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Abstract—Device-free localization (DFL), which does not require any devices to be attached to target(s), has become an appealing

technology for many applications, such as intrusion detection and elderly monitoring. To achieve high localization accuracy, most

recent DFL methods rely on collecting a large number of received signal strength (RSS) changes distorted by target(s). Consequently,

the incurred high energy consumption renders them infeasible for resource-constraint networks, such as wireless sensor networks.

This paper introduces an energy-efficient framework for high-precision multi-target-adaptive device-free localization (E-HIPA).

Compared with the existing methods, E-HIPA demands fewer transceivers, applies the compressive sensing (CS) theory to guarantee

high localization accuracy with less RSS change measurements. The motivation behind the proposed E-HIPA is the sparse nature of

multi-target locations in the spatial domain. Before taking advantage of this intrinsic sparseness, we theoretically prove the validity of

the proposed CS-based framework problem formulation. Based on the formulation, the proposed E-HIPA primarily includes an

adaptive orthogonal matching pursuit (AOMP) algorithm, by which it is capable of recovering the precise location vector with high

probability, even for a more practical scenario with unknown target number. Experimental results via real testbed demonstrate that,

compared with the previous state-of-the-art solutions, i.e., RTI, SCPL, and RASS approaches, E-HIPA reduces the energy

consumption by up to 69 percent with meter-level localization accuracy.

Index Terms—Compressive sensing, energy-efficient, device-free localization

Ç

1 INTRODUCTION

LOCALIZATION has long been playing one of the key roles
in our daily life. Example applications include finding

the lost object [1], time synchronization [2], [3] and routing
design [4]. Extensive researches have been done to address
the localization problem with the deployment of radio-fre-
quency (RF) based devices/systems, for example, the Wi-Fi
based indoor navigation [5]. Current localization systems
typically localize the target when it carries devices. These
systems may not be applicable in some scenarios. For
instance, for the intrusion detection, it is impossible to pre-
install the tracking devices on the intruders [6], [7], [8], [9],
[10]. Therefore, device-free localization (DFL), which does
not require any devices being attached to target(s), has
become an appealing technology. Unlike previous works
[6], [7], [8] which have focused on single target localization,

this work aims at the multi-target DFL for applications
ranging from customer activity mining in shoppingmalls [6]
to intrusion detection [7], [8].

There are three types of DFL approaches for multiple tar-
gets,1 based on how they utilize the received signal strength
(RSS) changes2 to localize the targets, including geometry
based approaches [6], fingerprinting based approaches [11],
[13] and radio tomographic imaging (RTI) based approaches
[8]. The geometry based approaches, however, identify the
locations of targets only using the geometric information3 of
distorted wireless links, which can be several meters, as
shown in Fig. 1a. The fingerprinting based approaches can
localize targets accurately by matching the most possible
locations with the prior obtained fingerprints.4 However,
these approaches fail to localize multiple targets that stay
within a single region, because they treat multiple targets as
a single target, as illustrated in Fig. 1b. The RTI system [8]
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1. Some high-precision DFL systems, such as WiTrack2.0 [7] and
Tadar [12], have been proposed; they demand dedicated hardware
which can be costly in some scenarios. While, the RSS readings are
readily available in existing commercial off-the-shelf transceivers.
Thus, this study focuses on the RSS based DFL.

2. In general, a wireless communication link would be distorted if a
target blocks part or all of the signal propagation paths. Thus, the value
of the measured RSS will change compared with the case of no target
presents. Such a change of the RSS value is defined as the RSS change.

3. Geometric information can be the midpoint of a link, the intersect-
ing points of some links or the coverage area of a link [6].

4. A fingerprint is a mark made by the location on the distorted RSS
measurement.
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uses many wireless links traveling through the monitoring
area to improve the localization performance for multiple
targets. However, this improvement comes at the expense of
a large volume of transmissions and high energy consump-
tion, as it requires lots of transceivers to send and receive
RSSmeasurements, as shown in Fig. 1c.

Considering a low energy cost is critical to prolong the
system lifetime and thus can make the DFL approach/sys-
tem practical, considering that most of the DFL systems are
only composed of the energy-constrained wireless trans-
ceivers [14]. For example, the transceivers used in the
RASS [11] and RTI [8] systems are wireless sensors, which
rely on battery power [15]. Furthermore, from an operator’s
perspective, energy efficiency has significant economic ben-
efits. Thus, one of the key problems in designing a DFL
framework is how to reduce the energy consumption for the
precisely localization of multiple targets.

