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Abstract—Internet performance depends on the Additive In-
crease and Multiplicative Decrease (AIMD) congestion control
algorithm deployed in the end systems and the Random Early
Detection (RED) queue management scheme deployed in the
intermediate systems. Previous research based on the fluid-
flow model indicated that the TCP/RED system may not be
asymptotically stable when the feedback delay becomes large
or when the link capacity becomes large. However, so long as
the system operates near its desired equilibrium, the network
performance (in terms of efficiency, loss rate, and delay) is
still appreciable. In this report, using the fluid-flow model for
a generalized AIMD/RED system, we derive theoretical bounds
of the AIMD flow window size and the RED queue length, as
functions of number of flows, link capacity, RED queue parame-
ters, and AIMD parameters. Numerical results with Matlab and
simulation results with NS-2 are given to validate the correctness
and demonstrate the tightness of the derived bounds. Our main
findings are: 1) larger values of round-trip delay and link capacity
will actually reduce the oscillating amplitude of window size
and queue length from their equilibria in steady state; 2) if
we proportionally increase the link capacity and the number of
AIMD flows, the queueing delay will be slightly reduced, so the
multiplexing gain slightly increases; and 3) although AIMD flows
can adapt their sending rates according to available bandwidth,
larger number of flows leads to longer queueing delay in the
AIMD/RED system. Thus, we should limit the number of AIMD
connections in a link or promote to use more conservative AIMD
parameters to bound the queueing delay and loss. Our results
can also help to predict and control the system performance for
future Internet with higher data rate links multiplexed with more
flows with different parameters.

Index Terms—Boundedness, AIMD/RED system, time delay
system.

I. I NTRODUCTION

The first congestion collapse in the Internet was observed in
1980’s, although the Internet was in its infant stage at thattime.
To solve the problem, Van Jacobson proposed the Transmission
Control Protocol (TCP) congestion control algorithm based
on the Additive Increase and Multiplicative Decrease (AIMD)
mechanism in 1988. Since then, the TCP congestion control
algorithm has been widely deployed in the end systems to
respond to network congestion signals and avoid network
congestion collapses. On the other hand, the active queue
management algorithms, Random early detection or Random
early discard (RED), have been developed and deployed in the
intermediate systems to fairly distribute network congestion

signals to all on-going flows. AIMD and RED are considered
key factors to the overwhelming success of the Internet, which
has experienced explosive growth over the past two decades,
with network speeds almost doubled every year and new
applications emerge quickly. Future Internet will become an
even more diversified system. It will contain heterogeneous
wireless and wired links with speeds varying from tens of Kbps
to tens of Gbps, with flow round-trip delays varying from ms to
seconds. It will also support various multimedia applications
with different throughput, delay, and jitter requirements. An
immediate question is whether the AIMD/RED system can be
stable, scalable, and efficient for the next generation Internet?

Internet stability has been an active research topic since
its first congestion collapse was observed. With a fluid-flow
model of the system, it has been proved that, without feedback
delay, the AIMD congestion control mechanism, coupled with
the RED queue management, can ensure asymptotic stabil-
ity [15]. However, with a non-negligible feedback delay, the
AIMD/RED system may not be asymptotically stable when the
delay becomes large and/or when the link capacity becomes
large [3].

On the other hand, the Internet is a very dynamic system,
and can tolerate some transient congestion events. In fact,TCP
controlled flows aggressively probe for available bandwidth in
the network, and create transient congestions. Even the system
is not asymptotically stable, so long as the end systems do
not overshoot the available bandwidth too severely, the overall
system efficiency can still be very high, and the packet loss
rate and queueing delay can still be well bounded. Therefore,
it is critical to investigate, if the network may operate at states
away from the desired equilibrium state, what the theoretical
bounds of the system are.

Different from the previous work [1]–[4], [15], [16] to
find the conditions to ensure system asymptotic stability, this
report derives the theoretical bounds of the system, i.e., flows’
congestion window size and intermediate systems’ queue
length, given the number of flows sharing the link, their AIMD
parameter pairs and round-trip times (RTTs), link capacity,
and RED queue parameters. Using the fluid-flow model of
a generalized AIMD/RED system, instead of applying the
Lyapunov-like method, we derive a tight upper bound of
congestion window size and queue length by directly studying



2the inherent properties of AIMD/RED systems. With clearly
defined bounds, the system is considered marginally stable.
The definitions of stability are listed below, which follow those
in [19], [20].

