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Abstract—Internet performance depends on the Additive In-
crease and Multiplicative Decrease (AIMD) congestion control
algorithm deployed in the end systems and the Random Early

signals to all on-going flows. AIMD and RED are considered
key factors to the overwhelming success of the Internetclwvhi
Detection (RED) queue management scheme deployed in the h‘?i experlenkced exdeOS||ve grO\(/jvth gjlv(ejr the past two d(cajcades,
intermediate systems. Previous research based on the fluid- WIth network speeds almost doubled every year and new

flow model indicated that the TCP/RED system may not be applications emerge quickly. Future Internet will beconme a
asymptotically stable when the feedback delay becomes large even more diversified system. It will contain heterogeneous

or when the link capacity becomes large. However, so long as yjreless and wired links with speeds varying from tens of &bp

the system operates near its desired equilibrium, the network
performance (in terms of efficiency, loss rate, and delay) is
still appreciable. In this report, using the fluid-flow model for
a generalized AIMD/RED system, we derive theoretical bounds
of the AIMD flow window size and the RED queue length, as
functions of number of flows, link capacity, RED queue parame-
ters, and AIMD parameters. Numerical results with Matlab and
simulation results with NS-2 are given to validate the correctness
and demonstrate the tightness of the derived bounds. Our main
findings are: 1) larger values of round-trip delay and link capacity
will actually reduce the oscillating amplitude of window size
and queue length from their equilibria in steady state; 2) if
we proportionally increase the link capacity and the number of
AIMD flows, the queueing delay will be slightly reduced, so the
multiplexing gain slightly increases; and 3) although AIMD flows
can adapt their sending rates according to available bandwidth,
larger number of flows leads to longer queueing delay in the
AIMD/RED system. Thus, we should limit the number of AIMD
connections in a link or promote to use more conservative AIMD
parameters to bound the queueing delay and loss. Our results
can also help to predict and control the system performance for
future Internet with higher data rate links multiplexed with more
flows with different parameters.

Index Terms—Boundedness, AIMD/RED system, time delay
system.

I. INTRODUCTION

to tens of Gbps, with flow round-trip delays varying from ms to
seconds. It will also support various multimedia applicas
with different throughput, delay, and jitter requirements,
immediate question is whether the AIMD/RED system can be
stable, scalable, and efficient for the next generatiorriet?

Internet stability has been an active research topic since
its first congestion collapse was observed. With a fluid-flow
model of the system, it has been proved that, without feddbac
delay, the AIMD congestion control mechanism, coupled with
the RED queue management, can ensure asymptotic stabil-
ity [15]. However, with a non-negligible feedback delaye th
AIMD/RED system may not be asymptotically stable when the
delay becomes large and/or when the link capacity becomes
large [3].

On the other hand, the Internet is a very dynamic system,
and can tolerate some transient congestion events. InTfae,
controlled flows aggressively probe for available bandwidt
the network, and create transient congestions. Even tliersys
is not asymptotically stable, so long as the end systems do
not overshoot the available bandwidth too severely, theadive
system efficiency can still be very high, and the packet loss
rate and queueing delay can still be well bounded. Thergfore
it is critical to investigate, if the network may operate ttes

The first congestion collapse in the Internet was observed @way from the desired equilibrium state, what the thecaetic

1980’s, although the Internet was in its infant stage attiha.

bounds of the system are.

To solve the problem, Van Jacobson proposed the Transmissio Different from the previous work [1]-[4], [15], [16] to
Control Protocol (TCP) congestion control algorithm basefind the conditions to ensure system asymptotic stabilitig t
on the Additive Increase and Multiplicative Decrease (AIMD report derives the theoretical bounds of the system, i@ysfl
mechanism in 1988. Since then, the TCP congestion controbngestion window size and intermediate systems’ queue
algorithm has been widely deployed in the end systems tength, given the number of flows sharing the link, their AIMD
respond to network congestion signals and avoid netwogkarameter pairs and round-trip times (RTTs), link capacity
congestion collapses. On the other hand, the active queaed RED queue parameters. Using the fluid-flow model of
management algorithms, Random early detection or Randangeneralized AIMD/RED system, instead of applying the
early discard (RED), have been developed and deployed in thgapunov-like method, we derive a tight upper bound of
intermediate systems to fairly distribute network conigest congestion window size and queue length by directly stuglyin



the inherent properties of AIMD/RED systems. With clearly For all AIMD-controlled flows with the samey 3) parani-

defined bounds, the system is considered marginally stabkter pair and round-trip delay, the AIMD fluid model relates t

