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Abstract—Considering an optimal investment problem for a
retailer in electricity market, the objective is to seek the opti-
mal investment decision that maximizes the weighted sum of the
expected return and the variance of wealth. Unlike existing works,
the price fluctuation of both the wholesale and retail side of elec-
tricity market is considered, and the retailer can invest its wealth
in electricity market and traditional financial market simultane-
ously. Hence, there is a complicated wealth dynamic, which is the
main challenge in our work. In this paper, by utilizing the method
of Lagrange multiplier and the classical Tchebycheff inequality,
we first show that the investment problem is a quadratic program-
ming problem in terms of the decision variable, and thus has a
unique optimal solution. Then, a closed-form optimal solution is
derived by solving the stationary equation and comparing the fea-
sible solution interval. Based on the optimal solution, we find the
key price, which will affect the investment is the wholesale price
rather than the retail price. Moreover, with a similar analysis
approach, we also provide the optimal solution considering a more
general model, which allows the retailer to purchase the electricity
temporarily to avoid the supply shortage. Extensive simulations
demonstrate the better performance of the proposed solution over
the Kelly strategy widely used in the financial market.

Index Terms—Electricity market, optimal investment, risk man-
agement, smart grid.

I. INTRODUCTION

S MART GRID, as the next-generation power grid, enables
environmentally friendly electricity generation and smart

electricity trading mechanisms, and endows both suppliers and
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consumers with full visibility and pervasive control over their
assets and services [1]–[5]. Hence, the emerging electricity
market enables numerous revolutionary features, such as var-
ious electricity suppliers (e.g., solar or wind generator) and
real-time electricity price, such that the market becomes more
competitive and diverse than the traditional electricity market
[6]–[9]. Consequently, it presents more opportunities for retail-
ers, e.g., electricity retail companies, to make profit by flexible
electricity trading with the grid.

In the emerging electricity market, retail companies purchase
electricity from power companies in the wholesale market and
sell it to end-use customers in the retail market [10]–[12].
Hence, retail companies need to manage two sets of contracts–
one with power companies (i.e., the supply side) and the other
with end-use customers (i.e., the demand side). At the supply
side, the price for wholesale electricity, say wholesale price, can
be predetermined by a retailer and a power company through
a bilateral contract, e.g., a contract in which a mutual agree-
ment has been made between the parties. This wholesale price
depends on the amount of electricity and the time a retailer
intends to purchase. Since the competition in the wholesale
market is inevitable and electricity demands change with time,
the wholesale price is uncertain and fluctuates over time [2].
Thus, in the wholesale market, the retailer is exposed to the risk
caused by the fluctuation of the wholesale price in the whole-
sale market. At the demand side, the price for retail electricity,
say retail price, also fluctuates with time as the real-time price
is used in the retail market [10], [13], [14]. Meanwhile, the
retailer is obliged to serve the varying demand of its customers,
i.e., the electricity demands of customers should be met by the
retailer who is selected as the supplier for the customers. Hence,
in the retail market, the retailer is exposed to the uncertainties
of both retail price and customer demands, and thus needs to
perform risk assessment in electricity trading [15]. Therefore,
in the emerging electricity market, a retail company needs to
predict the electricity prices in both the wholesale and retail
markets (both supply side and demand side) so as to develop an
optimal purchasing strategy.

However, the existing literatures mainly focus on one of the
electricity markets, only the wholesale or retail one. In this
paper, to find optimal investment decisions for a retailer, we
formulate the investment problem using a classical Markowitz
framework in finance [16], i.e., using mean and variance to
model investment return and risk, respectively. The effective-
ness of this framework on investment problems is reconfirmed
recently by Markowitz [17], which motivates us to use this
framework to model the investment problem in electricity mar-
ket. The framework has been applied to model and solve the
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electricity procurement problem in electricity market [18], [19].
Then, the uncertainties in both wholesale and retail sides of
the emerging electricity markets are considered in our model.
Meanwhile, note that in reality, an electricity retail company
can also invest its wealth in the financial market, and thus
our model allows the retailer to invest in both the financial
market (e.g., stock market) and the electricity market [e.g., elec-
tric vehicle (EV) charging market]. By utilizing the method
of Lagrange multiplier and the classical Tchebycheff inequal-
ity, we first prove that the formulated investment problem is a
convex quadratic programming problem, and then we obtain a
closed-form optimal solution by solving the problem with the
method of convex optimization. The major contributions of this
work are summarized as follows.

1) To the best of our knowledge, this is the first work that
investigates the optimal investment decision for a retail
company considering the fluctuations of both wholesale
price and retail price. Our model allows the retailer to
invest in the financial market and the electricity mar-
ket simultaneously, the results reveal how the estimated
return in financial market affects the decision in the
electricity market.

2) We obtain the optimal solution to the proposed problem
with quadratic programming, which can guarantee that
the probability of supply deficiency is lower than a given
small bound. Then, considering a more general model
allowing temporary purchase to avoid supply deficiency,
we also give the relevant optimal investment decision to
the retail company.