Definition 1: Consider dynamic systems with time delay of
the following form:

dx

dt
= f(t, x(t), x(t − τ1(t)), · · · , x(t − τm(t)))

wherex∈Rn, f : I×Rn×Rn×· · ·×Rn → Rn is continuous.
Let τ = supi=1,..,m τi(t). The trivial solution of the system is
said to be

• uniformly boundedif there exists a constantc, for every
a ∈ (0, c), there isB = B(a) > 0, such that for any
ξ(t)∈C[[t0 − τ, t0], R

n], ‖x(t, t0, ξ)‖ ≤ B for all t ≥ t0
when‖ξ‖ ≤ a;

• stable if for every ǫ>0 and t0∈R+, there exists some
δ=δ(t0, ǫ)>0 such that for anyξ(t)∈C[[t0 − τ, t0], R

n],
‖ξ‖<δ implies ‖x(t, t0, ξ)‖<ǫ for all t ≥ t0;

• asymptotically stableif the system is stable and for
every t0∈R+, there exists someη=η(t0)>0 such that
limt→∞ ‖x(t, t0, ξ)‖=0 whenever‖ξ‖<η;

• marginally stableif the system is stable but not asymp-
totically stable.

Although asymptotic stability of the AIMD/RED system has
been extensively investigated, to the best of our knowledge,
this report is the first one to present performance bounds of
the system. The derived theoretical bounds provide important
insights on which system parameters contribute to high oscil-
lations of the system and how to choose system parameters
to ensure system efficiency with bounded delay and loss. The
theorems given in the report can also help to predict the system
performance for the future Internet with higher data rate and
more flows with different flow parameters.

The remainder of the report is organized as follows. Sec. II
introduces the model of the generalized AIMD/RED system.
Sec. III studies the boundedness of AIMD/RED systems with
feedback delay. In Sec. IV, numerical results with Matlab and
simulation results using NS-2 are presented to validate the
derived bounds, and the impacts of different system parameters
on the system performance are discussed. Related work is
discussed in Sec. V, followed by concluding remarks in
Sec. VI.

II. A FLUID-FLOW MODEL OF AIMD/RED SYSTEM

A stochastic model of TCP behaviors is developed using
fluid-flow and stochastic differential equation analysis in[10].
Simulation results have demonstrated that this model accu-
rately captures the dynamics of TCP. We extend the fluid-flow
model for general AIMD(α, β) congestion control: the window
size is increased byα packets perRTT if no packet loss
occurs; otherwise, it is reduced toβ times its current value.
The general AIMD congestion control has been proposed to
support heterogeneous applications with different tolerance on
flow throughput variations [12]–[14].

For all AIMD-controlled flows with the same (α, β) param-
eter pair and round-trip delay, the AIMD fluid model relates to
the ensemble averagesof key network variables [4], [10], and
is described by the following coupled, nonlinear differential
equations:

dW (t)

dt
=

α

R(t)
−

2(1 − β)

1 + β
W (t)

W (t − R(t))

R(t − R(t))
p(t − R(t))

dq(t)

dt
=















N(t) · W (t)

R(t)
− C, q > 0

{
N(t) · W (t)

R(t)
− C}+, q = 0

(1)

where{a}+ = max{a, 0}, α > 0, β ∈ [0, 1]; W ≥ 1 is the
AIMD window size (packets), andq ∈ [0, qmax] is the queue
length (packets) at timet. W and q in the fluid-flow model
can approximate the ensemble averages of flow’s congestion
window size and queue length respectively in the real system.
R(t) is the round-trip time withR(t) = q(t)

C
+ Tp (s), where

C is the link capacity (packets/s) andTp is the deterministic
round-trip delay.N(t) is the number of AIMD flows, andp(t)
is the probability of a packet being dropped or marked by an
intermediate system.

The first differential equation of system (1) describes the
AIMD( α, β) window control dynamic.α/R represents the
window’s additive increase, whereas2(1 − β)W/(1 + β)
represents the window’s multiplicative decrease in response
to packet dropping or marking probabilityp. Since the AIMD
flow’s window size in a practical system oscillates between
βWmax andWmax, its average window sizeW over a round1

is (1 + β)Wmax/2. Each time, the window size is decreased
by (1− β)Wmax = 2(1− β)W/(1 + β). The second equation
models the bottleneck queue length as simply an accumulated
difference between packet arrival rateNW/R and link ca-
pacity C. {·}+ in the model guarantees that queue length is
non-negative.

It should be noted that, in the fluid-flow model,q and
W are positive and bounded quantities which approximate
the ensemble averages of queue length and window size in
practical systems. In ergodic systems, ensemble average equals
time average. The values ofq andW in the fluid-flow model
can be used to predict its time average over a round in a
practical system. Given the AIMD window size oscillating
betweenβWmax and Wmax in a round, the average duration
of a round equals2(1 − β)WR/[(1 + β)α].

We consider the popular Active Queue Management (AQM)
scheme, RED, in the system (1). With RED, the packet drop-
ping or marking probability,p, is determined by the average
queue lengthqact:

p =







0, 0 ≤ qact ≤ minth

Kp(qact − minth), minth < qact ≤ maxth

1, qact > maxth

(2)

1A round is defined as the interval between two time instants that the flow
reduces its congestion window size consecutively.



