size is 3042.4 packets and the
upper bound of the queue length is 60.7 packets. It can
be seen that a smaller value of Kp results in a slightly larger
bounds on both window size and queue length. However,
in the case of higher bandwidth, the impact of Kp is less
significant.
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In summary, our main findings are: (1) larger values of
round-trip delay and link capacity will actually reduce the
oscillation amplitude of the system and thus reduce the
maximum queueing delay; (2) if we proportionally in-
crease the link capacity and the number of AIMD flows,
the queueing delay will be slightly reduced, thanks to the
multiplexing gain; and (3) although TCP/AIMD flows can
adapt their sending rates according to available band-
width, larger number of flows leads to longer queueing de-
lay in the AIMD/RED system, so admission control might be
useful for future highly-multiplexed links.
6. Conclusion

In this paper, we have studied the practical stability of
the AIMD/RED system by deriving theoretical bounds of
window size and queue length of the AIMD/RED system
for both homogeneous and heterogeneous flows cases.
The theoretical results can provide important insights
and guidelines for setting up parameters for the AIMD/
RED system in order to maintain network stability and to
fully utilize network resources without excessive delay
and loss. The simulation results given in the paper can also
help to predict and control the system performance for the
next generation Internet with higher data rate links multi-
plexed with more flows with different parameters. The
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fluid-flow model analysis can also be applied to TCP-
friendly rate control protocols.

There are many interesting research issues worth further
investigation: (a) how to deploy effective admission control
for TCP and AIMD flows to bound delay and loss; (b) how to
adapt AIMD parameter pair to ensure that the system can
converge to the equilibrium quick enough and to control
the queueing delay and loss in the network; (c) how to ex-
tend the work to heterogeneous flows with different RTTs
and multiple bottleneck links cases; and (d) how to consider
the impact of short-lived flows on the bounds. On the other
hand, with the popularity of wireless access technologies, it
beckons for further research efforts to determine practical
bounds in the wireless domain, considering the wireless
channel characteristics and user mobility.
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Appendix A. Proof of Theorem 1

With (1) and (2), we note that _W 6
a
R for t P 0, since

WðtÞP 1 and qðtÞP 0. For s > 0, taking integration on
both sides from t � s to t gives
Please cite this article in press as: L. Wang et al., Bounds estimation and p
Netw. (2009), doi:10.1016/j.comnet.2009.10.008
WðtÞ �Wðt � sÞ 6 a
R
� s for t P 0: ðA:1Þ

We show that the UB ð> 0Þ in the theorem is an upper
bound of WðtÞ for t P 0, i.e., if WðtÞ ¼ UB for some
t ¼ t1 P 0, then _Wðt1Þ 6 0.

With (A.1) and Wðt1Þ ¼ UB, and taking s ¼ R and t ¼ t1;

we have

Wðt1 � RÞP UB � a: ðA:2Þ

Notice that Wðt1 � sÞP UB � a � a when s 2 ½R; aR� for any
real number a > 1.

Consider

_qðtÞ ¼
N�WðtÞ

R � C; q > 0;
N�WðtÞ

R � C
n oþ

; q ¼ 0:

8<
:

Taking integration on both sides from t1 � aR to t1 � R, we
have

Z t1�R

t1�aR

_qðsÞds P
N
R

Z t1�R

t1�aR
WðsÞds� ða� 1ÞR � C

P N � ða� 1Þ � ðUB � a � aÞ � ða� 1ÞRC;

which implies

qðt1 � RÞP ½N � ðUB � a � aÞ � R � C� � ða� 1Þ; ðA:3Þ

since qðtÞP 0.
ractical stability of AIMD/RED systems with time delays, Comput.
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Taking f ðaÞ ¼ ða� 1Þ � ½N � ðUB � a � aÞ � R � C� and com-
puting the maximum value of f ðaÞ by letting f 0ðaÞ ¼ 0 gives
a ¼ ðN � UB þ R � C þ N � aÞ=ð2aNÞ and

f ðaÞ ¼ NðUB � R � C=N � aÞ2=ð2aÞ: ðA:4Þ

Therefore, it follows from (A.2), (A.3) and (A.4) that,
_Wðt1Þ 6 0 since UB satisfies

N � UB � ðUB � aÞ � ðUB � R � C=N � aÞ2

2a
¼ að1þ bÞ

2ð1� bÞKp
; ðA:5Þ

which implies WðtÞ 6 UB for t P 0.
It is also noted that the upper bound derived in Theorem 1

is a global one for the time t, i.e., the window size WðtÞwill
not go above UB for any t > t1. If we assume, instead, that
there exists t01 > t1 and DW > 0, such that W t01

� 	
¼ UBþ

DW , then there must be some s0 2 0; t01 � t1
� 	

such that
W t01 � s0
� 	

¼ UB and _W t01 � s0
� 	

> 0. However, similar to
the proof of Theorem 1, we have _W t01 � s0

� 	
6 0, which is a

contradiction. Therefore, the window size is upper bounded
by UB for any t P 0. h

Appendix B. Proof of Theorem 2

Proof. From Theorem 1, WðtÞ 6 UB for t P 0, which
implies

_WðtÞP a
R
� 2ð1� bÞ

1þ b
U2

B

R
¼: A:

It can be seen from the definition of UB that A < 0. We
show that LB1 > 0 is the lower bound of WðtÞ for t P 0,
i.e., if WðtÞ ¼ LB1 at time t ¼ t2 P 0, then _Wðt2ÞP 0.

Taking integration on both sides from t2 � R to t2 gives
Wðt2 � RÞ 6Wðt2Þ � AR ¼ LB1 � AR.