This paper introduces an energy-efficient framework for
high-precision multi-target-adaptive device-free localiza-
tion (E-HIPA). The proposed E-HIPA achieves both the
energy-efficiency and high-precision properties. First, by
reducing the number of transceivers deployed in the moni-
toring area, as shown in Fig. 1d, the data volume and the
energy consumption can be significantly reduced. However,
the localization accuracy of traditional methods is bound to
decrease when the number of transceivers is reduced. For
example, J. Wilson et al. [16] showed that the localization
errors of RTI increased 45 percent when the number of trans-
ceivers is decreased by 20 percent. Unlike previous work, E-
HIPAutilises the compressive sensing (CS) theory to guaran-
tee the high localization accuracy even with a small number
of measurements (or transceivers). The main intuition to
leverage the CS theory stems from the sparse nature of
multi-target locations in the spatial domain, i.e., the number
ofmultiple targets,K, is often small comparedwith the num-
ber of possible locations, N , in the monitoring area. This
means that a location vector Q which contains the location
information of K targets is an ideal K-sparse signal5 when

the targets appear randomly in the monitoring area. Accord-
ingly, by taking advantage of the CS theory for accurate
recovery of sparse signals, E-HIPA localizes multiple targets
accurately with a few measurements, i.e., it incurs very low
energy cost.

In line with the common practice in localizing multiple
targets [8], [11], [13], [17], the procedure of E-HIPA
includes two building blocks. First, while one target
moves around the monitoring area, we collect the RSS
change values distorted by the target for each location as
a fingerprint. In aggregate, fingerprints for all the loca-
tions make up a sensing matrix for this monitoring area.
Second, to localize the target(s), both the current RSS
measurements and the sensing matrix are required. Then,
a CS recovery algorithm is applied to estimate the loca-
tions of the target(s). Two main challenges remain to
apply CS in E-HIPA. First, although fingerprints are easy
to obtain, it is unknown how to organize the fingerprints
to form a sensing matrix that satisfies the restricted isom-
etry property (RIP) [18], which is the basis to enable CS-
based approaches. Second, to solve this CS-based frame-
work problem formulation, i.e., to recover the location
vector Q, most current recovery algorithms presume the
availability of the number of targets K, which unfortu-
nately is an unknown parameter in most realistic scenar-
ios. To deal with the first challenge, we analyze the
characteristics of the row and column vectors of the sens-
ing matrix. Accordingly, we define a rule for how to estab-
lish the sensing matrix and prove that the designed
sensing matrix satisfies the RIP, thereby validating the E-
HIPA problem formulation. To cope with the second chal-
lenge, the proposed E-HIPA includes an adaptive orthogo-
nal matching pursuit (AOMP) algorithm to adapt to the
unknown number of targets. We show that AOMP can
recover the location vector correctly with high probability.

Note that locating intensive multiple targets distorting
the same link remains a challenging problem [13]. E-HIPA
also presumes that any two targets are located sparsely,
similar to existing DFL approaches [8], [11], [17]. This
assumption is easy to satisfy in practice, since the sensing
range of a link is limited, i.e., the effective nonzero RSS
changes distorted by a target are limited to a finite region,
please refer to Section 3.2 for details.

Fig. 1. An illustration of current approaches/systems and the proposed E-HIPA method for localizing two targets. (a) The geometry based best cover
approach [6] considers the overlapped coverage area of distorted links as the target location. (b) The fingerprinting-based real-time accurate and
scalable system (RASS) [11] localizes each target accurately in the separated triangles with prior obtained fingerprints (Case I); however, it fails to
localize multiple targets even when targets located sparsely in the same triangle (Case II). (c) The RTI-based approach estimates a target location
as an attenuation image of the enriched links and achieves an improved accuracy; however, it requires any pair of transceivers to communicate with
each other, which leads to a high energy costs. (d) E-HIPA leverages the advantage of CS in sparse recovery to localize targets accurately with
reduced transceivers and measurements; thus, the proposed E-HIPA achieves both the high-precision and energy-efficiency properties.