3whereKp > 0. Whenqact≤minth, dW (t)
dt

= α
R

, the window
size of AIMD flows will keep increasing and will not converge
to any value. Thus, in the following, we will discuss the
stability of this model whenqact> minth. Without loss of
generality, letq(t) = qact(t) − minth. In addition, since the
queue behaves in the same way as a Drop-Tail queue once
qact exceedsmaxth, we choosemaxth to be sufficiently large
such thatKp(maxth −minth) = 1.

Eq. (1) is a generalized TCP/RED congestion control model,
which includes the models studied in [2], [4], [10]. If we
chooseα = 1, β = 0.5, (1) is equivalent to the traditional
TCP/RED model in [10].

The equilibrium point(W ∗, q∗) for (1) and (2) is given by

W ∗ =
R·C

N
; q∗ =

α(1 + β)N2

2(1 − β)R2C2Kp

.

Remarks:At the equilibrium, the total arrival rate equals the
total link capacity, so the link bandwidth can be fully utilized.
If the window size is larger thanW ∗

0 , the queue will build up
which results in a longer queueing delay; if the window size
is less thanW ∗, the network load is smaller than its capacity,
so the network resources are not fully utilized. In conclusion,
the equilibrium point is also the most desired operating point
of the system.

III. B OUNDEDNESS OFHOMOGENEOUS-FLOW

AIMD/RED SYSTEM WITH TIME DELAY

It has been demonstrated in [3] that an AIMD/RED system
becomes (asymptotically) unstable with the increase of round
trip delays of the system. Using the fluid-flow model, sufficient
conditions for the asymptotic stability of AIMD/RED systems
with feedback delays have been derived in [16]. In this
section, we show that even though the system may become
(asymptotically) unstable because of the effects of time delay,
its window size and queue length are still bounded, and in
most cases, the upper bounds are close to their equilibria.

First, we study the delayed homogeneous AIMD system
defined by (1) with RED defined by (2). We setminth =0
in RED and assume that the traffic load (i.e., the number
of AIMD flows) is time-invariant, i.e.,N(t)=N . With ever-
increasing link capacity and appropriate congestion control
mechanism, variation of queuing delays becomes relatively
small to propagation delays. In [18], it is revealed that the
variable nature ofRTT due to queueing delay variation helps
to stabilize the TCP/RED system. In light of this, we derive up-
per and lower bounds of AIMD/RED systems assumingRTT
to be constant. These results will be a good approximation if
RTT is slightly time-varying. We thus ignore the effect of the
delay jitter on the round-trip time and assume that the round-
trip time of each flow is a constant,R(t)=R.

Notice that the AIMD/RED system defined by (1) and
(2) are described by delayed differential equations, its initial
conditions are given by1 ≤ W (t) ≤ W ∗ and0 ≤ q(t) ≤ q∗ on
the intervalt ∈ [−R, 0]. According to (1), it is also reasonable
that we letẆ (t) ≤ α

R
for t ∈ [−R, 0].

A. Upper Bound on Window Size

Theorem 1:Let UB > 0 be the largest real root of

UB · (UB − α) · (UB −
R·C

N
− α)2 =

α2(1 + β)

(1 − β)NKp

,

thenW (t) ≤ UB for t ≥ 0.
Proof: With (1) and (2), we note thaṫW ≤

α

R
for t ≥ 0,

sinceW (t) ≥ 1 and q(t) ≥ 0. For τ > 0, taking integration
on both sides fromt − τ to t gives

W (t) − W (t − τ) ≤
α

R
· τ for t ≥ 0. (3)

We show that theUB (> 0) in the theorem is an upper
bound of W (t) for t ≥ 0, i.e., if W (t) = UB for some
t = t1 ≥ 0, thenẆ (t1) ≤ 0.

With (3) andW (t1) = UB, and takingτ = R and t = t1,
we have

W (t1 − R) ≥ UB − α. (4)

Notice thatW (t1 − τ) ≥ UB − a·α when τ ∈ [R, aR] for
any real numbera > 1.

Consider

q̇(t) =











N · W (t)

R
− C, q > 0

{
N · W (t)

R
− C}+, q = 0

Taking integration on both sides fromt1−aR to t1−R, we
have
∫ t1−R

t1−aR

q̇(s)ds ≥
N

R

∫ t1−R

t1−aR

W (s)ds − (a − 1)R·C

≥ N · (a − 1) · (UB − a·α) − (a − 1)RC

which implies

q(t1 − R) ≥ [N · (UB − a·α) − R·C] · (a − 1) (5)

sinceq(t) ≥ 0.
Takingf(a) = (a−1)·[N ·(UB−a·α)−R·C] and computing

the maximum value off(a) by letting f ′(a) = 0 gives a =
(N ·UB + R·C + N ·α)/(2αN) and

f(a) = N(UB − R·C/N − α)2/(2α). (6)

Therefore, it follows from (4), (5) and (6) that,̇W (t1) ≤ 0
sinceUB satisfies

N · UB · (UB − α) · (UB − R·C/N − α)2

2α
=

α(1 + β)

2(1 − β)Kp

,

(7)
which impliesW (t) ≤ UB for t ≥ 0.