The definitions of stability are listed below, which follolwdse the ensemble averagex key network variables [4], [10], and

in [19], [20]. is described by the following coupled, nonlinear differaht
Definition 1: Consider dynamic systems with time delay ofequations:

the following form:

do dW(t) o 201-§)  W(-RW) ,
= = () a(t = n(®), -, 2t —7n(1))) i T RG  1+0 W (t) R(t_R(t))p(t R(t))
wherexeR™, f: IXR"xR"x---x R™ — R™ is continuous. N(t) - W(t)
Let 7 = sup,_; _,, 7(t). The trivial solution of the system is dq(t) R(t -G ¢>0 1
said to be dat {N(t) W(t) cyt —0 @)
« uniformly boundedf there exists a constant for every R(?) 1

€ (0, ¢), there isB = B(a) > 0, such that for any
f(t)GC[[to - T, to],Rn], ||I(t,t0,£)|| <B for all ¢ > to
when ¢ < a;

« stableif for every e>0 and ¢tc€R,, there exists some
0=4(to, €)>0 such that for any(¢)eC[[to — 7, to], R"],
I€]|<d implies ||z(t, to, &)||<e for all ¢ > to;

« asymptotically stableif the system is stable and for
every to€R ., there exists some=n(to)>0 such that
lims o ||2(%, to, €)||=0 whenever||£||<n;

« marginally stableif the system is stable but not asymp-; . rmediate system.

totically stable. _ o The first differential equation of system (1) describes the
Although asymptotic stability of the AIMD/RED system hasamp( o, 3) window control dynamic.a/R represents the
been extensively investigated, to the best of our knowledggindow's additive increase, whereaX1 — 3)W/(1 + 3)
this report is the first one to present performance bounds ppresents the window's multiplicative decrease in respon
.the. system. The derived theoretical bounds_ provide IMportaty packet dropping or marking probability Since the AIMD
insights on which system parameters contribute to highl-0sckow's window size in a practical system oscillates between
lations of the system and how to choose system parametef§;  andiv,..., its average window siz& over a round
(1
y (

where {a}" = max{a,0}, « > 0, 8 € [0,1]; W > 1 is the
AIMD window size (packets), ang € [0, ¢gmax] is the queue
length (packets) at timé. W and ¢ in the fluid-flow model

can approximate the ensemble averages of flow’s congestion
window size and queue length respectively in the real system
R(t) is the round-trip time withR(t) = % + T, (s), where

C' is the link capacity (packets/s) arfg, is the deterministic
round-trip delay.N (¢) is the number of AIMD flows, ang(t)

is the probability of a packet being dropped or marked by an

to ensure system efficiency with bounded delay and loss. The (1 4+ g)W,,..../2. Each time, the window size is decreased
theorems given in the report can also help to predict thesyst py (1 — gy, = 2(1 — B)W/(1+ B). The second equation
performance for the future Internet with higher data raté anmogels the bottleneck queue length as simply an accumulated
more flows with different flow parameters. difference between packet arrival ratéW/R and link ca-

The remainder of the report is organized as follows. Sec. Hacity C'. {-}* in the model guarantees that queue length is
introduces the model of the generalized AIMD/RED systemjyon-negative.

Sec. Il studies the boundedness of AIMD/RED systems with |1 should be noted that, in the fluid-flow mode}, and

feedback delay. In Sec. IV, numerical results with Matlad anyy, 5re positive and bounded quantities which approximate
simulation results using NS-2 are presented to validate thge ensemble averages of queue length and window size in
derived bounds, and the impacts of different system paemsiet practical systems. In ergodic systems, ensemble averagdseq
on the system performance are discussed. Related workiiigie average. The values gfand W in the fluid-flow model
discussed in Sec. V, followed by concluding remarks itan be used to predict its time average over a round in a
Sec. VI practical system. Given the AIMD window size oscillating

betweensW,.x and W, in a round, the average duration
Il. A FLUID-FLOW MODEL OF AIMD/RED SYSTEM of a round equalg(1 — B)WR/[(1 + B)al.

