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Multiclass Utility-Based Scheduling
for UWB Networks
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Abstract—In this paper, the optimal scheduling problem for
ultrawideband (UWB) networks is formulated as a utility maxi-
mization problem, considering heterogeneous traffic characteris-
tics and the fairness constraint, which is an NP-hard problem.
The utility function, defined as the user satisfaction level with
respect to the allocated bandwidth, takes the link distance as
the input parameter that may be noisy due to ranging errors.
We solve the stochastic optimization problem by a metaheuristic,
called the exclusive-region-based global search algorithm, that
can avoid trapping into local optima with reasonable efficiency,
complexity, and convergence speed. The concept of exclusive re-
gion for concurrent UWB communications is employed to improve
algorithm efficiency. Extensive simulations demonstrate that, by
appropriately scheduling concurrent transmissions, the total utili-
ties of each traffic class can be significantly improved. In addition,
the proposed scheduling algorithm can support heterogeneous
applications and guarantee the intraclass and interclass fairness
among competing flows.

Index Terms—Discrete stochastic optimization, medium ac-
cess control (MAC), scheduling, ultrawideband (UWB), utility
function.

I. INTRODUCTION

U LTRAWIDEBAND (UWB) is a promising technology for
future wireless personal area networks (WPANs). UWB

devices can exchange high-volume multimedia traffic or deliver
high-data-rate traffic to/from the Internet [1], [2]. In IEEE
802.15.3-based WPANs, an autonomously selected network
coordinator, called the piconet controller (PNC), allocates wire-
less resources (i.e., time slots) according to users’ quality-of-
service (QoS) requirements in a time-division multiple-access
(TDMA) fashion [3]. During the allocated time slot, devices
can communicate in a peer-to-peer mode. The IEEE 802.15.3
medium access control (MAC) protocol was originally pro-
posed for narrowband wireless communications; hence, it is not
optimal for UWB networks. In addition, the distinct character-
istics of UWB, such as concurrent transmissions and ranging
capability, have not been considered in the MAC protocol
design.

Manuscript received November 16, 2006; revised May 4, 2007 and June 14,
2007. This paper was presented in part at the IEEE Consumer Communications
and Networking Conference, Las Vegas, NV, January 2007. The review of this
paper was coordinated by Dr. Q. Zhang.

K.-H. Liu and X. Shen are with the Centre for Wireless Communica-
tions, Department of Electrical and Computer Engineering, University of
Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail: k8liu@bbcr.uwaterloo.ca;
xshen@bbcr.uwaterloo.ca).

L. Cai is with the Department of Electrical and Computer Engineering, Uni-
versity of Victoria, Victoria, BC V8W 3P6, Canada (e-mail: cai@ece.uvic.ca).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2007.906378

Since the very first impulse-radio UWB, several varia-
tions of UWB systems, such as impulse-based direct-sequence
UWB [4] and multiband (MB) orthogonal frequency-division
multiplexing [5]-based UWB, have been proposed. Although
these UWB systems employ different techniques to spread the
signal over the wide spectrum, their common feature is the
capability of allowing concurrent transmissions. From an in-
dividual user’s aspect, concurrent transmissions in the vicinity
degrade the received signal quality and, thus, the instantaneous
data rate due to the increased multiple-user interference (MUI).
On the other hand, by allowing concurrent transmissions, each
user may be allocated more transmission time slots. Conse-
quently, their total throughput can be improved if the interfer-
ence is appropriately controlled.

UWB-based WPANs are anticipated to support heteroge-
neous traffic such as real-time video/audio streaming and bulk
file transfer. Concerning efficient and fair resource allocation,
utility is an effective measure of QoS [7]–[10]. Utility reflects
the user’s satisfaction level to the assigned resource. More-
over, considerations such as price or differentiated services can
be flexibly incorporated into the utility functions [11], [12].
Considering the heterogeneous traffic characteristics, in this
paper, we formulate the optimal scheduling problem as a utility
maximization problem. A utility-based scheduling algorithm
aiming at multiclass QoS provisioning with fairness consider-
ation is proposed. Generally, an efficient scheduling algorithm
requires feedback information from the network to appropri-
ately make scheduling decisions [13]. When all UWB devices
communicate in a peer-to-peer manner, it is very difficult, if
not impossible, for the PNC to acquire instantaneous channel
information of each flow. To estimate the achievable data rate of
the target flow, the PNC can make use of the ranging capability
featured by UWB communications [14], [15]. However, the
distance information obtained may be noisy due to multipath
fading. Since the objective function is evaluated based on
the measured distance information, the utility estimation may
be biased, and thus affects the scheduling decisions. When
the objective function of the optimization problem contains
uncertainty, the problem becomes stochastic. Since the analysis
of the noisy objective function is not tractable in our case, we
resort to metaheuristic methods and choose to use the global
search algorithm (GSA) [17]. This is because its convergence
to the global optimum can be proved, and the tradeoff be-
tween computational complexity and efficiency is tunable. We
tailor the GSA for the UWB scheduling problem and show
that the modified algorithm, called the exclusive-region-based
GSA (ER-GSA), has a desired convergence with reasonable
computational complexity for practical implementations.
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Fig. 1. Superframe structure defined in the IEEE 802.15.3 MAC protocol.

The main contributions of this paper are threefold: 1) The
scheduling for concurrent UWB transmissions that maximizes
the weighted utility is formulated, which is an NP-hard prob-
lem; 2) a utility-based scheduling scheme is proposed to
support multiclass traffic with fairness constraint; and 3) the
assumption of perfect distance information for measuring flow
throughput is relaxed by factoring estimation errors into the ob-
jective function. The stochastic optimization problem is solved
by the proposed ER-GSA, and its convergence property and
computational complexity are studied.