3) Compared with the traditional investment problem, we
reveal a surprising property that a high risk may have a
low return for proposed problem. We also observe that the
optimal investment decision is not affected by the retail
price in the electricity market, which is totally different
from that in traditional financial markets.

This paper is organized as follows. Section II discusses the
related work. In Section III, we introduce the system model
and problem formulation. Section IV presents the optimal solu-
tion of the proposed problem. Simulation results are presented
in Section V, followed by the concluding remarks and further
discussions in Section VI.

II. RELATED WORK

Many efforts have been devoted to studying the emerg-
ing electricity market, e.g., electricity pricing and scheduling
[6]–[8], [20]–[23], risk management [15], [24], [25], and invest-
ment decision [26], [27]. For example, the works in [20] and
[21] were concerned with setting the real-time retail price to
maximize the aggregate surplus of users and retailers subject-
ing to the supply–demand balancing. Denton et al. [25] studied
how to measure and manage the market risks in operations by
using option models and stochastic optimization techniques.

On the other hand, the optimal investment problem becomes
a hot research topic recently, which is also the main concern
in this paper. The objective is to maximize the profit while
minimize the risk of the investment in electricity market. The
famous mean–variance framework (Markowitz methodology)

Fig. 1. Simplified illustration of electricity market.

in finance has been widely used to model and solve the
investment problem (e.g., electricity procurement) in electric-
ity market [18], [19], [28]. For example, the authors in [28]
used a mean-variance framework to address the best decision
of peak/off peak forward contracts. In addition, the value-at-
risk (VaR) and conditional VaR (CVaR) methodologies used in
finance can also be used to model the investment risk in elec-
tricity market [23]. Recently, taking new power generation into
consideration, the authors in [26] presented a novel model for
optimization of investments in the electricity market, where the
model can calculate optimal investment strategies under both
centralized social welfare and decentralized profit objectives.
A stochastic programming method is presented to study how
to determine the optimal price based on fixed pricing and the
amounts of purchased electricity from the market and forward
contracts [29].

However, most of these works focused on one of the electric-
ity markets, i.e., only wholesale or retail one. Meanwhile, the
existing works on investment problems in the electricity market
ignored the impact from the financial market. To address these
problems, this paper formulates a novel investment problem by
utilizing a typical mean-variance portfolio model. Compared
with the existing works, the main novelties of this paper include
that enabling the retail company to invest in both the finan-
cial and electricity markets, revealing new properties of the
related investment problem, and providing closed-form optimal
solutions.

III. MARKET MODEL AND PROBLEM FORMULATION

A. Electricity Market Model

An electricity market generally consists of a wholesale elec-
tricity market and a retail electricity market. In the wholesale
electricity market, there exist competing generators who offer
their electricity output to retailers, while in the retail electric-
ity market, there exist competing electricity retailers who can
be chosen by the end-users for their suppliers. As shown in
Fig. 1, suppose that there are a utility company (e.g., genera-
tor), a retail company (supplier), and customers (end-users) in
the electricity market. The retail company purchases electricity
from utility company in the wholesale market, and then sells it
to customers in the retail market.

Let pc be the unit price for the retail company purchas-
ing electricity from the utility company in the wholesale
electricity market, named wholesale price. This price can be
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TABLE I
STATISTICS OF RANDOM VARIABLES

predetermined by a retail company and a utility company
through a bilateral contract, and thus we assume that the whole-
sale price pc is determined and known to the retail company
when it purchases electricity from the utility company. Let pm
be the unit price for the retail company selling electricity to
customers in the retail electricity market, named retail price.
Referring to [30], the retail real-time price program has been
applied in some places and it would be a trend in the future.
We thus assume that real-time pricing is used in the retail mar-
ket and pm is a random variable. Let s =

∑n
i=1 si be a random

variable denoting the total amount of demand electricity for all
customers during a fixed time period (e.g., 1 h or more), where
each si is the demand of customer i for i = 1, 2, . . . , n. Suppose
that a retail company purchases a certain amount of electric-
ity, denoted by u, from the utility company at each trading, and
then we name u as the investment decision variable for the retail
company (here u is not the total generated electricity and thus
could be less than s). Assume that there is a fixed trading period
between retail company and utility company. After a fixed time
period of sale, the retailer still has u− s electricity not been
sold. The unit price of the remaining electricity, denoted by pd,
depends on the wholesale price or the price it can be sold out at
that time when the retail company needs to make the next round
investment decision. We model pd as a random variable since
the future wholesale price is not known to the retail company
and may depend on the electricity generation and requirement
at that time. In this paper, we assume that it is not necessary
for a retail company to store the electricity and the electricity is
generated and stored in the power generator. Each buying pro-
cess of a retail company just guarantees that the retail company
can get a certain amount of electricity from the generation with
a wholesale price.