If all AIMD flows are TCP-friendly, i.e., the average
throughput of non-TCP-transported flows over a large time
scale does not exceed that of any conformant TCP-transported
ones under the same circumstance [11], the (α, β) pair should
satisfies the TCP-friendly conditionα = 3(1 − β)/(1 + β)
derived in [14], [15]. Thus, the above equality (7) becomes

UB · (UB − α) · (UB − R·C/N − α)2 =
3α

NKp

. (8)



4By the continuity property ofUB · (UB − α) · (UB −
R·C/N−α)2 and the fact that the RHS of (7) is always greater
than zero, we can conclude that the largest root of (7) must
be greater thanR·C/N +α, whereR·C/N is the equilibrium
value of the window size for AIMD/RED system. Therefore,
the oscillation of the window size from its equilibrium value
will increase with the increment ofα and the decrement of
Kp. In addition, the upper boundUB itself will increase with
the increment ofR·C, α and the decrement ofN , Kp.

It is also noted that the upper bound derived in Theorem 1
is a global one for the timet, i.e., the window sizeW (t)
will not go aboveUB for any t > t1. If we assume, instead,
that there existst′1 > t1 and ∆W > 0, such thatW (t′1) =
UB + ∆W , then there must be someτ ′ ∈ (0, t′1 − t1) such
thatW (t′1 − τ ′) = UB andẆ (t′1 − τ ′) > 0. However, similar
to the proof of Theorem 1, we havėW (t′1 − τ ′) ≤ 0, which is
a contradiction. Therefore, the window size is upper bounded
by UB for any t ≥ 0.

B. Lower Bound on Window Size and Upper Bound on Queue
Length

In the previous subsection, we proved that the AIMD
window size W (t) is bounded from above, and an upper
bound, UB, is defined by (7). In this subsection, we show
that the window size is also bounded from below while the
queue length is upper bounded.

Theorem 2:Define A :=
α

R
−

2(1 − β)

1 + β

UB2

R
and let

LB1 > 0 be the root of

LB1 · (LB1 − AR) =
α(1 + β)

2(1 − β)
,

thenW (t) ≥ LB1 for t ≥ 0.
Proof: From Theorem 1,W (t) ≤ UB for t ≥ 0, which

implies

Ẇ (t) ≥
α

R
−

2(1 − β)

1 + β

UB2

R
=: A

It can be seen from the definition ofUB thatA < 0. We show
that LB1 > 0 is the lower bound ofW (t) for t ≥ 0, i.e., if
W (t) = LB1 at time t = t2 ≥ 0, thenẆ (t2) ≥ 0.

Taking integration on both sides fromt2 − R to t2 gives
W (t2 − R) ≤ W (t2) − AR = LB1 − AR.

Since dropping/marking probabilityp(t) = Kp · q(t) ≤ 1

for all t, then Ẇ (t2) ≥
α

R
−

2(1 − β)

1 + β

LB1 · (LB1 − AR)

R
.

Therefore,Ẇ (t2) ≥ 0 sinceLB1 satisfies

LB1 · (LB1 − AR) =
α(1 + β)

2(1 − β)
, (9)

which impliesW (t) ≥ LB1 for t ≥ 0.
Notice thatLB1 in Theorem 2 is the lower bound ofW (t)

for all t ≥ 0, which is a global one. By similar analysis to
the upper bound of window sizeUB, it is easy to check that
the window sizeW (t) will not go belowLB1 for any t > t2.
However, the value ofLB1 is actually very small sinceα(1+
β)/(2(1−β)) is fairly small compared to−AR. Therefore, the

global lower bound does not provide much information about
the performance of AIMD/RED systems.

Since window size oscillates around its equilibrium in the
steady state, the amplitude of the oscillation is more important
than the global lower bound. Next, We will show the local
lower bound of the window size after the first time it reaches
the peak value at momentt1. This local lower bound is
more useful for understanding the performance of AIMD/RED
systems.

Theorem 3:DefineT1 andUQ as

T1 =
UB −

R·C

N
2(1 − β)

1 + β
·
C·Kp

N
· [

R·C

N
∆q + ∆W (q∗0 + ∆q)]

UQ = inf
∆q>0,

∆W∈[0, UB−
R·C

N
]

{(q∗0 +∆q)+(
N

R
·UB−C) ·(T1 +R)},

whereUB is defined in Theorem 1. LetLB2 > 0 satisfy

LB2·(LB2+
2(1 − β)

1 + β
·UB2·Kp·UQ−α)·Kp·UQ =

α(1 + β)

2(1 − β)
,

thenq(t) ≤ UQ for t ≥ 0 andW (t) ≥ LB2 for t ≥ t1.
Proof: We first derive the upper bound ofq(t) for t ≥ 0.