5. We divide the monitoring area intoN grids and utilize these grids
to represent the locations of K targets, as illustrated in Fig. 1d, where
N ¼ 30 is much larger than K ¼ 2. Thus, the location vector Q is a
2-sparse signal over the monitoring area that is divided into 30 grids.
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2 RELATED WORK

Early DFL work rely on camera [19] or infrared analysis
[20]. Typically, they utilise video or thermo-image to detect
and localize target(s). However, those approaches either
largely depend on daylight or do not penetrate smoke.
Recently, some RF-based DFL systems, such as WiTrack2.0
[7], and Tadar [12], have been proposed. They do not require
floodlights to work at night, and can localize people in a
smoke-filled building, or from the exterior of a building.
However, these systems all demand dedicated hardware,
such as USRP software defined radios with specialized sig-
nals (i.e., frequency modulated carrier wave) [7] or special
RFID readerwith a large number of tag arrays [12], which lim-
its their application in some scenarios. This study utilises RSS
for DFL, since the RSS readings are readily available in exist-
ing commercial off-the-shelf transceivers which are cheaper.

The concept of the RSS-based DFL was developed in the
seminal work by Youssef et al. [13], who explicated the RSS
changes to localize the target(s) and the modeled DFL prob-
lem as a fingerprint matching (location matched with the
RSS changes) problem. RASS [11] is one of the most widely
used fingerprinting based approaches, since it has sparse
triangular deployment which can be scaled easily and is
cost effective. However, RASS fails in multi-target DFL
even when targets located sparsely in the same triangle,
since RASS combines distortions from all the targets to
locate a single “equivalent” target and treats multiple tar-
gets as a single target [11]. SCPL [21] is another popular fin-
gerprinting based method. Compared with RASS, SCPL
utilises the temporal transitions in human trajectories to
improve the localization accuracy. RTI-based approaches
[8], [17] localize the multiple targets by imaging the RSS
attenuations across all the links and achieve an improved
localization accuracy even if the targets remain stationary.
However, the improvement of RTI-based approach comes
at the expense of increased transmission volume and high
energy consumption, since RTI deploys many transceivers
and requires pair-wise transmissions.

Although some CS-based DFL methods have been pro-
posed [22], [23]. However, these proposals have fundamen-
tal limitations that render them impractical. Specifically,
none of these methods reduce the energy consumption,
since they are based on the RTI’s framework, which requires
lots of transceivers to communicate with each other. Addi-
tionally, to estimate the location vector of multiple targets,
these past CS-based DFL proposals either assume the avail-
ability of the number of targets (i.e., the sparsity level) with
the orthogonal matching pursuit (OMP) algorithm [24] and
etc, or they suffer from high computational complexity with
the sparsity adaptive matching pursuit (SAMP) algorithm
[25] which estimates the sparsity level (i.e., the target num-
ber) by many repeated iterations. However, the number of
targets (or sparsity level) is not available in the localization
problem, and the high computational complexity of SAMP
makes these CS-based DFL proposals cannot scale when the
size of monitoring area or the number of targets increased.

Given the limitations of previous work, this paper
presents E-HIPA, a new CS-based DFL to localize sparse
multiple targets accurately with only a small number of
measurements (or transceivers). Unlike past CS-based DFL
proposals, E-HIPA first re-examines the minimum number

of measurements (or transceivers) required for multi-target
DFL (by leveraging the CS theory). Thus, E-HIPA can
reduce the number of transceivers deployed in a monitoring
area, which results in an energy-efficiency. Secondly, we
design an adaptive orthogonal matching pursuit (AOMP)
algorithm for E-HIPA’s Framework, by which E-HIPA is
capable of recovering the precise location vector with high
probability, even for a more practical scenario with
unknown target number. Another important feature of
E-HIPA is that AOMP can fast estimate the location vector
of multiple targets. Since compared with SAMP, AOMP has
a lower computational complexity which is more efficient
for solving the localization problem.

3 THE DESIGN OF E-HIPA

The design of E-HIPA for localizingmultiple targets based on
the CS theory is not trivial with two primary challenges. The
first is how to establish a sensing matrix which satisfies the
RIP, so that we can formulate the DFL problem as a standard
framework of the CS-based sparse recovery problem. The
second is the design of a recovery algorithmwhich can adapt
to an unknown number of targets, so that the formulated CS-
basedDFL problem is solvable in practical applications.