Note that the relevant statistics of the above random vari-
ables can be regressed from their historical data in the market.
Thus, we assume that the mean and variance of all random vari-
ables considered in this paper are provided. We summarize all
of them in Table I. Since pc is assumed to be a constant, its mean
and variance are pc and 0, respectively. The mean and variance
of the random variables are positive numbers denoted by e and
σ2, respectively, and it is assumed that these random variables
are mutually independent.1

B. Problem Formulation

Assume that a manager of the retail company (the investor)
joins the electricity market with an initial wealth w0. The

1Since most of the demand depends on the customers’ preferences especially
when the real-time price is not very high, the price has little affection on the
demand. Thus, we assume that the demand s is independent of the price pm.
When the affections of the price on the demand cannot be ignored, e.g., when
there are some price incentive policy, the investment problem would be more
challenging and will be left as the future work.

manager allocates part of his wealth to purchase electricity from
the wholesale electricity market for reselling it in the retail
market, and allocates the remainder wealth to one asset in the
financial market (e.g., put it in a bank or buy a kind of stock).
Assume that the return of the asset in the financial market is ro
which is also a random variable. After one trading period, the
total wealth hold by the manager is denoted by w1. Then, the
wealth dynamic is given by

w1 = (w0 − pcu)r0 + pms+ pd(u− s)

= w0r0 + u(pd − pcro) + s(pm − pd)

= w0r0 + ur1 + sr2 (1)

where r1 = pd − pcr0 and r2 = pm − pd.
Let r = [r0, r1, r2]

T . Since the mean and variances of ran-
dom variables r0, pm, and pd are given, it is easy to obtain the
mean and covariance of random vector r, i.e.,

E[r] = [er, ed − pcer, es(em − ed)]
T (2)

and

Cov[r] =

⎡
⎣ σ2

r −pcσ
2
r 0

∗ σ2
d + p2cσ

2
r −σ2

d

∗ ∗ σ2
m + σ2

d

⎤
⎦ . (3)

A retail company needs to provide a sufficient electricity
to customers, such that the demands of customers are satis-
fied. Hence, the retail company usually should purchase enough
electricity from the utility company at each trading period to
meet the requirement of customers, i.e., u ≥ s. Otherwise, the
retail company may need to purchase the electricity with a
much higher price (e.g., retail price) from other retail compa-
nies or utility companies to meet the demands of customers.
In case that the customers’ electricity demands cannot be sat-
isfied by a retail company, they may switch to other retail
companies and thus the retail company will lose its customers.
Considering this issue, it is better for a retail company to
purchase a larger amount of electricity than demands at each
trading period. However, note that the total demands s is a ran-
dom variable, u ≥ s cannot be guaranteed completely. Thus, we
give a constraint to guarantee a reliable service to the end-users
as follows:

Pr[u− s ≤ 0] ≤ ε (4)

i.e., the decision u should ensure that the probability of u < s
is less than a given small value ε, where Pr[u− s ≤ 0] is the
probability of short supply. Meanwhile, the decision u generally
should satisfy

0 < u ≤ w0

pc
. (5)

Although the remanning electric quantity u− s can be used
for next-round selling, it does not mean that purchasing elec-
tricity as much as possible is the best decision as the unit
price pd is a random variable which could be lower than
pc. This is undesirable to the retail company, and thus the
overinvestment in electricity may bring some risk to the com-
pany. Moreover, by purchasing a less amount of electricity, the



HE et al.: OPTIMAL INVESTMENT FOR RETAIL COMPANY IN ELECTRICITY MARKET 1213

manager can have more money to invest in financial market.
Therefore, it is interesting to seek an investment decision for
a retail company at each trading period to optimize given cer-
tain objectives. Mathematically, we formulate a mean–variance
investment problem which can be posed in one of the following
two forms:

max
u

E[w1]

s.t. Var[w1] ≤ �,

(1), (4), and (5)

(6)

or

min
u

Var[w1]

s.t. E[w1] ≥ ε,

(1), (4), and (5).

(7)

By varying the value of � in (6) or ε in (7), the set of efficient
solutions of them can be generated. By utilizing the method of
Lagrange multiplier, an equivalent formulation to either (6) or
(7) is given as

max
u

J(u) = αE[w1]−Var[w1]

s.t. (1), (4), and (5) (8)

where α > 0 is a weight for the expected return of wealth. A
larger α will increase the importance of the expected return
while decreasing the importance of the risk for the invest-
ment. The objective function in (8) is a tradeoff between the
expected return and the associated risk. Clearly, if u∗ is the
optimal solution of (8), then it is the optimal solution of (6)
with � = Var[w1]|u∗ or of (7) with ε = E[w1]|u∗ . Since we
can vary the values of α to meet different value of � or ε, we
only consider (8) in this paper.

The main differences between the above problems and tra-
ditional financial investment problem, e.g., [31] and [32], are
given as follows.

1) We have a more complicated wealth dynamic function,
as more random variables, the prices, pm and pd, and the
demand s will affect the return of the investment in an
electricity market, while there is only one random variable
r0 will affect the return of each investment in a financial
market.

2) We have more complicated investment risk, which
depends not only on the fluctuation of the prices of invest-
ment assets (e.g., electricity and stock) but also on the
fluctuation of the electricity demands. As a result, the
common sense in the financial market, a higher invest-
ment risk is associated with a higher return, may no longer
hold.