The remainder of this paper is organized as follows:
Section II describes the system model and characterizes three
traffic classes by different utility functions. In Section III, we
first derive the sufficient condition that concurrent UWB trans-
mission schemes are favorable to TDMA. Based on that, we
formulate the optimal scheduling problem for multiclass traffic.
The ER-GSA algorithm for solving the stochastic optimization
problem is presented in Section IV. Simulation results are given
in Section V. The related work is summarized in Section VI,
followed by the concluding remarks in Section VII.

II. SYSTEM MODEL

A. Network Structure and Channel Model

Consider UWB-based WPANs using the IEEE 802.15.3
MAC protocol. According to the IEEE 802.15.3 standard, time
is slotted into a superframe structure, as shown in Fig. 1,
consisting of a beacon period (BP), a contention access period
(CAP) using carrier sensing multiple access with collision
avoidance (CSMA/CA), and a contention-free period, called the
channel time allocation period (CTAP), using TDMA. One of
the users, acting as the PNC, performs network management
and allocates channel time slots in the CTAP. Each active user
sends the channel time request through contentions in CAP and
uses the allocated channel times in the CTAP for peer-to-peer
transmissions, i.e., users can communicate with each other in
the CTAP without the involvement of the PNC. Such a hybrid
access mechanism is more efficient than polling-based resource
allocation schemes and provides better QoS than random access
schemes.

To estimate the data rate, we use the following simplified
channel model: Assume that a UWB receiver can adapt its

transmission rate to an arbitrary signal-to-interference-plus-
noise-ratio (SINR) level. According to Shannon’s theory, for
a sufficiently large bandwidth, the achievable data rate ri of
flow i is upper bounded by ri = kpr(i)/(I + η), where the
coefficient k is a constant, pr(i) is the received power at flow i’s
receiver, η is the average power of the background noise, and I
is the interference power. The received power at the ith receiver
is pr(i) = αpt(i)d

−γ
i , where α is reciprocal of the processing

gain of UWB signals, di is the distance between the transmitter
and the receiver of flow i, and γ is the pathloss exponent. Both
parameters α and γ are considered to be constant. Here, we
neglect the multipath fast fading when we estimate the average
data rate ri.

B. Utility Functions

Utility is defined as the satisfaction level of a user with
respect to the amount of allocated bandwidth. Various utility
functions have been proposed to characterize different traffic
types [7]–[10]. To deal with heterogeneous traffic types, the
utility functions considered in this paper are general nonde-
creasing functions with values within [0, 1]. Traffic types are
classified into three classes. Class 1 includes constant bit-rate
applications, for example, audio streams. We use a step function
for Class 1, i.e.,

u(r) =
{

1, if r ≥ rmin

0, if r < rmin
(1)

where rmin is the minimum bandwidth requirement for a
connection. Class-2 applications can adapt to the allocated
bandwidth to a certain extent, e.g., video stream, as described
by the following sigmoidal-like utility function:

u(r) = 1 − e−
br2
a+r (2)

where the parameters a and b can be adjusted to determine
the shape of u(r). Class-3 applications are most flexible to
the available bandwidth. Most Transmission-Control-Protocol-
controlled data applications belong to this class. Since there is
no minimum rate requirement for such traffic class, the utility
can be modeled by the following function:

u(r) =

{
1, if r ≥ rmax

sinτ
(

π
2 · r

rmax

)
, if r < rmax

(3)

where the parameter τ controls the shape of u(r), as shown
in Fig. 2(b). See [21] for more discussions on different
utility functions. Generally, the choice of utility functions
would affect the efficiency of resource allocation and introduce
different degrees of complexity to the utility maximization
problem [22].

III. OPTIMAL SCHEDULING WITH

CONCURRENT TRANSMISSIONS

In this section, we first derive the sufficient condition
to ensure that concurrent transmissions result in a higher
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Fig. 2. Illustrative utility functions for Class-2 and Class-3 traffic. (a) Utility functions for Class 2 (b = 1). (b) Utility functions for Class 3 (rmax = 8 Mb/s).

aggregate throughput than TDMA. We then formulate the opti-
mal scheduling problem with concurrent transmissions.

A. Concurrent Transmissions

For peer-to-peer UWB transmissions during the CTAP, the
cross correlations of concurrent transmissions lead to MUI [23].
When MUI is present, the achievable date rate of a target
flow is lower than that of without interference. Its cumulative
throughput over multiple slots, however, can be increased by
time-domain multiplexing if the concurrent transmission set is
elaborately selected.

Consider n users requesting transmissions in n time slots. If
n requests are scheduled in a TDMA fashion, i.e., each slot is
assigned to only one user, the achievable throughput during n
slots for the ith user, denoted by rT

i , can be represented by

rT
i = kpr(i)/(nη) = αkpt(i)d

−γ
i /(nη). (4)

On the other hand, concurrently scheduling n flows for n slots
leads to the throughput of user i rC

i

rC
i =

kpr(i)
η +

∑
j �=i Ij,i

=
αkpt(i)d

−γ
i

η +
∑

j �=i Ij,i
(5)

where Ij,i is the interference from the jth sender to the ith
receiver, which is proportional to d−γ

j,i . Denote D the distance
such that Ij,i equals η. If all interferers are at least D away
from the receiver of the ith flow (i.e., dj,i ≥ D), we have
Ij,i ≤ η for all j �= i. The aforementioned condition implies
rC
i ≥ αkpt(i)d

−γ
i /(η + (n − 1)η) = (αkpt(i)d

−γ
i /nη) = rT

i .
In other words, when each receiver maintains an exclusive
region with a radius not less than D, in which no other trans-
mitters are allowed to transmit, concurrent UWB commu-
nications are preferable to TDMA transmissions. Thus, any
two flows i and j can concurrently transmit to produce a higher
throughput if the following condition holds:

di,j > D and dj,i > D. (6)

Note that the exclusive region for UWB networks is inde-
pendent of the distance between the sender–receiver. This is
different from the protocol model considered in [6] for com-
munications without rate adaptation.