3.1 System Model and E-HIPA Problem Formulation
Based on Compressive Sensing

When the radio signals propagate in the monitoring area,
the targets within the area diffract, scatter, absorb or reflect
some of the transmitted signal. Due to the unique propaga-
tion properties of electromagnetic waves, the distorted RSS
measurements vary when the target is at different locations.
Thus, one can utilize these distorted RSS measurements to
localize the target(s) without requiring devices attached on
target(s) [8], [11], [13], [26], [27].

Considering K targets randomly located in a monitoring
area of size a� b, and the area is divided equally into N
grids with the side length v. We divide 2M transceivers into
a transmitter (TX) set fTX1; . . . ; TXi; . . . ; TXMg and a
receiver (RX) set fRX1; . . . ; RXi; . . . ; RXMg, which are then
deployed on both sides of the monitoring, respectively. Each
node is placed at the midpoint of a grid side, as illustrated in
Fig. 2. Note that TXi andRXi construct a link, TX1 andRXM

construct a link, and TXM and RX1 construct a link. Then,
the total number of measurement links isM þ 2. For simplic-
ity, the number of links is approximated to M in the follow-
ing problem formulation. Compared with the deployment
for RTI, the deployed transceivers and links in this study are
greatly reduced, as illustrated in Fig. 1c and 1d.

Fig. 2. A deployment view.
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Here, we shall give a high level view about the RSS
changes distorted by a target. Based on the wireless commu-
nications principles [28], the RSS measurement Rij (in dB) of
the link i (1 � i �M), given a single target locates at the
grid j (1 � j � N), is described as

Rij ¼ Pi � Li �Dij �Qi; (1)

where Pi is the transmission power of the link i, Li is the
radio propagation fading of the link i, due to the path loss
and the antenna patterns, Dij is the diffraction fading of the
link i, due to a target located at the grid j (the grid j is
within the Fresnel zone6 of link i) that blocks the propaga-
tion path of the link i (e.g., the target in Fig. 2), which can
decrease the received power, and Qi represents other fading
losses such as the multi-path effect and etc.

In this study, we use the distorted RSS change measure-
ment to quantify the interference distorted by the target. Rij

and Fi denote the RSS measurements of the link i when a
target is located at the grid j and is located outside the mon-
itoring area (i.e., when the link i is not distorted), respec-
tively. In a dynamic environment, on average Pi, Li and Qi

will not change [29], and thus we can obtain the distorted
RSS change measurement of the link i due to a target located
at the grid j by

DRij ¼ Rij � Fi ¼ �Dij: (2)

As the monitoring area has been divided into N grids,
the locations of theK targets are denoted by the vector

Q¼ ½u1;u2; . . . ;uj; . . . uN �T ; (3)

where uj2 0; 1f g. If there is one target at the grid j, uj¼1,

otherwise, uj¼0. Thus, the number of targets is K¼PN
j¼1uj.

Q has a K-sparse nature in the spatial domain, usually the
number of targets K is smaller than the number of grids N ,
i.e., K < N . For example, a 10 m� 10 m room can be
divided into N ¼ 400 grids when v ¼ 0:5 m, while the num-
ber of people K in this room will be smaller than 400 in
most cases. Thus, only a small number of K elements of Q
are nonzero, i.e., Q has aK-sparse nature.

Since Q is K-sparse, taking advantage of CS in
sparse recovery, rather than measuring the N-dimensional
K-sparse signal Q directly, RSS change measurements YM�1
in a lowM-dimensional space7 are conducted to recover the
Q accurately. It implies that, on one hand we can reduce the
energy consumption by deploying a few transceivers in
the monitoring area, on the other hand we can achieve
high-precision property by applying the CS theory to
recover Q accurately with a small number of measurements
(or transceivers). In a word, by reducing the number of
transceivers and applying the CS theory, we can achieve
both the energy-efficiency and high-precision properties.
According to CS, we formulate the DFL problem as

YM�1 ¼ AM�N �QN�1 þ n; (4)

where YM�1 ¼ ½y1; . . . ; yi; . . . ; yM �T 2 RM , yi is the RSS
change value measured by link i in the localization phase,

A 2 RM�N is the sensing matrix established in the pre-
deployment phase, under which the measured RSS change

vector YM�1 has the sparse location vector Q, and n 2 RM is
the measurement noise.