3) Considering the special requirement in power market,
the customers demands usually should be met; there is
an additional constraint [the constraint (4) in (8)] to the
investment in the problem. Under this additional con-
straint, it will be observed that the optimal decision
does not depend on the retail price pm, which is totally
different from that in the financial market.

Problem (8) is a mixed investment problem as it includes
two different markets: 1) the financial market; and 2) the elec-
tricity market. Therefore, it is interesting while challenging to
investigate (8) to help a retail company to make an optimal deci-
sion, and analyze how and which the key factors will affect the
investment in electricity market.

IV. CLOSED-FORM OPTIMAL SOLUTION

In this section, we first analyze the relationship between
return and risk of the investment. Then, we provide a closed-
form optimal solution for (8). Based on the obtained optimal
solution, we reveal some important properties.

A. Relationship Between Return and Risk

Taking the expectation on both sides of (1), we obtain the
expected wealth return as

E[w1] = w0er + u(ed − pcer) + es(em − ed) (9)

which is a linear function of decision variable u. Clearly, E[w1]
is an increasing function of u when ed − pcer > 0, but is a
decreasing function of u when ed − pcer ≤ 0. E[w1] is an
increasing function of es when em − ed > 0, and a decreasing
function of es when em − ed ≤ 0. Hence, a higher investment
or a higher requirement in electricity market cannot guarantee a
higher return, it depends on the sign of ed − pcer and em − ed.

Given Var[w1] = E[w2
1]−E2[w1], the variance satisfies

Var[w1] = E[(w0r0 + ur1 + sr2)
2]−E2[w0r0 + ur1 + sr2]

= w2
0Var[r0] + u2Var[r1] +Var[sr2]

+ 2w0uCov[r0r1] + 2w0E[s]Cov[r0r2]

+ 2uE[s]Cov[r1r2]. (10)

Then, by using (3), we have

Var[w1] = w2
0σ

2
r + u2

(
σ2
d + p2cσ

2
r

)
+Var[sr2]

− 2
[
w0upcσ

2
r + uesσ

2
d

]
. (11)

Note that

Var[sr2] = E[s2]E
[
r22
]−E2[s]E2[r2]

= (Var[s] +E2[s])(Var[r2] +E2[r2])

−E2[s]E2[r2]

= σ2
s

(
σ2
m + σ2

d

)
+ σ2

s(em − ed)
2

+ e2s
(
σ2
m + σ2

d

)
= B (12)

which is a computable constant. Hence, (11) is simplified as

Var[w1] =
(
σ2
d + p2cσ

2
r

)
u2 − 2

(
esσ

2
d + w0pcσ

2
r

)
u

+B + w2
0σ

2
r . (13)

Clearly, Var[w1] is a quadratic function of u. Taking the
derivative of Var[w1] over u, we have

dVar[w1]

du
= 2u(σ2

d + p2cσ
2
r)− 2(esσ

2
d + w0pcσ

2
r). (14)
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Fig. 2. Relationship between return and risk.

Solving dVar[w1]
du = 0, one obtains a stationary point ũ of

Var[w1] satisfying

ũ =
w0pcσ

2
r + esσ

2
d

σ2
d + p2cσ

2
r

. (15)

Since the coefficient of u2 satisfies (σ2
d + p2cσ

2
r) ≥ 0, Var[w1]

is a decreasing function of u when u < ũ, while it is an
increasing function of u when u > ũ. Hence, at the stationary
point, Var[w1] reaches the smallest value, i.e., the risk of the
investment is minimized when u = ũ.

Based on the above discussions, we have the following
lemma, which provides the properties of the investment.

Lemma 1: Considering (20), we have the following points.
1) If ed − pcer > 0, a larger u leads to a higher E[w1]. When

u ≤ ũ, it has a lower Var[w1]; otherwise, it has a higher
Var[w1].

2) If ed − pcer ≤ 0, a larger u leads to a lower E[w1]. When
u ≤ ũ, it has a lower Var[w1]; otherwise, it has a higher
Var[w1].

From Lemma 1, one sees that a higher return may have a
lower risk, which contradicts to the fact in traditional financial
investment that high return means high risk.

Example 1: Given the statistics of the random variables in
Table I, where the detail values will be provided in the sim-
ulation section, we can utilize (9) and (13) to calculate the
expected return and variance (risk) under different decision u.
Then, we obtain the relationship between return and risk, which
is shown in Fig. 2. It is observed that there is a stationary point
with the lowest risk, which is not corresponding to the low-
est return, and the same risk may be corresponding to a low
return and a high return. Hence, it is important to seek an opti-
mal decision for (8), which will be discussed in the following
section.

B. Optimal Solution

From the above section, the expected wealth return is a lin-
ear function of u and the variance of wealth is a quadratic
function of u. Thus, the objective function is also a quadratic
function of u, which means that (8) is a quadratic programming
problem.