At moment t = t1, W (t) reaches its peak value. To get a
loose upper bound ofq(t), we assume thatW (t) does not
decrease for some time aftert1, and thusq(t) increases at

the rate
N

R
UB − C. Moment t′1 is chosen such thatq(t′1) =

q∗ + ∆q with ∆q > 0, then W (t) decreases fromt′1 while
q(t) keeps increasing till momentt2 such thatq̇(t2) = 0 (i.e.,
W (t2) = R·C/N ). Therefore,q(t2) is the local maximum
value of q(t). It should be noticed that this estimate ofq(t)
might be greater than the real maximum value ofq(t) since
W (t) may not stay at its peak value aftert1, andq(t) will still

increase aftert1, but with the rate less than
N

R
UB − C.

From above analysis, fort ∈ [t′1, t2], q̇(t) ≤
N

R
·UB −C.

Thus,
∫ t2

t′1

q̇(s)ds ≤ (
N

R
· UB − C) · (t2 − t′1)

which implies

q(t2) ≤ q(t′1) + (
N

R
· UB − C) · (t2 − t′1)

= (q∗0 + ∆q) + (
N

R
· UB − C) · (t2 − t′1)

(10)

To estimate the length of the interval[t′1, t2], for t ∈ [t′1 +
R, t2], it follows from the analysis above that

W (t) ≥ W (t2) =
R·C

N
,

q(t − R) ≥ q(t′1) = q∗0 + ∆q,

W (t − R) ≥ W (t2 − R) =
R·C

N
+ ∆W,

for some∆q > 0 and∆W ∈ (0, UB − R·C
N

).



5Thus,

Ẇ (t) ≤ −
2(1 − β)

1 + β
·
C·Kp

N
· [∆W (q∗0 + ∆q) +

R·C

N
∆q]

(11)
for t ∈ [t′1 + R, t2].

On the other hand,
∫ t2

t′1+R

Ẇ (s)ds = W (t2) − W (t′1 + R) ≥
R·C

N
− UB. (12)

It follows from (11) and (12) that,

R·C

N
− UB ≤ −

2(1 − β)

1 + β
·

C·Kp

N
· (t2 − t′1 − R)

· [∆W (q∗0 + ∆q) +
R·C

N
∆q]

i.e.,

t2−t′1−R ≤
UB −

R·C

N
2(1 − β)

1 + β
·
C·Kp

N
· [

R·C

N
∆q + ∆W (q∗0 + ∆q)]

With the definition ofT1 in the theorem, we havet2 − t′1 ≤
T1 + R. Therefore, it follows from (10) that

q(t) ≤ inf
∆q>0,

∆W∈[0, UB−
R·C

N
]

{(q∗0 +∆q)+(
N

R
·UB−C) ·(T1 +R)},

(13)
i.e., q(t) ≤ UQ for t ≥ 0, which indicates thatUQ is the
upper bound of the RED queue length. Since the packet loss in
a RED queue is proportional to the queue length, the derived
queue length upper bound also reflects the upper bound of
packet loss rate.

We finally show thatLB2 > 0 is a lower bound ofW (t)
for t ≥ t1, i.e., if W (t) = LB2 at time t = t3 > t1, then
Ẇ (t3) ≥ 0.

With (7) and (13),

Ẇ (t) ≥
α

R
−

2(1 − β)

1 + β
·
UB2

R
· Kp · UQ (14)

for t ≥ 0, we have
∫ t3

t3−R

Ẇ (s)ds ≥ α −
2(1 − β)

1 + β
· UB2 · Kp · UQ

i.e.,

W (t3 − R) ≤ LB2 +
2(1 − β)

1 + β
· UB2 · Kp · UQ − α (15)

It follows from (13) and (15) that,

Ẇ (t3) ≥
α

R
−

2(1 − β)

1 + β
·
LB2 · UW

R
· Kp · UQ

with UW := LB2 +
2(1 − β)

1 + β
· UB2 · Kp · UQ − α.

Therefore,Ẇ (t3) ≥ 0 if LB2 is chosen to satisfy

LB2 · UW · Kp · UQ =
α(1 + β)

2(1 − β)
, (16)

and thusLB2 is the lower bound ofW (t) for t ≥ t1.
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Fig. 1. Theoretical and Numerical Bounds of window size and queue length
with different (α, β)

IV. PERFORMANCE EVALUATION

In this section, numerical results with Matlab and simulation
results with NS-2 are given to validate the theorems and
evaluate the system performance with different parameters.