As we mentioned previously, one of the primary chal-
lenges in designing E-HIPA is to establish a sensing matrix
which satisfies the RIP, so that we can formulate the DFL
problem as a standard framework of the CS-based sparse
recovery problem. We design such a sensing matrix in the
pre-deployment phase. Here, let one target moves around
the monitoring area, and then all the M links measure the
RSS change value distorted by the target, or the fingerprints,
for each of the N grids. In aggregate, the M �N finger-
prints, which made by the N grids on the RSS change value
measured by M links, make up the sensing matrix AM�N .
AM�N is defined as

AM�N ¼

DR11 DR12 � � � DR1N

DR21 DR22 � � � ..
.

..

. ..
.

DRij
..
.

DRM1 � � � � � � DRMN

2
6664

3
7775; (5)

where DRij, which is described in (2), is the RSS change
measurement distorted by a target located at the grid j and
measured by the link i.

The reasons that we choose the sensing matrix A in the
form of (5) are as follows. First, based on (4), the measure-
ment yi is the sum of the inner product of the vector Q and
the vector A0h ii (ith row of A). Note that, yi also recodes the
measurement when a target is located at an unknown loca-
tion in the localization phase, and different unknown loca-
tions (or Q) should be reflected by different measurements
(or yi). Thus, the ith row of A should involve all the prior
knowledge (measured by the link i) when a target moves to
different locations. Second, we can prove that the designed
sensing matrix A obeys the RIP, as shown in Section 4.1. In
summary, the sensing matrix A should be established
according to the rule defined by (5).

Discussion: E-HIPA is built on the deployment setup of
Fig. 2, where the monitoring area is a regular rectangle
region and all the transceivers are deployed within a single-
hop communication range. For an irregular monitoring area
or a large monitoring area (which cannot be covered by a
single-hop communication range), E-HIPA works as fol-
lows. Firstly, E-HIPA divides the irregular area or the large
area into small rectangular subareas. For the boundaries of
the irregular area, E-HIPA uses additional small rectangular
subareas to cover them. Then, E-HIPA estimates the target
locations simultaneously in each subarea.

3.2 Feasibility for Localizing Multiple Targets with
the CS Theory

Here, we validate the feasibility of using the linear superpo-
sition in CS, i.e., Y ¼ A �Q, for locating multiple targets that
are located sparsely.

Fig. 3 shows the results of a simple experiment when two
targets (i.e., two people with height of about 1.8 m) are
located in a 6 m � 6 m area. Based on the deployment setup

6. A Fresnel zone is one of a number of concentric ellipsoids, as
shown in Fig. 2, which determines the volumes of the diffraction
fading.

7. Each of the M links, as illustrated in Fig. 2, will provide one mea-
surement in the localization phase. It is easy to get that M < N , based
on the localization scene we described in Fig. 2.
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introduced in Section 3.1, We divided the area into N ¼ 144
grids with v=0.5 m. For simplicity, we let the two people
stand at the second and last grid, respectively. If the locali-
zation vector Q is estimated correctly, i.e., u2 ¼ 1, uN ¼ 1
and uj ¼ 0 (j 6¼ 2, j 6¼ N). Then, the second and last columns
of sensing matrix A would be selected and linearly
weighted by the location vector Q.

In this study, we find that the sensing range of a link is
limited, i.e., the effective nonzero RSS changes distorted by
a target are limited to a finite region. Fig. 4 shows the dis-
torted RSS values (Z-axis) when a target (a person with
height of about 1.8 m) is located at different grids (X-axis
and Y-axis) in the 6 m � 6 m monitoring area. Those RSS
values are acquired from the link which crosses the center
of the monitoring area. As we can see that (i) the distorted
RSS values change dramatically when the target is located
in the line-of-sight (LOS) between the two transceivers
(along the X-axis direction); (ii) the distorted RSS changes
are negligible when the target is located at the locations
more than 0.75 m away from LOS between the two trans-
ceivers. The reason is that, according to the diffraction the-
ory [28], the distorted RSS changes (i.e., the diffraction
fadings) are large when target locates at the LOS path and
blocks the first Fresnel zone8; while, the RSS changes are
negligible when target far away from the transceivers and
keeps the first Fresnel zones clear. It implies that most ele-
ments of A approximate to zero.9

Due to the spatial location difference of each link, the dis-
tributions of nonzero and zero RSS changes in each row of A
are different, as shown in Fig. 3. For example, the first row
of A, i.e., Ah i1, corresponding to the RSS changes measured
by the ði ¼ 1Þth link which covers the grids with small index
based on the deployment shown in Fig. 2. Thus, the left and
right elements of Ah ii are non-zeros and zeros, respectively,
as shown in Fig. 3. It implies that the present of target 2 will
not distort the linear superposition results of target 1, since
the impact of target 2, i.e., uN ¼ 1 will be linearly weighted
by the zeros of Ah i1. Due to the sparse spatial locations of

the two targets, the results of the linear superposition, i.e.,
the operation A �Q, are naturally divided into two parts.
Intuitionally, the two partial results should equal/approxi-
mate to the measured RSS changes which are distorted by
target 1 and target 2, respectively. Thus, the results of A �Q
equal/approximate to the measurement Y .