However, we cannot solve (8) directly using quadratic pro-
gramming as (4) is not a convex constraint. Fortunately, by
Tchebycheff inequality, we have

Pr[u− s ≤ 0] ≤ Var[u− s]

(E[u− s]− 0)2
.

Based on the above inequality, one can set a small ε as a upper
bound for Var[u−s]

E2[u−s] , such that the constraint (4) holds, i.e.,

Pr[u− s ≤ 0] ≤ Var[u−s]
E2[u−s] ≤ ε. Note that

Var[u− s]

E2[u− s]
≤ ε ⇔ Var[u− s] ≤ εE2[u− s]

⇔ E[(u− s)2] ≤ (1 + ε)E2[u− s]

⇔ σ2
s − ε(u− es)

2 ≤ 0. (16)

Solving inequality σ2
s − ε(u− es)

2 ≤ 0 gives the results that

u ≥ es +
√

σ2
s

ε or u ≤ es −
√

σ2
s

ε . Since Pr[u− s ≤ 0] is a
decreasing function of u, we obtain Pr[u− s ≤ 0] ≤ ε when

u ≥ es +
√

σ2
s

ε , i.e., (4) can be guaranteed by setting u ≥ es +√
σ2
s

ε . From (5), it follows that the probability Pr[u− s ≤ 0]
has a smallest upper bound ε, which satisfies

ε =
σ2
s(

w0

pc
− es

)2

i.e., if ε <
σ2
s

(w0
pc

−es)
2 , then it needs u > w0

pc
to guarantee (4),

which contradicts to (5). Thus, it is reasonable to assume that

the ε in (4) satisfy ε >
σ2
s

(w0
pc

−es)
2 . Then, we have

es +

√
σ2
s

ε
<

w0

pc
. (17)

Let

A1 = es +

√
σ2
s

ε
(18)

be the lowest requirement of the electricity investment. Then

A1 ≤ u ≤ w0

pc
(19)

can guarantee the constraints of (4) and (5). Therefore, (8) can
be simplified as

max
u

J(u) = αE[w1]−Var[w1]

s.t. (1) and (19). (20)

For (20), note that the objective function is a quadratic function
of u, and both (1) and (19) are linear constraints. By referring
[33], we state the following theorem, which shows that (20) is
a convex optimization problem.

Theorem 1: Quadratic programming: Problem (20) is a con-
vex quadratic programming problem and it has a unique global
optimal solution.

Based on the above theorem, (20) can be solved as follows.
Substituting (1) into J(u) in (20), we obtain the detail expres-
sion of J(u), and then we obtain the stationary point of the
objective function by solving ∂J(u)

∂u = 0. Comparing the value
of the stationary point to the constraint (19), we can obtain the
optimal solution u∗. Define

A0 =
α
2 (ed − pcer) +

(
esσ

2
d + w0pcσ

2
r

)
σ2
d + p2cσ

2
r

(21)
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Fig. 3. Relationship between u and J(u).

which is the stationary point of J(u) and we have the follow-
ing theorem, which provides the closed-form optimal solution
for (20).

Theorem 2: Optimal solution: Considering (20), then u∗

satisfies as follows.
1) If A0 < A1, u∗ = A1.
2) If A0 > w0

pc
, u∗ = w0

pc
.

3) Otherwise, u∗ = A0.

Proof: Submitting (1) into J(u), we have

J(u) = α[w0er + u(ed − pcer) + es(em − ed)]

− (
σ2
d + p2cσ

2
r

)
u2 + 2

(
esσ

2
d + w0pcσ

2
r

)
u

−B − w2
0σ

2
r

=− (
σ2
d + p2cσ

2
r

)
u2

+
[
α(ed − pcer) + 2

(
esσ

2
d + w0pcσ

2
r

)]
u

+ α
[
w0er + es(em − ed)]−

(
B − w2

0σ
2
r

)]
. (22)

Taking the derivative of J(u) over u, we have

dJ(u)
du

=− 2
(
σ2
d + p2cσ

2
r

)
u

+ α(ed − pcer) + 2
(
esσ

2
d + w0pcσ

2
r

)
. (23)

Solving dJ(u)
du = 0, we obtained u = A0, which means that the

objective function J(u) has the maximum value when u = A0.
From (23), one also infers that dJ(u)

du < 0 when u < A0, and
dJ(u)

du > 0 when u > A0. Since u should satisfy A1 ≤ u ≤ w0

pc

due to constraint (19), one can obtain the optimal solution for
(20) as given in the theorem. �

Since (20) is a simplified problem of (8), the optimal solution
given in Theorem 2 is also the optimal solution for (8). Then,
we study the relationship between decision variable u and the
objective function J(u), where the value of J(u) is calculated
from (22). The result is shown in Fig. 3. Under the same setting
of parameters as in Example 1 (provided in Section V), it is
observed from Fig. 3 that there exists an optimal decision u =
978.46 such that J(u) reaches the maximum value. However,
since A1 = 1022.8 [obtained from (18) by setting ε = 5%] in
this case, it follows from Theorem 2 that the optimal decision
for (8) is actually u∗ = 1022.8.