A stochastic model of TCP behaviors is developed using Ye consider the popular Active Queue Management (AQM)
fluid-flow and stochastic differential equation analysigin]. ~Scheme, RED, in the system (1). With RED, the packet drop-
Simulation results have demonstrated that this model accBiNg or marking probabilityp, is determined by the average

rately captures the dynamics of TCP. We extend the fluid-flofUeue lengthy,.::

model for general AIMD¢, [3) congestion control: the window { 0 0 < Guer < ming,

Kp(gact — ming,), ming, < gaer < maxyy, (2)
17 Qact > maxyp

size is increased by packets perRTT if no packet loss
occurs; otherwise, it is reduced o times its current value.
The general AIMD congestion control has been proposed to
support hetemgene_ou_s applications with different toleezon 1A round is defined as the interval between two time instantsttieaflow
flow throughput variations [12]-[14]. reduces its congestion window size consecutively.



where K, > 0. When go¢ < ming,, 228 — 2 the window A Upper Bound on Window Size 3

dt R’
size of AIMD flows will keep increasing and will not converge Theorem 1:Let UB > 0 be the largest real root of
to any value. Thus, in the following, we will discuss the R-C a?(1+ )
stability of this model wheng,.;> min,,. Without loss of UB-(UB—a)-(UB~— -~ " a)? = 0 HINE,
p

generality, letq(t) = quct(t) — mingy,. In addition, since the

queue behaves in the same way as a Drop-Tail queue oribenW (t) < UB for ¢t > 0. a

Jact €XCEEdSnax,,, We choosanax,, to be sufficiently large Proof: With (1) and (2), we note that’ < — for ¢t > 0,

such thatk, (max;, — ming,) = 1. sinceW (t) > 1 andq(t) > 0. For 7 > 0, taking integration
Eq. (1) is a generalized TCP/RED congestion control modedn both sides front — = to t gives

which includes the models studied in [2], [4], [10]. If we o

choosea = 1, 8 = 0.5, (1) is equivalent to the traditional W) -Wt-r)< 5.7 for 20 ®)

TCP/RED TT‘O‘?'e' in [_10]' o We show that the/B (> 0) in the theorem is an upper
The equilibrium point(W*, ¢*) for (1) and (2) is given by pound of W(t) for t > 0, i.e., if W(t) = UB for some

R-C a1 + B)N2 t =t >0, thenW (t;) < 0.
W* = "=, g = 22 " With (3) andW (t,) = UB, and takingr = R andt = ¢1,
N 2(1 - B)R2C?*K,
we have
RemarksAt the equilibrium, the total arrival rate equals the W(ti—R)>UB — a. 4)

total link capacity, so the link bandwidth can be fully wéid. . > o
If the window size is larger thail/;, the queue will build up glr?;?:atlhr?ffr/‘n/lgtela >Tl) 2 UB —a-awhenr € [R, oF] for

which results in a longer queueing delay; if the window size

. . ) ! Consider
is less thariV*, the network load is smaller than its capacity, N Wit
so the network resources are not fully utilized. In condasi 7() - C, g>0
the equilibrium point is also the most desired operatingipoi q(t) = NEW(t)
of the system. {T - C}t, q=0
l1l. BOUNDEDNESS OFHOMOGENEOUSFLOW haIiking integration on both sides froth—aR to t; — R, we

AIMD/RED SYSTEM WITH TIME DELAY

t1—R t1i—R

It has been demonstrated in [3] that an AIMD/RED system/ g(s)ds > % W(s)ds — (a —1)R-C

becomes (asymptotically) unstable with the increase ofidou “*1—*% fr—alt

trip delays of the system. Using the fluid-flow model, sufiitie N-(a=1)-(UB - aa)=(a-1)RC

conditions for the asymptotic stability of AIMD/RED system Which implies

with feedback delays have been derived in [16]. In this

section, we show that even though the system may become gt —R) > [N - (UB — a-a) — R-C] - (a — 1) (5)

(asymptotically) unstable because of the effects of timayle

its window size and queue length are still bounded, and #nceq(t) = 0.

most cases, the upper bounds are close to their equilibria.  Taking f(a) = (a—1)-[N-(UB—a-a)—R-C] and computing
First, we study the delayed homogeneous AIMD systeff€ maximum value off (a) by letting f’(a) = 0 givesa =

defined by (1) with RED defined by (2). We setin;, =0 (N-UB+ R-C+ N-a)/(2aN) and

in RED and assume that the traffic load (i.e., the number f(a) = N(UB - R-C/N —a)?/(2a). (6)

of AIMD flows) is time-invariant, i.e.,N(t)=N. With ever- ) .

increasing link capacity and appropriate congestion cpntr _1herefore, it follows from (4), (5) and (6) thall/(¢,) < 0

mechanism, variation of queuing delays becomes relativefjnceU B satisfies

small to propagation delays. In [18], it is revealed that theN - UB-(UB —a)- (UB — R-C/N — a)? a(l+5)