B. Optimal Scheduling

To increase the total throughput, it is desirable to have
concurrent transmissions if condition (6) holds. Therefore, the
objective of scheduling is to select the optimal flow set for
each time slot such that the total user utilities are maximized.
Taking the MUI of concurrent transmissions into account, the
network can be modeled as a conflict graph G = (V,E), where
the vertex set V represents the set of flows requesting for
transmission, and E is the set of edges. Two vertices in G are
connected if they are not allowed to transmit in the same time
slot according to the exclusive-region condition (6). The con-
nected vertices (flows) are called neighbors. Let N(i) represent
the neighbors of a vertex i ∈ V . Define the following binary
variables: xs

i = 1 if flow i is allocated in slot s; otherwise, xs
i =

0. ys
ij = 1 if node j is the recipient of node i in slot s; otherwise,

ys
ij = 0. Denote U(ri) the utility function of user i with the

achievable data rate ri. The scheduling problem for a single slot
can be formulated as a nonlinear mixed-integer optimization
problem, i.e.,

(P) max
|V |∑
i=1

xs
i U(ri) (7)

s.t. xs
i

∑
j∈N(i)

xs
j = 0 ∀i = 1, . . . , |V | (8)

∑
i∈T

ys
ij +

∑
k∈R

ys
jk ≤ 1 ∀j ∈ R (9)

ri = kptd
−γ
i /


η + xs

jαpt

|V |∑
j=1,j �=i

d−γ
ji


, i = 1, . . . , |V |.

(10)
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Given the number of active flows |V | and the current slot s,
the flow set {xs

i : i = 1, . . . , |V |}, which maximizes the total
utilities defined in (7) under the constraints of (8)–(10), is the
optimum of (P). Constraint (8) ensures that any flow scheduled
in slot s is conflict free. Constraint (9) ensures that a node
can communicate with at most one node in a slot, where T
represents the set of senders being scheduled in the same slot,
and R is the set of corresponding receivers. Constraint (10)
specifies the flow data rate. Note that (P) can be extended as
a superframe utility optimization problem by modifying (7) as
max

∑S
s=1

∑|V |
i=1 xs

i U(ri), where S is the total number of slots
in a superframe.

Problem (P) can be reduced to the maximum weighted
independent set (MWIS)1 problem, as interpreted in the fol-
lowing: We first incorporate constraint (9) into the graph G by
adding an edge between two nodes in V if the corresponding
flows have common transmitting or receiving nodes and then
denote the resulting graph as G′. Let K denote the collection
of independent sets in G′. Since the superset K satisfies the
constraints (8) and (9), finding the optimal solution of problem
(P) is equivalent to finding the set with the maximum weight
in K, which is denoted by κ∗ ∈ K in G′. In other words

κ∗ = arg max
κ∈K

|κ|∑
i=1

U(ri) (11)

where U(ri) corresponds to the weight of vertex i ∈ V , and
the slot index s has been dropped such that κ∗ represents
the optimal scheduling for one slot. As finding MWIS is
known to be NP-hard, there is no polynomial-time algorithm to
solve (P).

The evaluation of each vertex weight involves estimating
the achievable data rate ri. Since ri is a function of propa-
gation path loss, inaccurate distance estimation may lead to
suboptimal scheduling decisions. The assumption of perfect
distance information can be relaxed by the discrete stochastic
approximation, as follows: Let Ũ(·) denote the noisy version
of U(·), i.e., Ũ(·) contains errors due to noisy distance in-
formation. Rewrite (11) as follows: κ∗ = arg maxκ∈K Ũ(κ),
where Ũ(κ) =

∑|κ|
i=1 Ũ(ri). Subsequently, approximate Ũ(κ)

by E[Ũm(κ)], where E[·] is the expectation operator, which
yields

κ∗ = arg max
κ∈K

|κ|∑
i=1

Ũ(ri) ≈ arg max
κ∈K

E

[
Ũ(κ)

]
. (12)

If the objective function is unimodal, optimization techniques
such as golden-section search or gradient-based approaches
may be used to find the maxima of the nonlinear function
E[Ũ(κ)]. In our consideration of heterogeneous traffic classes,
however, the optimization objective function is not necessary to
be unimodal. Furthermore, deriving the distribution of Ũ(κ) is
very difficult, if not impossible, since Ũ(κ) is combinatorial,
i.e., dependent on the element in κ. In situations where the

1An independent set in a graph is the set of vertices such that no two vertices
in the independent set share the same edge. Associating each vertex with a
weight, the independent set with the maximum total weight is the MWIS.

objective function is difficult to analytically derive, discrete ap-
proximation is an applicable technique to solve the optimization
problems with uncertainties. Let {Ũm(κ),m = 1, 2, . . .} repre-
sent the sequence of noisy utilities associated with set κ ∈ K,
where Ũm(κ) is obtained from different distance estimations.
Furthermore, U(κ) = 1/M

∑M
m=1 Ũm(κ) is the sample mean

of {Ũ(κ)}. By the strong law of large numbers, U(κ) almost
surely (a.s.) converges to E[Ũ(κ)]. Together with the finiteness
of the set K, it is implied that

arg max
κ∈K

U(κ) → arg max
κ∈K

E [U(κ)] a.s.