A. AIMD parameter pairs

First, we investigate how the AIMD parameter pair(α, β)
affects the bounds of window size and queue length. Let
N , R, C and Kp be constants:N = 10, R = 0.1 sec,
C = 1000 packet/sec andKp = 0.01. The AIMD (α, β)
pairs are chosen to be TCP-friendly, varying from (9/5, 1/4)
to (3/31, 15/16), and the results are given in Fig. 1. It can be
seen that for the upper and lower bounds of the window size
and the upper bound of the queue length, the numerical results
are all within the bounds given by Theorem 1 and Theorem 3,
which verifies the correctness of the Theorems. In addition,
the upper bound of the window size given by the Theorem
is very tight. The one for queue length is a loose bound as
mentioned in the proof of Theorem 3. The theoretical lower
bound of window size is not tight because the approximation
of Ẇ (t) in (14) is not very accurate. How to find a tight lower
bound for window size will be a future research issue.

Another observation is that the differences between numer-
ical and theoretical results is getting smaller as(α, β) pair
varies from (9/5, 1/4) to (3/31, 15/16), which shows that the
theoretical results become tighter when the value ofβ gets
larger.

In ideal cases, the window size should converge toR·C/N ,
which is10 packets perRTT in the above cases. The results in
Fig. 1 show that with a smaller value ofα and a larger value of
β, the AIMD flows have less oscillation amplitude around the
optimal operation point, so they can utilize network resources
more efficiently with less delay and loss in steady state. This is
because, with a smaller value ofα, the AIMD flows overshoot
the available bandwidth in a slower pace; with a larger value
of β, the AIMD flows will not decrease drastically for any
single packet loss. Also, as shown in Fig. 1, the upper bound
of the queue length becomes smaller w.r.t.β; thus, the average
queueing delay (and thus loss rate) becomes smaller in steady
state.
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Fig. 2. Traces of window size and queue length,N=10, C=10000 packet/sec,R=0.05 sec andKp=0.005

Fig. 2 shows the traces of TCP flows with AIMD parameter
pair of (1, 1/2) and those of AIMD(1/5, 7/8) flows. Here,
N=10, C=10000 packet/sec,R=0.05 sec andKp=0.005.
For NS-2 simulations, we setQmin of the RED queue to
be 20 packets. Therefore, the upper bound of window size
of each flow should be enlarged byQmin/N = 2 packets,
and the upper bound of the queue length should be enlarged
by Qmin = 20 packets. We compare the theoretical bounds
with both the average window size among all flows and its
time average of window size over a round. Both the numerical
results with Matlab and simulation results with NS-2 show that
although the window variation of AIMD(1/5, 7/8) in steady
state is smaller, it takes longer time for AIMD(1/5, 7/8) flows
to converge to the steady state. Simulation results also demon-
strate the tightness of the upper bound of window size. Another
interesting observation is that although the upper bound of
queue length is not tight comparing to the time average of
queue length, it is close to the maximum instantaneous queue
length in steady state.

Considering that the future Internet might contain mixed
traffic with different AIMD parameters, we further study the
performance of the AIMD/RED system with heterogeneous
flows. Fig. 3 shows the window trace and queue length
when TCP flows and AIMD(1/5, 7/8) flows share the bot-
tleneck. Parameters are firstly chosen asC=10000 packet/sec,
Kp=0.005, andR = 0.05 sec for5 TCP flows competing with
5 AIMD( 1/5, 7/8) flows. For comparison, we also choose
C=20000 packet/sec,Kp=0.005, and R = 0.05 sec for 10
TCP flows and10 AIMD( 1/5, 7/8) flows. As shown in Fig. 3,
TCP window size oscillates stronger than that of AIMD(1/5,
7/8), but their average window sizes are close to each other.

Notice that we use the bounds for TCP or AIMD(1/5, 7/8)
flows only for comparison. The simulation results show that
the time average window size of all flows are below theUB
of TCP flows. This suggests that we can use the upper bounds

of AIMD flows with the smallest value ofβ among the mixed
traffic to determine the upper bounds of heterogeneous flows
systems.

Theoretical bounds for heterogeneous-flow AIMD/RED sys-
tem can be obtained by applying similar approach in the
report. But it should be noticed that the upper bound of
window size derived for the heterogeneous-flow system by this
method is usually not as tight as that for the homogeneous-
flow system, because the interactions among heterogeneous
flows are implicitly expressed in the fluid-flow model and not
easy to calculate.

B. Impact of system parameters

In the following, we study how the parametersN , R, C
and Kp affect the bounds of window size and queue length.
We choose(α, β) pair to be (1, 1/2) and (1/5, 7/8), and
obtain the results with different network parameters as shown
in Tables I and II.