Y

variable nature oRR7T'T" due to queueing delay variation helps 2a 2(1 - B)K,’
to stabilize the TCP/RED system. In light of this, we deriye u S (37)
per and lower bounds of AIMD/RED systems assumii’  Which impliesW (¢) < UB for ¢ > 0. u

to be constant. These results will be a good approximation if
RTT is slightly time-varying. We thus ignore the effect of the If all AIMD flows are TCP-friendly, i.e., the average
delay jitter on the round-trip time and assume that the reundhroughput of non-TCP-transported flows over a large time
trip time of each flow is a constanR(t)=R. scale does not exceed that of any conformant TCP-transporte
Notice that the AIMD/RED system defined by (1) andones under the same circumstance [11], the3( pair should
(2) are described by delayed differential equations, itain Satisfies the TCP-friendly condition = 3(1 — 5)/(1 + )
conditions are given by < W (¢) < W* and0 < ¢(t) < ¢* on  derived in [14], [15]. Thus, the above equality (7) becomes
the intervalt € [-R, 0]. According to (1), it is also reasonable 3o (®)
that we letlV (t) < & for t € [-R, 0]. NK,

UB-(UB—aq)-(UB—RC/N —a)? =



By the continuity property ofUB - (UB — «) - (UB —  global lower bound does not provide much information #&bout
R-C/N —«)? and the fact that the RHS of (7) is always greatethe performance of AIMD/RED systems.
than zero, we can conclude that the largest root of (7) must Since window size oscillates around its equilibrium in the
be greater thaR-C'/N + «, where R-C'/N is the equilibrium steady state, the amplitude of the oscillation is more irtgyar
value of the window size for AIMD/RED system. Thereforethan the global lower bound. Next, We will show the local
the oscillation of the window size from its equilibrium velu lower bound of the window size after the first time it reaches
will increase with the increment aft and the decrement of the peak value at moment. This local lower bound is
K. In addition, the upper bountl B itself will increase with more useful for understanding the performance of AIMD/RED

the increment ofR-C, o and the decrement a¥, K. systems.

It is also noted that the upper bound derived in Theorem 1 Theorem 3:Define7; andUQ as
is a global one for the time, i.e., the window sizelV/ () R.C
will not go aboveU B for anyt > t¢;. If we assume, instead, UB — -~
that there existg; > t; and AW > 0, such thatW (¢}) = = 51-05) CK, RC
UB + AW, then there must be somé € (0, t; —t;) such 155 N Lo I Ag+ AW (g} + Aq)]
thatW(t) — ') = UB andW (] — ') > 0. However, similar

L, L

to the proof of Theorem 1, we haw& (¢) —7’) < 0, which is UQ — i {(qS—&-Aq)—i—(g-UB—C)-(Tl +R)),

a contradiction. Therefore, the window size is upper bodnde

by UB for anyt > 0.

B. Lower Bound on Window Size and Upper Bound on Que
Length

In the previous subsection, we proved that the AIMD

u

Ag>0,
AW elo, UB—%]

whereU B is defined in Theorem 1. Let B, > 0 satisfy

e
LB2~(LB2+2(1T_5)oUB2~Kp~UQ7a)~Kp~UQ - m

1

R

window size IW(t) is bounded from above, and an uppefihenq(t) < UQ for t > 0 and W (t) > LB, for t > t;.

bound, U B, is defined by (7). In this subsection, we show

Proof: We first derive the upper bound ¢ft) for ¢t > 0.

that the window size is also bounded from below while the\t momentt¢ = ¢,, W(t) reaches its peak value. To get a

gueue length is upper bounded.

2
Theorem 2:Define A := o MUB and let
R 1+6 R
LB; > 0 be the root of
_a(l+p8)
LB, -(LBy — AR) = 51-3)

thenW(t) > LB, for ¢t > 0.

Proof: From Theorem 1W (¢) < UB for t > 0, which
implies
(6%

: 21-p)UB*
W)z R 148 R =4
It can be seen from the definition 6fB that A < 0. We show
that LB; > 0 is the lower bound oV (¢t) for t > 0, i.e., if
W(t) = LB at timet =ty > 0, thenW (t5) > 0.
Taking integration on both sides from — R to ¢ gives
Wty — R) < W (ta) — AR=LB; — AR.