Therefore, instead of using one biased utility value to solve
the optimization problem (P), we take the series {Ũm(κ)} in
approximating the noisy objective function to avoid trapping
into a local optimum [24].

IV. PROPOSED ALGORITHMS

In this section, we present a metaheuristic method, called the
exclusive-region-based global search algorithm (ER-GSA), to
efficiently find κ∗ in (13) for each time slot, followed by the
algorithm for updating the utility value in each iteration.

A. ER-GSA

Intuitively, the optimal flow set κ∗ can be found by evaluating
the utility value for each member in K to locate the maximal
member. Such a brute force search is simple, but it cannot deal
with estimation errors. In addition, the induced computation
complexity exponentially grows as the network size increases,
and most searching efforts are wasted on nonoptimal points
in the solution space. Many metaheuristics, such as simulated
annealing, Tabu search, genetic algorithm, and GSA [17], have
been proposed to increase the search efficiency by defining
“move sets” that allow the algorithm to move from one solution
to superior solutions. In addition to the efficiency, the GSA
is selected as the base to solve (13) since its convergence to
a global optimum can be theoretically proved under certain
conditions.

GSA relies on a random sequence generated during the
algorithm iterations to efficiently find the optimum. The re-
sulting random sequence is a Markov chain, where each state
represents a point in the solution space that has been visited by
the algorithm. In each iteration, the transition of the Markov
chain is determined by comparing the objective value of the
current state and that of a randomly chosen point from the
solution space. We use the following notations in Algorithm 1:
At the mth iteration, κm is the current state (κm ∈ K), Wm(κ)
is the number of times the algorithm has visited state κ, and κ∗

m

is the state that is most frequently visited by the algorithm up to
the mth iteration.

Algorithm 1: ER-GSA
Step 1. Randomly select an initial user subset

κ0 ∈ K and let κ∗
0 = κ0. Set W0(κ0) = 1 and W0(κ) = 0

for all κ ∈ K \ {κ0}. Calculate U0(κ0). Let m = 0
and go to step 2.
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Step 2. Randomly select another user subset κ′
m ∈

K \ {κm}. Compute the corresponding Um(κ′
m) using

the variable−sample method. Go to step 3.
Step 3. If Um(κm) > Um(κ′

m), let κm+1 = κm and
go to step 5. Otherwise, go to step 4.

Step 4. SortUm(κ′
m) in descending order. Denote si

the ith flow in the sorted set and S ′ an empty set.
for i = 1 to |κ′

m| do
if si �∈ ERl & l �∈ ERsi

∀l ∈ S ′ then
S ′ = S ′ ∪ {si}

end if
end for
If Um(S ′) > Um(κ′

m), let κ′
m = S ′. Let κm+1 = κ′

m

and go to step 5.
Step 5. Let m = m + 1, Wm(κm) = Wm−1(κm) + 1,

and Wm(κ) = Wm−1(κ) for all κ ∈ K \ {κm}. If Wm

(κm) > Wm(κ∗
m−1), then let κ∗

m = κm. Otherwise, let
κ∗

m = κ∗
m−1. Go to step 2.

During iteration m, a new subset κ′
m is randomly

selected (step 2), and the sample mean Um(κ′
m) =

1/|κ′
m|(

∑|κ′
m|

i=1 Ũm(κi)), κi ∈ κ′
m of the utility function

value is compared with that of the current point κm (step 3).
Um(κ′

m) is calculated according to a variable–sample mean
method (see Remark 2), with the number of sample equal to
|κ′

m|. The sequence {κm, m = 1, 2, . . .} is a Markov chain
on the state space K. If the current state is considered to be
better than the newly selected state, i.e., Um(κm) > Um(κ′

m),
the algorithm proceeds to step 5, updating the best subset
κ∗

m according to Wm(κ). Since the optimal subset κ∗
m has

a higher probability of generating a larger utility function
value, the associated Wm(κ∗) is thus cumulated faster. To
accelerate the convergence to the global optimum, a local
enhancement in step 4 based on the concept of exclusive
region is used to refine the chosen subset such that the
optimal subset can be located faster. In particular, the set ERl

contains those flows within the exclusive region of flow l,
and Si denotes the ith flow in S. The conditions (Si �∈ ERl)
and (l �∈ ERSi

) imply that flows Si and l are allowed to
concurrently transmit, according to (6). The size of exclusive
region can be determined according to the strength of the
background noise and the pathloss exponent [25], [26].

The GSA algorithm has some nice properties to allow its con-
vergence. We apply these properties to prove the convergence
of ER-GSA. We first state the convergence of ER-GSA.
Theorem 1 (Convergence of ER-GSA): Let S ∈ K denote

the set of global optimizers of the function Ũ(κ) (it is likely
that multiple-user subsets can maximize the objective function).
For each i, j ∈ K, denote a random variable Y (i→j) = U(j) −
U(i). If Y (i→j) > 0, let j be the next state. If Y (i→j) ≤ 0, let i
be the next state. For all κ∗ ∈ S, κ �∈ S, and ν ∈ K \ {κ, κ∗}, if

C1) P{Y (κ→κ∗) > 0} > P{Y (κ∗→κ) > 0}.
C2) P{Y (ν→κ∗) > 0} > P{Y (ν→κ) > 0}.