In summary, it is feasible to apply CS for localizing mul-
tiple targets that are located sparsely. However, locating
multiple targets who distort the same link is a great chal-
lenge since the RSS changes distorted by multiple targets
are non-linear superposition and it is still an open problem
[28]. Thus, following most of the current DFL approaches
[6], [8], [11], [27], E-HIPA will consider multiple targets as
one target when they distort a same link. Note that, the
assumption, i.e., we presume any two targets are located
sparsely, is easy to satisfy, since the sensing range of a link
is limited, i.e., the effective nonzero RSS changes distorted
by a target are limited to a finite region.

3.3 E-HIPA Problem Solution by AOMP

To recover the location vector Q from Y based on (4), we
introduce the AOMP algorithm with low computational
complexity which is capable of estimating Q accurately
without prior information of the number of targetsK.

AOMP can estimate the sparsity level, i.e., the number of
targets K, by using the Theorem 1 introduced later. As a
consequence, AOMP can adapt to the target number to
recover the location vector Q accurately. In addition,
inspired by the OMP algorithm which provides a low com-
plexity by fast iteration, the recovery progress of AOMP is
designed based on the basis of a modified OMP algorithm.
Thus, AOMP also has a low computational complexity.

In the rest of this section, we first introduce Theorem 1
and then describe the detailed design of AOMP.

Definition 1. Let G ¼ fj : uj 6¼ 0g be the support of Q. The
actual number of nonzero components of Q isK ¼ Gj j. ThenK
is referred to as the actual sparsity level.

Definition 2. Let V ¼ ATY , and Ĝ be the support of the front K̂

(1 � K̂ � N) maximal values of V. The estimated number of

nonzero components of Q is K̂ ¼ jĜj. Then K̂ is referred to as
the estimated sparsity level.

Theorem 1. Suppose that the sensing matrix A obeys the RIP

with ðK; dÞ, if K̂ � K, then we have

jjð Ah ijPĜÞTY jj‘2 �
1� dffiffiffiffiffiffiffiffiffiffiffi
1þ d
p jjY jj‘2 ; (6)

Fig. 3. The linear superposition behind theCS theory for multi-target DFL.

Fig. 4. RSS changes caused by target.

8. According to the diffraction theory [28], the radius of the circular
cross section of Fresnel zone is given by r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��dtxdrx=ðdtx þ drxÞ
p

,
where � represents the wavelength, dtx and drx are the distance from
the target to TX and RX, respectively, as shown in Fig. 2, and � is the
number of Fresnel zone. The maximum diameter of the first, second
and third Fresnel zone (There is a maximum diameter (or radius) of
Fresnel zone when dtx ¼ drx) in this experimental setup are 0.87 m
(with �=1), 1.23 m (with �=2) and 1.5 m (with �=3), respectively. While,
the effective RSS changes shown in Fig. 4 are limited to a narrow region
with wide of about 1.5 m, which includes the area of first, second and
third Fresnel zone. In summary, the effective RSS changes are limited
to a finite region.

9. For a clear vision in Fig. 3, we set the elements, i.e., the RSS change
values, of sensing matrix A as zero when its value is less than 1 dBm.
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where, PĜ is the projection operator onto the orthogonal

complement of the span of f Ah ij; j 2 Ĝg, and d is the con-

stant in (13).