Since dropping/marking probability(t) = K, - ¢(t) < 1
: o 20 —p) LB, (LB, —AR)
> = — .
for all ¢, thfan W(ts) > = 15 7
Therefore,IW (t2) > 0 since LB; satisfies
_a(l+p)
LBy (LB = AR) = S )
which impliesW (¢) > LB; for ¢ > 0. |

Notice thatLB; in Theorem 2 is the lower bound &¥(¢)
for all ¢t > 0, which is a global one. By similar analysis to
the upper bound of window siz€ B, it is easy to check that
the window sizelV (¢) will not go below LB; for anyt¢ > t5.
However, the value of B; is actually very small since(1+
B3)/(2(1—p)) is fairly small compared te- AR. Therefore, the

loose upper bound of(t), we assume thalV(¢) does not
decrease for some time aftér, and thusg(t) increases at

N .
the rateEUB — C. Momentt} is chosen such thaf(¢})

q* + Ag with Ag > 0, then W (¢) decreases from] while
q(t) keeps increasing till moment such thatj(t2) =0 (i.e.,
W(ts) = R-C/N). Therefore,q(t2) is the local maximum
value of ¢(¢). It should be noticed that this estimate gft)
might be greater than the real maximum valueg(f) since
W (t) may not stay at its peak value aftgr andq(t) will still

. . N
increase aftet,, but with the rate less tha%UB - C.

Sﬁ-UB—C.

From above analysis, fare [}, 2], ¢(¢) 7

Thus,

to
/t/
1

which implies

G(s)ds < (% “UB—-C)-(t2 = t))

<

ftz) < alt) + (5 UB=0)- (2~ 1)

N (10)
(qE§+AQ)+(§-UB—C)~(tz—t’1)

To estimate the length of the intervigl, ¢], for ¢ € [t} +
R, to], it follows from the analysis above that

W) 2 W)= o
g(t—R) > q(t) =q5 +Ag,
W(-R) > W R)= o0 4 AW,
for someAg > 0 andAW € (0, UB — &2,



W(t) < _2(1 - 6) . C'KP

. R-C
S T Uy5 N [AW(ag + Aq) + —7Ad]

(11)
fort € [t] + R, ta].
On the other hand,

. W(s)ds = W(ts) — W(t) + R) > RTC —UB. (12)

t'+R
It follows from (11) and (12) that,
R-C 21-8) CK, /
- < - N P2 . =
N UBs 144 N (;QCtl k)
AW (g5 + Ag) + — Ad]
ie.,
to—t1—R <
21-3) C-K, RC .
(1+5)' Np~[ N Aa+ AW (g + Aq)]

With the definition ofT7 in the theorem, we have — ¢} <
T1 + R. Therefore, it follows from (10) that

(@5 +00)+(X-UB-C)-(1y + R)},

1) < inf
q(t) < in 7

Ag>0,
AWE[0,UB— %]

(13)
i.e., q(t) < UQ for t > 0, which indicates that/Q is the

Fig. 1. Theoretical and Numerical Bounds of window size aneugulength
with different (o, 8)

IV. PERFORMANCE EVALUATION

In this section, numerical results with Matlab and simwalati
results with NS-2 are given to validate the theorems and
evaluate the system performance with different parameters

A. AIMD parameter pairs

First, we investigate how the AIMD parameter péir, ()
affects the bounds of window size and queue length. Let
N, R, C and K, be constants:N = 10,R = 0.1sec,

C = 1000 packet/sec ands,, = 0.01. The AIMD (a, 3)
pairs are chosen to be TCP-friendly, varying frodyq, 1/4)

upper bound of the RED queue length. Since the packet losstm (3/31, 15/16), and the results are given in Fig. 1. It can be
a RED queue is proportional to the queue length, the derivesten that for the upper and lower bounds of the window size
qgueue length upper bound also reflects the upper bound arfid the upper bound of the queue length, the numerical sesult

packet loss rate.

We finally show thatLB; > 0 is a lower bound ofi¥/(t)
for t > tq, i.e., if W(t) = LBy at timet = t5 > t;, then
W(ts) > 0.

With (7) and (13),

: a 2(1-p8) UB?
> - 2 K, - 14
for ¢t > 0, we have
o 2(1 - ) 2
Wi(s)ds>a— ——-UB*“- K, -UQ
ta—R () 1+,8 P

W(ts — R) SLBz+2(11+_§)

It follows from (13) and (15) that,

2(1-75) . LBg-UW.K
1+ R P

2(1—-p)

-UB*>- K, -UQ—a (15)

W(t3) Z : UQ

@
R

with UW := LB, + UB* K, -UQ — .

. 1+ 4
Therefore, W (t3) > 0 if LB is chosen to satisfy
_a(l145)
LBy - UW-K, UQ = 20 5) (16)

and thusL B, is the lower bound of¥V (t) for ¢ > ¢;. |

are all within the bounds given by Theorem 1 and Theorem 3,
which verifies the correctness of the Theorems. In addition,
the upper bound of the window size given by the Theorem
is very tight. The one for queue length is a loose bound as
mentioned in the proof of Theorem 3. The theoretical lower
bound of window size is not tight because the approximation
of W (t) in (14) is not very accurate. How to find a tight lower
bound for window size will be a future research issue.