Then, the sequence {κ∗
m} a.s. converges to an element of S.

Based on conditions C1) and C2), the algorithm convergence
can be proved following [17, Th. 2.1]. Here, we verify these
two conditions based on the following assumption.

Fig. 3. Histogram of Ũm(κm) and the Gaussian fit.

Assumption 1: The estimation error of the distance between
two devices is normally distributed. Then, Ũ(κ) as the sum of
independent random variables (the estimated utilities of flows in
subset κ) can be approximated as a Gaussian random variable.

Remark 1: Assumption 1 is given since the exact distribution
of Ũ(κ) is difficult to obtain in practice. Simulation results
verify that Ũ(κ) can be approximated by Gaussian distribution,
as shown in Fig. 3, where the parameters are the same as those
used in Section V.
Lemma 1: The Markov chain {κm} is more likely to move

from a nonoptimal state to an optimal state than the reverse
direction, as stated in condition C1).

Proof: Let Ũ(κ) and Ũ(κ∗) be Gaussian random variables
with mean E[Ũ(κ)] and E[Ũ(κ∗)], respectively. Since κ∗ ∈ S
and κ �∈ S, E[Ũ(κ)] < E[Ũ(κ∗)]. Y (κ→κ∗) and Y (κ∗→κ) are
Gaussian random variables with mean E[Ũ(κ∗)] − E[Ũ(κ)] >
0 and E[Ũ(κ)] − E[Ũ(κ∗)] < 0, respectively. Because of the
symmetry of the Gaussian distribution, P{Y (κ→κ∗) > 0} > 0.5
and P{Y (κ∗→κ) > 0} < 0.5. Thus, condition C1) is satisfied.�
Lemma 2: If the current state of the Markov chain is not an

optimal state, the transition will be more likely made toward the
optimal state than any other states, as stated in condition C2).

Proof: Ũ(κ) is a Gaussian random variable with variance
equal to |κ|σ2 = nσ2. The n-sample average of Ũ(κ), i.e.,
U(κ), is a Gaussian random variable with mean E[Ũ(κ)] and
variance equal to σ2. Similarly, U(κ∗) and U(ν) are Gaussian
random variables with mean E[Ũ(κ∗)] and E[Ũ(ν)], respec-
tively, and their variances are equal to σ2. Y (ν→κ∗) and Y (ν→κ)

are Gaussian random variables with mean E[Ũ(κ∗)] − E[Ũ(ν)]
and E[Ũ(κ)] − E[Ũ(ν)], respectively, and both of their vari-
ances are equal to 2σ2. Since κ∗ ∈ S and κ �∈ S, E[Ũ(κ∗)] −
E[Ũ(ν)] > E[Ũ(κ)] − E[Ũ(ν)]. Using the similar argument in
the Proof of Lemma 1, P{Y (ν→κ∗) > 0} > P{Y (ν→κ) > 0}. �
Remark 2: Condition C2) is fairly restrictive, and it may

not hold using the original GSA. Since the estimated utilities
of each flow are asymptotically independent Gaussian random
variables with variance σ2, we can satisfy condition C2) using
a variable–sample method: In each iteration (step 2), if the
selected subset κ contains |κ| = n flows, we take n samples
and calculate the sample mean U(κ) and let Y (i→j) = U(j) −
U(i). Thus, the variance of Y (i→j) is independent of the
number of flows in the subsets.
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B. Utility Update

The utility update is designed such that the scheduling deci-
sion satisfies the long-term fairness criteria. We employ a sim-
ple rule based on weighted fair queuing [27], which normalizes
the instantaneous utility of flow i in slot s, denoted by ui(s), to
the total utility that this flow has obtained, i.e.,

∑s−1
t=1 ui(t). In

addition, an individual user can be further discriminated, e.g.,
according to the price that he/she is charged for the bandwidth
usage. To this end, we propose a control parameter, denoted as
ρ
(s)
i , for flow i in slot s, i.e.,

ρ
(s)
i := ci/

(
s−1∑
t=1

ui(t) + ε

)s

(13)

where ci is a predefined parameter representing the revenue
contribution or importance of a particular user, and ε > 0 is
a small nominal constant to avoid a zero denominator. Conse-
quently, the weighted utility for flow i in slot s is given by

Ui = ρ
(s)
i ui(s) (14)

where ui(s) is a function of throughput and traffic class cor-
responding to each flow, as discussed in the previous sec-
tion. The scheduling policy (14) has the following properties:
1) The weighted utility as an exponential function of slot index
s ensures that the flows with less sum utility have a higher
priority; 2) a flow is opportunistically scheduled if it has a
higher utility value in the current slot than others; and 3) dif-
ferent levels of protection to traffic classes can be achieved by
adjusting the parameter ci.

V. PERFORMANCE EVALUATION AND

FURTHER DISCUSSION

Simulations are conducted to demonstrate the performance
of the proposed utility-based scheduling algorithm. Two heuris-
tic algorithms presented in [26], and TDMA transmissions are
used as the benchmark. We start by tracking the instantaneous
behavior of the proposed utility-based scheduling algorithm.
We then use three metrics to study the long-term performance
of our proposed solutions, namely the cumulative utilities, the
minimum utility among flows, and the fairness support. Finally,
the complexity and efficiency of the ER-GSA are evaluated.