Proof. SupposeK � K̂, then G 	 Ĝ, thus we have

jð Ah ijPGÞTY jj‘2 � jjð Ah ijPĜÞTY jj‘2 : (7)

Based on RIP, the singular value of ð Ah ijPGÞT is betweenffiffiffiffiffiffiffiffiffiffiffi
1� d
p

and
ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p

. Let �½ð Ah ijPGÞT ð Ah ijPGÞ� be the eigen-
values, then

1� d � �½ð Ah ijPGÞT ð Ah ijPGÞ� � 1þ d: (8)

Thus, we have

ð Ah ijPGÞTY
��� ���

‘2
¼ ð Ah ijPGÞT ð Ah ijPGÞQ

��� ���
‘2

� 1� dð Þ Qk k‘2 :
(9)

Based on (13), it is easy to derive the following,

Qk k‘2�
AQk k‘2ffiffiffiffiffiffiffiffiffiffiffi
1þ d
p ¼ Yk k‘2ffiffiffiffiffiffiffiffiffiffiffi

1þ d
p : (10)

Hence, using (7), (9) and (10), we obtain

jjð Ah ijPĜÞTY jj‘2 �
1� dffiffiffiffiffiffiffiffiffiffiffi
1þ d
p jjY jj‘2 : (11)

tu
Theorem 1 implies that if inequality (6) is satisfied

with a given (or estimated) sparsity level K̂, then K̂
must be greater than or equal to the actual sparsity level
K. Thus, Theorem 1 is a tool to estimate the sparsity
level accurately.

Next, we introduce the AOMP algorithm, which is a two-
stage algorithm. In the first stage, we estimate the sparsity
level K̂ by using Theorem 1, as shown in Lines 1-11 of Algo-

rithm 1. To do so, we start with K̂ ¼ 1, and increase K̂ step

by step (obviously, the updated K̂ is closer to the actual
sparsity level) until inequality (6) is satisfied. Then we can

get the value of the estimated sparsity level K̂. In the second

stage, the estimated sparsity level K̂ together with the mea-
surement Y and the sensing matrix A are regarded as the
input of a modified OMP algorithm, as shown in Line 12-21
of Algorithm 1. In simpler terms, we initially set all the ele-

ments of the estimated location vector Q̂ as zero. Then, we

find the index j of Ah ij and the value of ûj, which can mini-

mize the correlation r jð Þ at each iteration, as shown in Line

15 of Algorithm 1. Finally, all the elements of Q̂ can be
determined after N iterations.

Here, we discuss the computational complexity of
AOMP. The running time of the AOMP algorithm is domi-
nated by the loop related to j (Lines 14-20) whose complex-
ity is OðKMNÞ. The estimation of sparsity level (Lines 1-11)
leverages the binary search method, introducing a complex-
ity of Oðlog ð2NÞÞ [31]. Overall, the total complexity of the
AOMP algorithm is OðKMN þ log ð2NÞÞ. Compared with
the SAMP algorithm [25], which can also recover a signal
without requiring the sparsity level K, AOMP has a lower

complexity. The complexities of the SAMP10 in the worst

and best cases are OðMN3Þ and OðK2MNÞ, respectively.
Thus, AOMP is more efficient than SAMP in recovering Q
because AOMP has a lower complexity.

Algorithm 1. Adaptive Orthogonal Matching Pursuit.

Input: The M dimensional measurement vector Y ; The M �N
dimensional sensing matrix A; The threshold level m.

Output: TheN dimensional reconstructed vector Q̂.
1: low ¼ 1, high ¼ N , V ¼ ATY ;
2: while low < high do
3: K̂ ¼ ðlowþ highÞ=2;
4: Ĝ= {The index of the front K̂ ð1 � K̂ � NÞ maximal

values of Vj j};
5: if jj Ah ijPĜY jj‘2 < 1�dffiffiffiffiffiffi

1þdp jjY jj‘2 then
6: low ¼ K̂ þ 1;
7: else
8: high ¼ K̂ � 1;
9: end if
10: end while
11: K̂ ¼ high;
12: Res ¼ Y ;
13: ûj ¼ 0; 8j 2 f1; 2; . . . ; Ng;
14: for j ¼ 1 to N do
15: ðj; ûjÞ  argmin

j2Ĝ;ûj2f0;1g
r jð Þf g,

where r jð Þ¼ jjRes�ð Ah ijPGÞT Y 0 jj2‘2
jjPGY 0 jj2‘2

,

and Y 0 ¼ ð Ah ijPĜÞ½0; . . . ; ûj; . . . ; 0�;
16: if r jð Þ � m then % Based on [30], we set threshold as

m ¼ 2 1þ "ð Þlog ðN �KÞ=M, where " is a constant that is
not too close to one.