Another observation is that the differences between numer-
ical and theoretical results is getting smaller (as ) pair
varies from 9/5,1/4) to (3/31, 15/16), which shows that the
theoretical results become tighter when the value3afets
larger.

In ideal cases, the window size should converg&i6'/N,
which is10 packets peRRT'T" in the above cases. The results in
Fig. 1 show that with a smaller value afand a larger value of
0, the AIMD flows have less oscillation amplitude around the
optimal operation point, so they can utilize network resesr
more efficiently with less delay and loss in steady states &hi
because, with a smaller value of the AIMD flows overshoot
the available bandwidth in a slower pace; with a larger value
of 3, the AIMD flows will not decrease drastically for any
single packet loss. Also, as shown in Fig. 1, the upper bound
of the queue length becomes smaller wi;tthus, the average
gueueing delay (and thus loss rate) becomes smaller inystead
state.
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Fig. 2. Traces of window size and queue lengif=10, C=10000 packet/secR=0.05 sec andK,=0.005

Fig. 2 shows the traces of TCP flows with AIMD parameteof AIMD flows with the smallest value of among the mixed
pair of (1,1/2) and those of AIMD{(/5,7/8) flows. Here, traffic to determine the upper bounds of heterogeneous flows
N=10, C=10000 packet/sec,R=0.05 sec andK,=0.005. systems.

For NS-2 simulations, we sef.,;, of the RED queue to  Theoretical bounds for heterogeneous-flow AIMD/RED sys-
be 20 packets. Therefore, the upper bound of window sizeem can be obtained by applying similar approach in the
of each flow should be enlarged Wy,.;,/N = 2 packets, report. But it should be noticed that the upper bound of
and the upper bound of the queue length should be enlargethdow size derived for the heterogeneous-flow system lsy thi
by Qumin = 20 packets. We compare the theoretical boundmethod is usually not as tight as that for the homogeneous-
with both the average window size among all flows and itow system, because the interactions among heterogeneous
time average of window size over a round. Both the numericlows are implicitly expressed in the fluid-flow model and not
results with Matlab and simulation results with NS-2 shoatth easy to calculate.

although the window variation of AIMO(/5,7/8) in steady

state is smaller, it takes longer time for AIMD(, 7/8) flows ~ B- Impact of system parameters

to converge to the steady state. Simulation results alsmdem In the following, we study how the parametets, R, C
strate the tightness of the upper bound of window size. Agrothand K, affect the bounds of window size and queue length.
interesting observation is that although the upper bound ¥e choose(w, ) pair to be (, 1/2) and (1/5, 7/8), and
queue length is not tight comparing to the time average afbtain the results with different network parameters asvsho
gueue length, it is close to the maximum instantaneous queineTables | and II.

length in steady state. 1) Round-trip delay and link capacityFirst, comparing

Considering that the future Internet might contain mixedows 1 and 2 in both tables. By enlarging the delay from
traffic with different AIMD parameters, we further study the0.02 sec to0.05 sec (by 2.5 times), the upper bound of
performance of the AIMD/RED system with heterogeneouwindow sizes only increases by.54 times and1.86 times
flows. Fig. 3 shows the window trace and queue lengtfor TCP and AIMD(/5,/,7/8), respectively, which means
when TCP flows and AIMDL/5, 7/8) flows share the bot- a larger delay reduces the relative oscillation amplitufle o
tleneck. Parameters are firstly choserCas10000 packet/sec, window size. In addition, the upper bound of queue length
K,=0.005, andR = 0.05 sec for5 TCP flows competing with is decreasing. Similar trend can be found if comparing rows
5 AIMD(1/5, 7/8) flows. For comparison, we also choose4 and 5 in both tables. This is a surprising result. From [3], a
C'=20000 packet/secK,=0.005, and R = 0.05 sec for10 longer delay may drive the system from stable to unstable.
TCP flows andl0 AIMD(1/5, 7/8) flows. As shown in Fig. 3, We can explain it as follows. A larger delay means that
TCP window size oscillates stronger than that of AIMP§, the window size increasing speed (in terms of packet per
7/8), but their average window sizes are close to each othesecond) during the additive increase period is smaller, and

Notice that we use the bounds for TCP or AIMDJg, 7/8) the AIMD flows will overshoot the network capacity in a
flows only for comparison. The simulation results show thaslower pace; thus, the upper bound of window size is closer to
the time average window size of all flows are below th& the optimal operating point, and the maximum queue length
of TCP flows. This suggests that we can use the upper bouridssmaller. Similar results are found if we compare rows 4
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Fig. 3. Heterogeneous flowg,=0.005, and R = 0.05 sec