Since dropping/marking probability pðtÞ ¼ Kp � qðtÞ 6 1
for all t, then _Wðt2ÞP a

R�
2ð1�bÞ

1þb
LB1�ðLB1�ARÞ

R . Therefore,
_Wðt2ÞP 0 since LB1 satisfies

LB1 � ðLB1 � ARÞ ¼ að1þ bÞ
2ð1� bÞ ; ðB:1Þ

which implies WðtÞP LB1 for t P 0. h
Appendix C. Proof of Theorem 3

Proof. We first derive the upper bound of qðtÞ for t P 0. At
moment t ¼ t1;WðtÞ reaches its peak value. To get a loose
upper bound of qðtÞ, we introduce the comparison theorem
[26]. Instead of following system (1), we consider its
comparison system: _qðtÞ ¼ UB=R� C, and WðtÞ � UB for
t 2 t1; t01

� �
. Notice that the solutions of the comparison

system are larger than those of the original system, so the
bounds derived in the following are also the bounds for
system (1).

Assume that WðtÞ does not decrease for some time after
t1, and thus qðtÞ increases at the rate N

R UB � C. Moment t01 is
chosen such that q t01

� 	
¼ q� þ Dq with Dq > 0, then WðtÞ

decreases from t01 while qðtÞ keeps increasing till moment
Please cite this article in press as: L. Wang et al., Bounds estimation and
Netw. (2009), doi:10.1016/j.comnet.2009.10.008
t2 such that _qðt2Þ ¼ 0 (i.e., Wðt2Þ ¼ R � C=N). Therefore, qðt2Þ
is the local maximum value of qðtÞ. It should be noticed
that this estimate of qðtÞ might be greater than the real
maximum value of qðtÞ since WðtÞmay not stay at its peak
value after t1, and qðtÞ will still increase after t1, but with
the rate less than N

R UB � C.
From above analysis, for t 2 t01; t2

� �
; _qðtÞ 6 N

R � UB � C.
Thus,Z t2

t01

_qðsÞds 6
N
R
� UB � C

� �
� t2 � t01
� 	

;

which implies,

qðt2Þ 6 q t01
� 	
þ N

R
� UB � C

� �
� t2 � t01
� 	

¼ q�0 þ Dq
� 	

þ N
R
� UB � C

� �
� t2 � t01
� 	

: ðC:1Þ

To estimate the length of the interval t01; t2
� �

, for
t 2 t01 þ R; t2

� �
, it follows from the analysis above that

WðtÞP Wðt2Þ ¼
R � C

N
;

qðt � RÞP q t01
� 	
¼ q�0 þ Dq;

Wðt � RÞP Wðt2 � RÞ ¼ R � C
N
þ DW;

for some Dq > 0 and DW 2 ð0;UB � R�C
N Þ.

Thus,

_WðtÞ 6 �2ð1� bÞ
1þ b

� C � Kp

N
� DW q�0 þ Dq

� 	
þ R � C

N
Dq

 �
;

ðC:2Þ

for t 2 t01 þ R; t2
� �

.
On the other hand,Z t2

t01þR

_WðsÞds ¼Wðt2Þ �W t01 þ R
� 	

P
R � C

N
� UB: ðC:3Þ

It follows from (C.2) and (C.3) that,

R � C
N
� UB 6 �

2ð1� bÞ
1þ b

� C � Kp

N
� t2 � t01 � R
� 	

� DW q�0 þ Dq
� 	

þ R � C
N

Dq
 �

;

i.e.,

t2 � t01 � R 6
UB � R�C

N
2ð1�bÞ

1þb �
C�Kp

N � R�C
N Dqþ DW q�0 þ Dq

� 	� � :
With the definition of T1 in the theorem, we have
t2 � t01 6 T1 þ R. Therefore, it follows from (C.1) that

qðtÞ 6 inf
Dq>0;

DW2 0;UB�R�C
N½ �

q�0 þ Dq
� 	

þ N
R
� UB � C

� �
� ðT1 þ RÞ

� �
;

ðC:4Þ

i.e., qðtÞ 6 UQ for t P 0; which indicates that UQ is the
upper bound of the RED queue length. Since the packet loss
in a RED queue is proportional to the queue length, the de-
rived queue length upper bound also reflects the upper
bound of packet loss rate.
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We finally show that LB2 > 0 is a lower bound of WðtÞ
for t P t1, i.e., if WðtÞ ¼ LB2 at time t ¼ t3 > t1, then
_Wðt3ÞP 0.

With (A.5) and (C.4),

_WðtÞP a
R
� 2ð1� bÞ

1þ b
� U

2
B

R
� Kp � UQ ; ðC:5Þ

for t P 0, we haveZ t3

t3�R

_WðsÞds P a� 2ð1� bÞ
1þ b

� U2
B � Kp � UQ ;

i.e.,

Wðt3 � RÞ 6 LB2 þ
2ð1� bÞ

1þ b
� U2

B � Kp � UQ � a: ðC:6Þ

It follows from (C.4) and (C.6) that,

_Wðt3ÞP
a
R
� 2ð1� bÞ

1þ b
� LB2 � UW

R
� Kp � UQ ;

with UW :¼ LB2 þ 2ð1�bÞ
1þb � U

2
B � Kp � UQ � a.

Thus, _Wðt3ÞP 0 if LB2 is chosen to satisfy

LB2 � UW � Kp � UQ ¼
að1þ bÞ
2ð1� bÞ ; ðC:7Þ

and thus LB2 is the lower bound of WðtÞ for t P t1. h
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