C. Further Discussion

From the above analysis, we have three important insights
into the optimal decision u∗ of (8).

First, the optimal decision u∗ does not depend on the retail
price pm. Note that the possible values of optimal solution u∗

are A0, A1, and w0

pc
. All of them are independent of price pm,

and thus the optimal decision does not depend on the retail
price, which contradicts to the intuition in financial market that
a higher retail price of an asset will motivate the investors to
invest more of this asset. In theory, from (9) and (13), one
infers that the contributions of retail price pm to the objective
function in (8) are esem in expected return and B in variance.
Hence, different u does not affect the contributions of retail
price pm on both return and risk, and thus the optimal u∗ will
not be affected by pm. In fact, this is because that in our mod-
eling, all customers’ electricity requirement should be met, i.e.,
u must be larger than s, and the leftover electricity will affect
the return/profit, and thus the return depends on pd rather than
pm. If we remove the constraint that all customers’ electricity
requirement should be met, then pm will play a role, which will
be discussed in Remark 2.

Second, if ed − pcer = 0, the optimal decision u∗ will not be
affected by the weight α, which means that different balances
between return and risk will have the same optimal solution for
(8). We have the following corollary.

Corollary 1: If ed − pcer = 0, then the optimal solution u∗

for (8) satisfies

u∗ = max{ũ, A1}.

Proof: When ed − pcer = 0, we have

A0 =

(
esσ

2
d + w0pcσ

2
r

)
σ2
d + p2cσ

2
r

= ũ.

Note that

max

{
esσ

2
d

σ2
d

,
w0pcσ

2
r

p2cσ
2
r

}
=

max
{

esσ
2
d

σ2
d
,
w0pcσ

2
r

p2
cσ

2
r

}(
σ2
d + p2cσ

2
r

)
(σ2

d + p2cσ
2
r)

=
max

{
esσ

2
d,

w0pcσ
2
r

p2
cσ

2
r

σ2
d

}
+max

{
esσ

2
d

σ2
d
p2cσ

2
r , w0pcσ

2
r

}
(σ2

d + p2cσ
2
r)

≥ esσ
2
d + w0pcσ

2
r

(σ2
d + p2cσ

2
r)

= ũ. (24)

Then, we have

ũ ≤ max

{
esσ

2
d

σ2
d

,
w0pcσ

2
r

p2cσ
2
r

}
≤ max

{
es,

w0

pc

}
.

From (17), we infer that es <
w0

pc
. Hence, from Theorem 2, u∗

should be the larger one among ũ and A1. �
Note that both ũ and A1 are independent of α, and thus it

follows from the above corollary that u∗ is not affected by the
weight. In theory, from (1), one sees that when ed − pcer = 0,
the dynamic of wealth w1 does not depend on u, and thus will
not be affected by the return of the wealth. This is the main
reason why different weights setting to return and risk may have
the same optimal solution. In addition, note from (15) that ũ is
the stationary point of variance, where the variance reaches the
smallest value. From (19), A1 is the lowest value that u can be.
This corresponds to the fact that the optimal decision should
be with the lowest variance (risk), when the value of u will not
affect the expected return. In this case, we only need to compare
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the risk of two markets and put all additional money (beyond
satisfying the demand) to the place with a lower risk.

Third, if the price of pd is deterministic, the retail com-
pany will invest all its wealth to purchase electricity from
wholesale company when ed − pcer ≥ 0, and the wealth for
investing in the electricity market will be decreased with α
when ed − pcer < 0. We have the following corollary.

Corollary 2: Suppose that the price pd is deterministic, i.e.,
σ2
d = 0.
1) If ed − pcer ≥ 0, then u∗ = w0

pc
.

2) If ed − pcer < 0, then

u∗ = max

{
w0

pc
+

α(ed − pcer)

2p2cσ
2
r

, A1

}
.

Proof: Since pd is deterministic and σ2
d = 0, we have

A0 =
α
2 (ed − pcer) + w0pcσ

2
r

p2cσ
2
r

=
w0

pc
+

α(ed − pcer)

2p2cσ
2
r

.

Then, if ed − pcer ≥ 0, we have A0 ≥ w0

pc
, and then it follows

from Theorem 2 that u∗ = w0

pc
. If ed − pcer < 0, we have A0 <

w0

pc
, and then u∗ = max{A0, A1}. �
Actually, pd = ed when pd is deterministic. From (9), it fol-

lows that when ed − pcer ≥ 0, the expected return E[w1] is an
increasing function of u. From (13) and (15), one infers that
ũ = w0

pc
when σ2

d = 0 and dVar[w1]
du < 0 when u < ũ, which

means that the risk is a decreasing function of u when u < ũ.
Thus, the optimal decision for a retail company is investing all
its money in the electricity market, which corresponds to the
first result in the above corollary. Intuitively, this is the case
that pd is so high that it beats the yield of the financial market.
In this case, the retailer should put all his wealth in buying the
electricity, at the condition that the value gained exceeds the
storage cost.