TABLE |
AIMD/RED SYSTEM BOUNDS WITH (e, 8)=(1, 1/2)

No. N R C K, | (W=, ¢%) UB LBs UQ
Num Ana Num Ana Num Ana
1 10 | 0.02 1000 0.01 | (2,375 4.04 441 | 1.52 0.09 51.25 147.50
2 10 | 0.05 1000 0.01 (5, 6) 6.60 6.80 | 213 0.32 28.15 43.30
3 20 | 0.05 2000 0.005 | (5, 12) 6.60 6.80 | 2.12 0.38 56.34 78.0
4 10 | 0.05 1000 0.005 | (5, 12) 6.82 7.10 | 2.78 0.66 39.10 54.60
5 10 0.4 1000 0.005 | (40, 3/16) | 41.30  42.02 | 14.14 0.11 9.85 23.2
6 10 | 0.05| 10,000 | 0.005| (50,3/25) | 51.03 51.15| 16.98 0.18 8.35 14.05
7 20 | 0.05| 20,000 | 0.005| (50,3/25) | 51.00 51.20| 891 0.068 14.89 23.12
8 100 | 0.05| 10,000 | 0.005| (5, 12) 6.28 6.41 | 0.72 0.04 153.16 241.6
9 1000 | 0.1 | 1,000,000| 0.001 | (100, 3/20) | 101.00 101.02| 0.026  0.0002 | 576.95  1024.15
10 | 10000 | 0.1 | 1,000,000| 0.001 | (10, 15) 11.04  11.05| 0.02 1.6%0~* | 67313  10785.0
11 | 10000 | 0.1 | 1,000,000| 0.005 | (10, 3) 11.017 11.023| 0.005 6.91076 | 5941.6.5 10349.4
12 | 10000 | 0.1 | 1,000,000 0.01 | (10,3/2) | 11.011 11.016| 0.002 1.810~¢ | 5713.5  10247.9
and 6 in both tables. By enlarging the link capacity by 2) Number of flows:Comparing rows 3 and 4, or rows 6

times, the upper bound of window size is increased7dy and 7 in Tables | and Il, we conclude that if we increase
andg8.9 times, for TCP and AIMD {/5, /,7/8), respectively. the number of flows and the link capacity proportionally, the
Although enlarging the link capacity may drive the systenbounds of window size are almost un-affected. With twice the
from stable to unstable [3], the oscillating amplitude ofidow  flows multiplexed in a twice capacity link, the upper bound of
size (relative to the equilibriumi¥*) and queue length will queue length increases less than twice. Therefore, thargueu
actually decrease. The window and queue trace$0oTCP delay bound is slightly reduced because of the multiplexing
flows in a link with 1000 packet/sec and0,000 packet/sec gain.
are depicted in Fig. 4. The conclusion is that larger values
of delay and link capacity will actually reduce the osciliat Comparing rows 6 and 8 in Tables | and Il if we increase the
amplitude of window size and queue length, and significantigumber of flows in the same link, th¥ - U B becomes larger.
reduce the maximum queueing delay. In other words, the oscillation of window size will increase
significantly if the number of flows in a link increases, and



TABLE I 8
AIMD/RED SYSTEM BOUNDS WITH(a, 8)=(1/5, 7/8)

No. N R c Ky, | (W*, ¢%) UB LBy UQ
Num Ana Num Ana Num Ana
1 10 0.02 1000 0.01 (2, 37.5) 2.81 3.03 1.76 0.59 55.39 135.50
2 10 0.05 1000 0.01 (5, 6) 5.50 563 | 4.19 1.77 17.64 31.20
3 20 0.05 2000 0.005 (5, 12) 5.51 5.65 4.19 1.65 35.3 65.2
4 10 0.05 1000 0.005 (5, 12) 5.62 5.80 | 4.27 2.10 29.13 48.70
5 10 0.4 1000 0.005 | (40, 3/16) 40.25 40.29 | 36.79 5.38 3.10 5.21
6 10 0.05 10,000 | 0.005 | (50, 3/25) | 50.23 50.26 | 45.93 6.31 2.48 3.85
7 20 0.05 20,000 | 0.005 | (50, 3/25) | 50.23 50.26 | 43.99 3.24 4.28 7.10
8 100 0.05 10,000 0.005 (5, 12) 5.34 5.46 3.76 1.39 66.59 83.8
9 1000 | 0.1 | 1,000,000 0.001 | (100, 3/20)| 100.20 100.21| 39.26 0.025 | 127.34 211.15
10 | 10000 | 0.1 | 1,000,000| 0.001 (10, 15) 10.22 10.23 | 2.02 0.02 1666.5 2361.4
11 | 10000 | 0.1 | 1,000,000| 0.005 (10, 3) 10.208 10.211| 0.07 0.00097| 1354.8 2158.8
12 | 10000 | 0.1 | 1,000,000| 0.01 (10, 3/2) 10.205 10.207| 0.015 0.00024| 1265.7 21115
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Fig. 4. Bounds of TCP window size and queue length with déffeC'