A. Experimental Setting

The simulated network consists of 20 nodes uniformly dis-
tributed in a square area of 10 × 10 m2. Each sender arbitrarily
chooses another node as the receiver, forming ten peer-to-peer
communication flows. The data rate of each flow is estimated as
follows: R = k · W log2(1 + SINR), where 0 < k ≤ 1 reflects
the efficiency of the transceiver design; W = 500 MHz; the
UWB power spectrum densities of the transmission and noise
are −41 and −114 dBm/MHz, respectively; and the pathloss
exponent is set to 4. The distance between two nodes d̃ is
modeled by d = d̃ + δ, where d is the actual distance, and δ
is the estimation error approximated by a normal distributed

TABLE I
TRAFFIC CHARACTERISTICS FOR SIMULATION

Fig. 4. Scheduling performance of the single-class case: ten Class-3 flows.
Four sample flows are shown with link distances of 5.73, 8.61, 6.93, and
3.89 m, respectively.

random variable according to [28, eq. (15)], i.e., δ ∼ N (0, σ2),
where σ2 = 0.05. The cross correlation of the target signal and
the interfering signals is assumed to be 0.1. Table I lists the
considered three traffic classes and their utility functions. Each
superframe contains ten slots. The size of exclusive region,
which is denoted as dER, is set to 2 m, except in Section V-C,
where we vary the size of exclusive region to study its impact
on the aforementioned three performance metrics.

B. Utility-Based Scheduling

The total utility that each flow has gained is defined as the
cumulative flow utility, and we use two scenarios to demon-
strate the long-term performance of the proposed utility-based
scheduling. The first scenario consists of ten Class-3 flows
with a maximum bandwidth requirement of 250 Mb/s. This
corresponds to the situation where several high-bandwidth de-
manded users are active at the same time. Fig. 4 shows the
cumulative flow utility. For this single traffic case, the equal
utility should be ensured among users. Hence, the parameter
ci in (14) is set to be 1 for all flows. In Fig. 4, a flat segment
on the performance curve means that the flow is idle in that
particular slot; the curve rises when a new slot is assigned. It
is clear that each flow has a different scheduling pattern, but
their cumulative utility, i.e., users’ satisfactory level about the
assigned bandwidth, is about the same in the long term. The
effectiveness of the control parameter ρ in (14) can also be
inferred from the figure. As time elapses, the parameter ρ of
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Fig. 5. Scheduling performance of the multiclass case. Three Class-1
flows (solid line), three Class-2 flows (dash-dot line), and four Class-3 flows
(dashed line).

those users with more aggregate utilities are reduced, and thus,
the users with less utility and a higher value of ρ have a higher
priority to be scheduled for transmissions in the subsequent
slots.

The second scenario contains three traffic classes: 1) three
Class-1 flows demanding a minimum bandwidth of 1 Mb/s;
2) three Class-2 flows with a maximum bandwidth requirement
of 20 Mb/s; and 3) four Class-3 flows with a maximum band-
width of 250 Mb/s. ci’s are set to be [2, 10, 1] for Class 1,
Class 2, and Class 3, respectively. Fig. 5 shows the cumulative
flow utility in 50 slots. It can be seen that the flows within
the same class achieve resembling utilities. Class-1 flows can
achieve a cumulative utility of 1 in the first few slots because
of their relatively lower bandwidth requirements and the use of
step utility function.

C. Utility versus Fairness

An ideal scheduling algorithm should be able to maximize
the total utility achieved in the network and guarantee fairness
among competing flows. We compare the proposed schedul-
ing algorithm with the two heuristic algorithms proposed in
[26], i.e., the proportional allocation algorithm (PaA) and the
repeating allocation algorithm (RaA) (see the Appendix), since
they employ the same concept of exclusive region to select the
concurrent transmission set as ER-GSA does. Briefly, the PaA
partition flows into several sets such that flows in the same set
do not conflict with each other according to the exclusive region
condition. The available slots are then allocated to these sets,
where each set obtains a number of slots proportional to the
number of flows within the set. On the other hand, RaA first
picks the flow with the least number of assigned time slots and
schedules as many flows in the same slot as possible, as long as
each of these flows satisfies the rule of exclusive region. The
same procedure is then repeated until all slots are allocated.
Basically, PaA and RaA can guarantee a certain minimum
utility with polynomial complexity but do not support fairness
and differentiated services.

Fig. 6. Comparisons among different scheduling algorithms. One traffic class.
(a) Total utility obtained by different scheduling algorithms. (b) Utility fairness
obtained by different scheduling algorithms.

Three performance metrics are compared: 1) the total utility
of all flows; 2) the minimum per-flow utility among all flows;
and 3) Jain’s fairness index [29]. Each point in Figs. 6–8 indi-
cates the result at the end of the tenth slot. The 95% confidence
interval from ten different random topologies is plotted as error
bars. Other parameters follow the default setting defined at the
beginning of this section.
1) Total Utility versus Fairness: Utility maximization and

fair allocation are known to be two conflicting objectives. For
instance, if we always choose the flows with better channel
quality to transmit, we can achieve higher overall throughput
and utility, with the consequence of starving some flows. Our
proposed solution is to maximize the total utility under the
fairness constraint. In Fig. 6(a), the total utility generated by
ER-GSA, PaA, RaA, and TDMA among ten Class-3 flows are
shown. For PaA and RaA, the total utility significantly varies
with respect to the size of exclusive region. ER-GSA achieves a
comparable total utility as that achieved by PaA and RaA with
the best dER. On the other hand, ER-GSA supports a much
higher level of fairness than do PaA and RaA, as shown in
Fig. 6(b). TDMA maintains the best fairness in terms of the
number of time slots allocated to each flow, but its achieved

Authorized licensed use limited to: UNIVERSITY OF VICTORIA. Downloaded on February 10, 2010 at 17:59 from IEEE Xplore.  Restrictions apply. 