1) Round-trip delay and link capacity:First, comparing
rows 1 and 2 in both tables. By enlarging the delay from
0.02 sec to 0.05 sec (by 2.5 times), the upper bound of
window sizes only increases by1.54 times and1.86 times
for TCP and AIMD(1/5, /, 7/8), respectively, which means
a larger delay reduces the relative oscillation amplitude of
window size. In addition, the upper bound of queue length
is decreasing. Similar trend can be found if comparing rows
4 and 5 in both tables. This is a surprising result. From [3], a
longer delay may drive the system from stable to unstable.
We can explain it as follows. A larger delay means that
the window size increasing speed (in terms of packet per
second) during the additive increase period is smaller, and
the AIMD flows will overshoot the network capacity in a
slower pace; thus, the upper bound of window size is closer to
the optimal operating point, and the maximum queue length
is smaller. Similar results are found if we compare rows 4
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Fig. 3. Heterogeneous flows,Kp=0.005, andR = 0.05 sec

TABLE I
AIMD/RED SYSTEM BOUNDS WITH(α, β)=(1, 1/2)

No. N R C Kp (W ∗, q∗) UB LB2 UQ

Num Ana Num Ana Num Ana

1 10 0.02 1000 0.01 (2, 37.5) 4.04 4.41 1.52 0.09 51.25 147.50

2 10 0.05 1000 0.01 (5, 6) 6.60 6.80 2.13 0.32 28.15 43.30

3 20 0.05 2000 0.005 (5, 12) 6.60 6.80 2.12 0.38 56.34 78.0

4 10 0.05 1000 0.005 (5, 12) 6.82 7.10 2.78 0.66 39.10 54.60

5 10 0.4 1000 0.005 (40, 3/16) 41.30 42.02 14.14 0.11 9.85 23.2

6 10 0.05 10,000 0.005 (50, 3/25) 51.03 51.15 16.98 0.18 8.35 14.05

7 20 0.05 20,000 0.005 (50, 3/25) 51.00 51.20 8.91 0.068 14.89 23.12

8 100 0.05 10,000 0.005 (5, 12) 6.28 6.41 0.72 0.04 153.16 241.6

9 1000 0.1 1,000,000 0.001 (100, 3/20) 101.00 101.02 0.026 0.0002 576.95 1024.15

10 10000 0.1 1,000,000 0.001 (10, 15) 11.04 11.05 0.02 1.6*10−4 6731.3 10785.0

11 10000 0.1 1,000,000 0.005 (10, 3) 11.017 11.023 0.005 6.9*10−6 5941.6.5 10349.4

12 10000 0.1 1,000,000 0.01 (10, 3/2) 11.011 11.016 0.002 1.8*10−6 5713.5 10247.9

and 6 in both tables. By enlarging the link capacity by10
times, the upper bound of window size is increased by7.5
and8.9 times, for TCP and AIMD (1/5, /, 7/8), respectively.
Although enlarging the link capacity may drive the system
from stable to unstable [3], the oscillating amplitude of window
size (relative to the equilibriumW ∗) and queue length will
actually decrease. The window and queue traces of10 TCP
flows in a link with 1000 packet/sec and10, 000 packet/sec
are depicted in Fig. 4. The conclusion is that larger values
of delay and link capacity will actually reduce the oscillating
amplitude of window size and queue length, and significantly
reduce the maximum queueing delay.

2) Number of flows:Comparing rows 3 and 4, or rows 6
and 7 in Tables I and II, we conclude that if we increase
the number of flows and the link capacity proportionally, the
bounds of window size are almost un-affected. With twice the
flows multiplexed in a twice capacity link, the upper bound of
queue length increases less than twice. Therefore, the queuing
delay bound is slightly reduced because of the multiplexing
gain.

Comparing rows 6 and 8 in Tables I and II, if we increase the
number of flows in the same link, theN ·UB becomes larger.
In other words, the oscillation of window size will increase
significantly if the number of flows in a link increases, and



8TABLE II
AIMD/RED SYSTEM BOUNDS WITH(α, β)=(1/5, 7/8)