the queueing delay will also increase significantly. This cabounds of both window size and queue length.
be understood asv. AIMD(«, ) flows will increase their  The |ast four rows of Tables I and Il are the upper bounds of
windows by Na packets per RTT, and the larger the increasinghe TCP/AIMD window size and queueing delay in a highly
rate during Additive Increase stage, the more significatfitty muyltiplexed, high bandwidth (tens of Gbps), and long delay
flows will overshoot the link capacity. This suggests that wey.1 sec RTT) link. It can be seen for TCP flows, the queuing
should limit the number of TCP/AIMD connections in a linkgelay can be bounded tb0.785 ms if the K, is chosen
or promote to use more conservative AIMD parameter pairs {§ be 0.001. The delay bound can be slightly reduced to
ensure that the queueing delay (and also the loss rate)sis 18§ 349 ms and10.248 ms if K, is increased t6.005 and0.01,
than certain threshold. respectively. The results show that althougijcan be adjusted

3) K,: Comparing rows 2 and 4 in Tables | and Il, for ato control the queueing delay in the system, the impact is
smaller value off{,,, the RED parameter will result in a larger limited for high bandwidth cases. Limiting the number of flow



or using more conservative AIMD pairs are more effective iRIMD parameter pair to ensure that the system can cofverge
reducing queueing delay. For instance, if the number of flowt® the equilibrium quick enough and to control the queueing
is reduced tol00 or 1000, the queueing delay bound can bedelay and loss in the network; and c) how to extend the work

reduced to0.241 ms or 1.079 ms, respectively. If using an to heterogeneous flows over multiple bottleneck links cases

AIMD parameter pair of 1/5, 7/8), the queueing delay for
10000 flows with K, = 0.001 can be bounded t@.361 ms
only.
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V. RELATED WORK

Internet stability analysis have received wide attentien r
cently [1]-[4]. For delay-free marking scheme, the fluid- [1]
model of the AIMD/RED system has been proved to be
asymptotically stable [15] by applying the method of Lya- [2]
punov function. It is well known [3] that the system may
become asymptotically unstable in the presence of timeydela [3]
In [16], sufficient conditions for the asymptotic stabilitf
AIMD/RED system with feedback delays are given in terms[4]
of linear matrix inequalities. However, simulation resushow
that even though the system is not asymptotically stable
it oscillates around the steady state periodically. Matida {
by this phenomenon, we demonstrate in this report that the
delayed AIMD/RED system is bounded from above and belowl6]

The boundedness issue has been studied in [6]-[8] by
applying Lyapunov-like method for some TCP-like congeastio [7]
control algorithms. [9] justified the use of deterministiodel
for Internet congestion control and [5] gave the upper baxmd
the transmission rate for two kinds of TCP-like traffic. How-
ever, to the best of our knowledge, the theoretical upper and
lower bounds of window size and queue length of AIMD/RED [9]
system considering feedback delays have not been reported i
the literature. Since the bounds are closely related tcesyst [10]
performance, which is critically important to obtain inpdle
understanding of the whole system, we study the problem 1]
this report.

(8]

VI. CONCLUSION (12]

In this report, we have derived bounds of window size and
gueue length of the AIMD/RED system. Our main findings aréls]
1) larger values of delay and link capacity will actually uved
the oscillating amplitude of window size and queue length4]
from their equilibrium in steady state; 2) if we proportitiga
increase the link capacity and number of TCP/AIMD flows, the¢15]
gueueing delay will be slightly reduced, so the multiplgxin
gain slightly increases; and 3) although AIMD flows ca 16]
adapt their sending rates according to available bandwidt
larger number of flows leads to longer queueing delay in
the AIMD/RED system. Thus, we should limit the number; 7,
of AIMD connections in a link or promote to use more
conservative AIMD parameters to bound the queueing deld3?l
and loss. The theorems given in the report can also help to
predict and control the system performance for future treer [19]
with higher data rate links multiplexed with more flows with[zo]
different parameters.

There are many interesting research issues worth furthgn]
investigation: a) how to deploy effective admission cohtoo
TCP/AIMD flows to bound delay and loss; b) how to adapt
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