LIU et al.: MULTICLASS UTILITY-BASED SCHEDULING FOR UWB NETWORKS 1183

Fig. 7. Comparisons among different scheduling algorithms. Three traffic
classes. (a) Total utility obtained by different scheduling algorithms. (b) Utility
fairness obtained by different scheduling algorithms.

utility is much lower (about 58% less) than that achieved by
ER-GSA.

We further evaluate the performance of the case of three traf-
fic classes using the same configuration as that in Section V-B.
To measure fairness for heterogeneous traffic, Jain’s
fairness index is computed as

∑N
i=1(u(i)/c(i))2/(N ·∑N

i=1(u(i)/c(i))2), where u(i) and c(i) are the utility and the
corresponding weighting factor of flow i, respectively. The
total utility and the fairness index at the end of the tenth slot
are shown in Fig. 7(a) and (b), respectively. For the total utility,
ER-GSA achieves about 90% total utility of that achieved by
PaA or RaA, but the latter two fail to maintain fairness in the
presence of multiclass traffic. Together with the results in the
single-class case, we conclude that ER-GSA can maintain a
good balance between utility maximization and fairness.
2) Minimum Utility: According to the max–min fairness

discipline, it is desirable to maximize the minimal per-flow
utility among all competing flows. From Fig. 8(a) and (b), it
can be seen that the achieved minimum utility using ER-GSA is
much higher than that of other algorithms. Note that RaA can be
considered as a max–min fair scheduler in terms of the number
of time slots. In RaA, the user with the minimum number of

Fig. 8. Comparisons of the minimum utility. (a) One traffic class. (b) Three
traffic classes.

assigned slots is chosen at each scheduling iteration. Thus, RaA
performs slightly better than PaA by increasing the minimum
utility. TDMA performs the worst.

D. Algorithm Efficiency and Stability

Finally, we study the computation efficiency and conver-
gence issue of ER-GSA. Basically, ER-GSA converges in a
statistical sense. In practice, a limited amount of time is al-
lowed for executing the algorithm. To ensure that the algorithm
promptly reaches the optimal point and steadily retains on the
optimum, ER-GSA modifies the original GSA in two aspects:
1) In step 4, the strong interferers in the randomly selected flow
set are further removed once a better set of flows is found, so
that the resultant flow set is more likely to be the optimum, and
2) ER-GSA uses a variable–sample method in step 2 to ensure
the convergence.

To evaluate the improvement in step 4, we compute the
likelihood that the subset S ′ in step 4 in ER-GSA generates
a higher utility than that by κ′

m in step 2, i.e., P[Um(S ′) >
Um(κ′

m)]. The amount of improvement depends on the network
density and dER, as shown in Fig. 9. By increasing dER, more
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Fig. 9. P[Um(S′) > Um(κ′
m)] versus dER in different network densities.

Fig. 10. Scheduling trajectory.

flows will be removed from κ′
m, but the chance that Um(S ′) >

Um(κ′
m) is lower. Thus, a proper exclusive region size can

ensure that P[Um(S ′) > Um(κ′
m)] is larger than 0.5 such that

the optimum may be located faster. The improvement is more
significant when there are more flows to be scheduled.

Furthermore, Fig. 10 snapshots the utility achieved in a slot
using GSA and ER-GSA with dER = 1 m. The trajectory of a
single run and that of the average of 100 runs are shown. The
utility of the optimal set of flows is also plotted for comparison.
The proposed ER-GSA can reach the optimal set with far fewer
iterations than GSA.

On the other hand, it is also important that the algorithm can
stay at the optimum state against measurement and estimation
errors (noise), which is measured by the stability factor, as
defined by the equation that follows. Denote mi and m′

i the
number of iterations that the algorithm reaches and leaves the
global optimum state at the ith time, respectively. The stability
factor ξ of the searching algorithm is defined as

ξ =
∑

i (m′
i − mi)

M − m1

where (m′
i − mi) represents the number of iterations that the

algorithm consecutively stays at the optimal point since the
optimal point is reached at the ith time, and M is the total
number of iterations. Generally, the smaller value of ξ implies

TABLE II
EXECUTION TIME AND STABILITY ξ

that the algorithm is more sensitive to disturbance. The impact
of disturbance may be overcome by adaptively increasing the
sample size, as suggested in the variable–sample path random
search (SPRS) algorithm [30]. When the sample size grows suf-
ficiently fast, the SPRS algorithm will stay at the optimal point
once it is reached, at the cost of increased computation load.

We compare the stability and computation cost of all
algorithms that are discussed. All algorithms are coded in
C language and executed on a Pentium-IV 2.8-GHz central
processing unit. We schedule ten flows for ten slots and repeat
the algorithm for ten runs, where each run contains 1000
iterations. Table II shows the execution time and stability
factor ξ corresponding to each algorithm. It can be seen that
SPRS has the best stability property, but it is not feasible to
implement it for real-time scheduling. Considering the typical
superframe length of 65–90 ms, the complexities of the other
four algorithms are acceptable. Note that although the total
computation time for the ER-GSA algorithm is slightly higher
than that for the GSA algorithm, as shown in Fig. 9, ER-GSA
has a better chance to converge to the optimum. In other words,
if the algorithm is prematurely terminated due to insufficient
computation time, the search result of ER-GSA is generally
better. On the other hand, a sufficient number of iterations are
needed to ensure the convergence of ER-GSA and GSA. A
simple rule is to let it be at least the size of the entire solution
space so that each point can be statistically checked once. More
complicated termination rules, such as performing a paired
t-test after a certain number of iterations to decide the ter-
mination (as in SPRS), may introduce excessive computation
overhead, and thus, they are not recommended.