No. N R C Kp (W ∗, q∗) UB LB2 UQ

Num Ana Num Ana Num Ana

1 10 0.02 1000 0.01 (2, 37.5) 2.81 3.03 1.76 0.59 55.39 135.50

2 10 0.05 1000 0.01 (5, 6) 5.50 5.63 4.19 1.77 17.64 31.20

3 20 0.05 2000 0.005 (5, 12) 5.51 5.65 4.19 1.65 35.3 65.2

4 10 0.05 1000 0.005 (5, 12) 5.62 5.80 4.27 2.10 29.13 48.70

5 10 0.4 1000 0.005 (40, 3/16) 40.25 40.29 36.79 5.38 3.10 5.21

6 10 0.05 10,000 0.005 (50, 3/25) 50.23 50.26 45.93 6.31 2.48 3.85

7 20 0.05 20,000 0.005 (50, 3/25) 50.23 50.26 43.99 3.24 4.28 7.10

8 100 0.05 10,000 0.005 (5, 12) 5.34 5.46 3.76 1.39 66.59 83.8

9 1000 0.1 1,000,000 0.001 (100, 3/20) 100.20 100.21 39.26 0.025 127.34 211.15

10 10000 0.1 1,000,000 0.001 (10, 15) 10.22 10.23 2.02 0.02 1666.5 2361.4

11 10000 0.1 1,000,000 0.005 (10, 3) 10.208 10.211 0.07 0.00097 1354.8 2158.8

12 10000 0.1 1,000,000 0.01 (10, 3/2) 10.205 10.207 0.015 0.00024 1265.7 2111.5
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Fig. 4. Bounds of TCP window size and queue length with different C

the queueing delay will also increase significantly. This can
be understood asN AIMD( α, β) flows will increase their
windows byNα packets per RTT, and the larger the increasing
rate during Additive Increase stage, the more significantlythe
flows will overshoot the link capacity. This suggests that we
should limit the number of TCP/AIMD connections in a link
or promote to use more conservative AIMD parameter pairs to
ensure that the queueing delay (and also the loss rate) is less
than certain threshold.

3) Kp: Comparing rows 2 and 4 in Tables I and II, for a
smaller value ofKp, the RED parameter will result in a larger

bounds of both window size and queue length.

The last four rows of Tables I and II are the upper bounds of
the TCP/AIMD window size and queueing delay in a highly
multiplexed, high bandwidth (tens of Gbps), and long delay
(0.1 sec RTT) link. It can be seen for TCP flows, the queuing
delay can be bounded to10.785 ms if the Kp is chosen
to be 0.001. The delay bound can be slightly reduced to
10.349 ms and10.248 ms if Kp is increased to0.005 and0.01,
respectively. The results show that althoughKp can be adjusted
to control the queueing delay in the system, the impact is
limited for high bandwidth cases. Limiting the number of flows



9or using more conservative AIMD pairs are more effective in
reducing queueing delay. For instance, if the number of flows
is reduced to100 or 1000, the queueing delay bound can be
reduced to0.241 ms or 1.079 ms, respectively. If using an
AIMD parameter pair of (1/5, 7/8), the queueing delay for
10000 flows with Kp = 0.001 can be bounded to2.361 ms
only.

V. RELATED WORK

Internet stability analysis have received wide attention re-
cently [1]–[4]. For delay-free marking scheme, the fluid-
model of the AIMD/RED system has been proved to be
asymptotically stable [15] by applying the method of Lya-
punov function. It is well known [3] that the system may
become asymptotically unstable in the presence of time delays.
In [16], sufficient conditions for the asymptotic stabilityof
AIMD/RED system with feedback delays are given in terms
of linear matrix inequalities. However, simulation results show
that even though the system is not asymptotically stable,
it oscillates around the steady state periodically. Motivated
by this phenomenon, we demonstrate in this report that the
delayed AIMD/RED system is bounded from above and below.

The boundedness issue has been studied in [6]–[8] by
applying Lyapunov-like method for some TCP-like congestion
control algorithms. [9] justified the use of deterministic model
for Internet congestion control and [5] gave the upper boundon
the transmission rate for two kinds of TCP-like traffic. How-
ever, to the best of our knowledge, the theoretical upper and
lower bounds of window size and queue length of AIMD/RED
system considering feedback delays have not been reported in
the literature. Since the bounds are closely related to system
performance, which is critically important to obtain in-depth
understanding of the whole system, we study the problem in
this report.

VI. CONCLUSION

In this report, we have derived bounds of window size and
queue length of the AIMD/RED system. Our main findings are
1) larger values of delay and link capacity will actually reduce
the oscillating amplitude of window size and queue length
from their equilibrium in steady state; 2) if we proportionally
increase the link capacity and number of TCP/AIMD flows, the
queueing delay will be slightly reduced, so the multiplexing
gain slightly increases; and 3) although AIMD flows can
adapt their sending rates according to available bandwidth,
larger number of flows leads to longer queueing delay in
the AIMD/RED system. Thus, we should limit the number
of AIMD connections in a link or promote to use more
conservative AIMD parameters to bound the queueing delay
and loss. The theorems given in the report can also help to
predict and control the system performance for future Internet
with higher data rate links multiplexed with more flows with
different parameters.

There are many interesting research issues worth further
investigation: a) how to deploy effective admission control for
TCP/AIMD flows to bound delay and loss; b) how to adapt

AIMD parameter pair to ensure that the system can converge
to the equilibrium quick enough and to control the queueing
delay and loss in the network; and c) how to extend the work
to heterogeneous flows over multiple bottleneck links cases.
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