From the above insights, one infers that the key prices affect-
ing the decision are wholesale prices pc and pd rather than retail
price pm. The sign of ed − pcer is also an important factor
which will affect the decision. Therefore, the optimal invest-
ment decision not only depends on the wholesale price in the
electricity market but also on the asset’s return in the financial
market.

D. A More General Model

Note that in (8), there is a constraint (4) to ensure that
the probability of supply shortage is less than a given small
bound. Hence, the optimal purchase decision should satisfy
u∗ ≥ A1 ≥ es, and pd is thus the price of excessive electricity
which depends on the future wholesale price.

In this section, we consider a more general case that when
u < s, the retail company can temporarily purchase electricity
probably at a higher price than the current wholesale price or
retail price, to meet the demands of customers. This is a more
general model especially when the utility company can provide
temporally purchasing service to the retail company. We thus
consider a price model of pd as follows:

pd =

{
pb, u < s
pw, u ≥ s

(25)

where pb and pw are two random variables which denote the
contract price and the real-time wholesale price, respectively.
Let eb and ew be the mean of them, and σ2

b and σ2
w be the vari-

ance of them, respectively. Under this general model, we can
remove the shortage prevention constraint used in the previous
sections.

Suppose that the retail company can purchase electricity tem-
porarily when u < s, and then we remove the constraint of (4)
in (8) as the customers’ demands can be always satisfied under
this assumption. Under (25), the wealth dynamic (1) does not
change. Then, consider the following optimization problem:

max
u

J(u) = αE[w1]−Var[w1]

s.t. (1), (5), and (25). (26)

Note that pd is a piecewise function, so we first consider the
optimal solutions for (29) under different constraints to the fea-
sible interval of u. Thus, consider two subproblems of (29) as
follows:

max
u

J(u) = αE[w1]−Var[w1]

s.t. (1), 0 ≤ u ≤ es, and pd = pb (27)

and

max
u

J(u) = αE[w1]−Var[w1]

s.t. (1), es < u ≤ w0

pc
, and pd = pw. (28)

For these two optimization problem, since the wealth dynamic
function does not change under the general model, except that
the mean and variance of pd will change when u is in different
interval. Hence, we have the stationary points of the objective
functions in these two problems, respectively, as

A1
0 =

α
2 (eb − pcer) +

(
esσ

2
b + w0pcσ

2
r

)
σ2
b + p2cσ

2
r

A2
0 =

α
2 (ew − pcer) +

(
esσ

2
w + w0pcσ

2
r

)
σ2
w + p2cσ

2
r

Let u∗
1 and u∗

2 be the optimal solutions for (27) and (28),
respectively. With a similar proof of Theorem 2, one infers

u∗
1 =

⎧⎨
⎩

0, A1
0 < 0,

es, A1
0 > es,

A1
0, otherwise

u∗
2 =

⎧⎨
⎩

es, A2
0 < es,

w0

pc
, A2

0 > w0

pc
,

A2
0, otherwise.

Then, let pd = pb and u = u∗
1, substituting (1) into the objec-

tive function of (27), we obtain the maximum value of J(u),
denoted by J(u∗

1). Similarly, let pd = pw and u = u∗
2, substi-

tuting (1) into the objective function in (28), we obtain the
maximum value of J(u), denoted by J(u∗

2). The following
theorem provides the optimal solution for (29).

Theorem 3: Optimal solution: Considering (29), the u∗

satisfies

u∗ = arg max
u=u∗

i ,i=1,2.
J(u).
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Note that A1
0 and A2

0 have the same form as A0, which means
that the stationary points of the objective functions in (27) and
(28) have the same form as that in (8). We can use a similar
method used for (8) to solve (29).

Remark 1: Considering the case that the short supply is
allowable, i.e., the demands of the customers may not be
satisfied. In this case, when u < s, we have

w1 = (w0 − pcu)r0 + pmu

= (w0 − pcu)r0 + pms+ pm(u− s)

and when u ≥ s, we have

w1 = (w0 − pcu)r0 + pms+ pw(u− s).

Hence, the wealth dynamic in this case is equivalent to that in
the above model by setting pb = pm in (25). Then, in this case,
the optimal solution A1

0 is a function of em and σm, i.e., pm
plays a role as we claimed in the above section.

Remark 2: When the retail company needs to store the elec-
tricity buying from the generator, the storage cost should be
considered in the optimal investment problem. Specifically, tak-
ing the storage into consideration, a cost function will be added
in the objective function to denote storage cost, and the bound
of the storage results in a new constraint on u. Hence, we can
formulate the following optimization problem:

max
u

J(u) = αE[w1]−Var[w1]− C(u)

s.t. (1), (19), and u ≤ B
(29)

where C(u) is the storage cost function and B is the upper
bound of the storage. If C(u) is a convex function, e.g., lin-
ear function, then the proposed method can still be adopted to
solve (29) since it is a convex optimization problem and the
method of Lagrangian multiplier is still effective. But if C(u) is
a nonconvex function or it still depends on the real-time storage
of the electricity, (29) becomes much more challenging, which
will be left as our future works.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the optimal
solution for the proposed investment problems. All the results
were obtained using Monte Carlo simulation with MATLAB7.0.