VI. RELATED WORK

Using different spread-spectrum technologies, the UWB
transmissions can be achieved by several approaches [31], [32].
In [18], the concept of exclusive region was proposed for
UWB-based ad hoc networks. The study suggested that by
implementing an exclusive region around each receiver, the
optimal flow rate can be obtained, and the size of exclusive
region impacts the achievable flow rate. The appropriate size
of exclusive region was analyzed in [25] by taking power
control into account and in [26] with fixed transmission power.
Different from the previous work, in this paper, the concept
of exclusive region is used to assist the proposed scheduling
algorithm to quickly reach the optimum.
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To provide QoS in UWB networks, scheduling problems
have also been considered in several recent studies. A max–min
scheduling for centralized UWB networks was considered in
[33] based on MB UWB. Another work for MB UWB was
presented in [34]. Using the so-called MULTIFIT algorithm for
binpacking problems, multiple-frequency bands over the UWB
spectrum were allocated and scheduled to several WPANs
in the vicinity. Such a joint channel allocation and service-
differentiated scheduling scheme was shown to provide sig-
nificant improvements in the throughput and packet delay via
simulations. Different from the previous work where certain
power control/allocation mechanisms were deployed to reduce
power consumption and interference, our work focuses on de-
riving the optimal scheduling decision, whereas the processing
load of PNC must be maintained as low as possible. Thus, we
seek the solution when transmission power is fixed according to
the Federal Communications Commission limit for unlicensed
UWB transmissions. Although our strategy is not designed to
reduce power consumption, our algorithm helps to ease the
computation load of PNC, which may have a limited compu-
tation capability.

Furthermore, we focus on supporting heterogeneous traffic
in UWB networks. A previous work [35] has proved that the
optimal multiservice scheduling problem is NP-hard. Most ex-
isting works on multiservice scheduling are in fixed bandwidth
allocation [8], [21]. In the context of concurrent peer-to-peer
UWB networks, we further explore spatial multiplexing to
improve the network throughput so that the scheduling problem
is even more challenging.

VII. CONCLUSION

In this paper, a utility-based optimal scheduling for con-
current UWB transmissions supporting heterogeneous traffic
has been proposed. By defining an exclusive region around
each receiver, several flows can be concurrently scheduled to
increase the total utilities so that more high-bandwidth users
can be accommodated. In addition, it is found that the size
of the exclusive region in UWB networks is independent of
the transceiver distance, which, on the contrary, is a dependent
parameter in narrowband wireless systems. Simulation results
have demonstrated that, for a single traffic class, our algorithm
can provide 227% utility gain over TDMA. For multiple traffic
classes, our algorithm can maximize the total utility under
the constraints of both interclass and intraclass fairness. The
proposed algorithm can also maintain a good balance between
the computation complexity and the robustness against mea-
surement and estimation errors, and thus, it suits UWB network
schedulers with limited computation power.

APPENDIX

Algorithms 2–4, which were considered in Sections V-C and
D, are listed here for reference.

Algorithm 2: SPRS [30]
Step 1. Randomly select an initial user subset κ0 ∈ K;

N0 := initial sample size; m := 0. Go to step 2.

Step 2. Given κm, calculate the corresponding Um(κm).
Randomly select another user subset κ′

m ∈ K \ {κm}. Com-
pute the corresponding Um(κ′

m). Go to step 3.
Step 3. If Um(κm) > Um(κ′

m), then let κm+1 = κm.
Otherwise, let κm+1 = κ′

m. Go to step 4.
Step 4. Perform a paired t-test between Um(κm) and

Um(κ′
m) to test the null hypothesis, i.e., H0 : Um(κm) =

Um(κ′
m). If p > 0.2, then Nm+1 := Nm; otherwise, Nm+1 :=

Nm + δN . For every K iteration, do Nm+1 := Nm + δN .
m := m + 1. Go to step 2.

Algorithm 3: PaA [26]
Require: i := 1; Si := ∅; UA := {1, . . . , N}

1: repeat
2: for a flow f randomly chosen from UA do
3: Si ← Si ∪ {f}
4: UA ← UA \ {f}
5: for any flow f ′ other than f do
6: if (f ′ �∈ ERl) & (l �∈ ERf ′) ∀l ∈ Si then
7: Si ← Si ∪ {f ′}
8: end if
9: if f ′ ∈ UA then
10: UA ← UA \ {f ′}
11: end if
12: end for
13: end for
14: i ← i + 1
15: until (UA is empty) ∨(i > K)
16: k ← i
17: for i = 1 to k do
18: allocate K · |Si|/

∑k
x=1 |Sx| to Si

19: end for

Algorithm 4: RaA [26]
Require: φf = 0; Si := ∅

1: for i = 1 to K do
2: f ∗ ← arg minf{φf}
3: Si ← Si ∪ {f ∗}
4: φf∗ ← φf∗ + 1
5: for any flow f other than f ∗ do
6: if (f �∈ ERl) & (l �∈ ERf ′) ∀l ∈ Si then
7: Si ← Si ∪ {f}
8: φf ← φf + 1
9: end if
10: end for
11: end for
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