We used 1 week (the last week in August 2014) daily
hours’ price data extracting from [34], and the standard lin-
ear regression was employed to obtain the relevant statistics
of the random demands. Then, we obtain the mean and vari-
ance of electricity hourly price from 1:00 to 24:00, denoted
by m(t) and v(t) for t = 1, 2, . . . , 24, respectively. The mean
and variance are shown in Fig. 4, where each circle on the line
and each vertical line represent the mean and the variance of
the price at a time, respectively. Based on m(t) and v(t), we
set the relevant statistics of r0, pc, pm, and pd as follows. Set
er = 1 + 10−4, pc = m(t), em = m(t)es + 10−4θm(t), and
ed = m(t)es + 5θd(t)10

−5 for t = 1, 2, . . . , 24, where θm(t)
and θd(t) are selected randomly from [0, 1]. We set the same
value of variances to all random prices and r0, i.e., σ2

m = σ2
d =

Fig. 4. Mean and variance of hours’ prices.

σ2
r = v(t) (different settings of σ2

r will not affect the follow-
ing simulation results). The α and ε are 5 and 0.2, respectively.
Assume that w0 = 100 (one can see 100 as one unit investment)
and es = 1000

(
1− 10−5θs(t)

)
with σ2

s = 10, where es equals
w0

4pc
. These settings of parameters are also applied in Example

1 with t = 1. The following simulations were conducted based
on the above statistics obtained from real-price data processing
to be realistic.

Suppose that the investor makes a decision at the begin-
ning of each hour based on the current wealth, wt−1, i.e., let
w0 = wt−1 in our model at each time t. We apply our solu-
tion given in Theorem 2 as the investment decision at each time
t, marked with “proposed strategy.” We compare our method
with the method in [35], marked with “Kelly strategy,” which is
a typical model-free investment approach applied in financial
markets. For Kelly strategy, the optimal strategy u∗ satisfies
u∗ = (1 + r)(σ̂)−1r̂ − r, where r is the return of a riskless
bond, r̂ and σ̂ are the mean and variance of the excess returns
[35], and we set r̂ = r0 − r = r0 − 1 (i.e., r = 1) in this paper,
where r0 was defined in Table I. Using proposed strategy and
Kelly strategy, we can observe two wealth series w(t) for t =
1, 2, . . . , 24. With w(t), investment performance measures such
as return, risk, and Sharpe ratio (see its definition in [36]) are
calculated.

We compare proposed strategy and Kelly strategy in terms
of the optimal decisions, excess returns, risks, and Sharp ratios.
The compare results are shown in Fig. 5.

1) From Fig. 5(a), we can see that under proposed strat-
egy, the investor will purchase much more electricity at
each time than that under Kelly strategy, as the value
of each u∗(t) is always larger in proposed strategy. It
should be pointed out that under proposed strategy, we
have u∗(t) ≥ A1 hold for every time t, which cannot be
guaranteed using Kelly strategy. This is why each u∗(t)
is almost larger than 103 (the value of es) in proposed
strategy, and why we need the constraint (4) in (8).

2) The comparison results on return and risk are shown
in Fig. 5(b) and (c), respectively. It is observed that
under proposed strategy, the excess return is always larger
while the risk is always lower than those under Kelly
strategy, which means that proposed strategy is much
better than Kelly strategy. Meanwhile, the advantage on
return of proposed strategy will increase with investment
times. Especially, when t = 24, the excess return under
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Fig. 5. Performance comparison. (a) Decision. (b) Return. (c) Risk. (d) Sharpe
ratio.

proposed strategy is about 1.5, while it is about 0.7 for
Kelly strategy, i.e., our method can achieve more than
twice excess return than Kelly strategy. For the risk, for
both kinds of strategies, they have the same tendency as
the mean and variance of hourly price shown in Fig. 4,
since a higher mean or variance of price renders a higher
investment risk.

3) Proposed strategy also has a higher Sharp ration, which
means that our method can obtain more return per unit of
risk. Therefore, proposed strategy can completely outper-
form the widely used Kelly strategy.

VI. CONCLUSION

In this paper, we have investigated the optimal investment
decision problem for a retail company in emerging electricity
market.

1) We have formulated an investment problem using classi-
cal mean-variance model to help the retail company make
investment decisions. Unlike the existing energy trading,
it enables the investor investing in both the financial and
electricity markets simultaneously.

2) Using quadratic programming, we have derived the
closed-form optimal solution to the proposed problem no
matter whether the temporal purchase is allowed or not.

3) We have revealed the new properties of proposed problem
comparing to traditional investment problem, i.e., a high
risk may have a low return, and when the retail price is
independent of the demands, the optimal investment deci-
sion is not affected by the retail price in the electricity
market. Simulations driven by real-time price data have
been used to demonstrate the superior performance of the
proposed solution.
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