17: Ĝ ¼ Ĝnfjg;
18: Res ¼ Res� Y 0;
19: end if
20: end for
21: return Q̂;

4 THEORETICAL ANALYSIS

In this section, we provide theoretical analyses of three key
aspects of E-HIPA. First, we validate the proposed CS-based
framework problem formulation, i.e., the designed sensing
matrix obeys RIP. Then, we prove that AOMP can recover
the location vector Q correctly with high probability, i.e., we
demonstrate that E-HIPA can localize all targets accurately.
Last, we show how to select the grid side length v to achieve
a high localization accuracy.

4.1 The RIP Constraint on Sensing Matrix A

Lemma 1. The elements DRij of a row vector of sensing matrix

A, i.e., A0h ii¼ DRi1;DRi2; � � �DRij � � �DRiN

� �
, follow the

Gaussian distribution.

10. The SAMP divides the recovery process into several stages, and
increases the sparsity level at each stage until it meets the stopping cri-
terion (such as, the energy of the residual being less than a certain
threshold). To recover a signal accurately, a simple but tedious scheme
is to divide the process into N stages. However, in this case (the worst

case, i.e., K̂ ¼ N), the complexity of SAMP is OðMN3Þ. An alternative
scheme is to divide the process into exactly K stages. In this case (the

best case, i.e., K̂ ¼ K), the complexity of SAMP is OðK2MNÞ.
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Proof. This Gaussian distribution property is verified by
checking the real-world experimental data.We conduct int-
ensive experiments under different monitoring area sizes,
i.e., 3 m� 3 m, 4 m� 4 m, 6 m� 6 m, and 12m� 12m. For
a link of a particular area, we obtain the RSS changes when
a target is located at different grids. Note that the RSS
change values of each link comprise the rows of the sensing
matrix. Fig. 5 shows that the RSS change measurements
generally approximate the Gaussian distribution. How-
ever, the results from the histogram plot are a coarse-
grained judgment, amore credible test is shown as follows.

The quantile-quantile (Q-Q) plot is one of the well
known exploratory graphical method to check the Gauss-
ian distributional assumption for a given data set. Fig. 6
shows the Q-Q plot of a row vector of sensing matrixA for
different link lengths. Aswe can see that nearly all lines are
close to a straight line, which indicates that the elements
DRij (14j4N) follow the Gaussian distribution. While,
the validity of this determination may be influenced by
personal views, since the Q-Q plot does not provide suffi-
cient numerical criteria tomake the determination.

The Jarque-Bera test is another commonly used
method for testing whether a data set is drawn from the
Gaussian distribution. The Jarque-Bera criterion is
defined as

JB ¼ n½S2
k=6þ ðKu � 3Þ2=24�; (12)

where, n is the size of the data set, Sk andKu are the skew-
ness and kurtosis,11 respectively. For an ideal Gaussian
distribution, JB follows the chi-square distribution with

freedom of two degrees, i.e., JB 
 x2ð2Þ. For a given sig-
nificance level, if the calculated JB is less than the critical

value of x2ð2Þ, then the elements DRij of the vector A0h ii
are accepted as following the Gaussian distribution, oth-
erwise, they are rejected [32]. Fig. 7 shows that the calcu-

lated JB is less than the critical value of x2ð2Þ when the
significance level is greater than 0.05. In other words, the

elements DRij of the vector A0h ii follow the Gaussian dis-
tributionwith a significance level of at least 0.05. tu

Theorem 2. When the number of RSS change measurements (or
links) M ¼ OðKlog ðN=KÞÞ, the probability for sensing
matrix A (after normalization) to satisfy

1� d � AQk k2‘2= Qk k2‘2 � 1þ d; (13)

for a K-sparse vector Q tends to 1 (i.e., A obeys RIP), where d
is a constant that is not too close to one.

Proof. Consider a row vector of sensing matrix A:

A0h ii¼ h DRi1;DRi2; � � �DRij � � �DRiN

� �
; (14)

where DRij satisfies the Gaussian distribution with mean
of u0 and variance of d0, as proved in Lemma 1. Here, h is
the normalization constant, which is expressed as

h ¼ 1=ðs0

ffiffiffiffiffi
M
p
Þ: (15)

Since all the K targets are randomly distributed in the

area, the product of A0h ii and the K-sparse vector Q, i.e.,

A0Qh ii, follows the Gaussian distribution with the mean
of u and the following variance

s2 ¼ h2 � s2
0 �

Xk

h¼1 u
2
h; (16)

where uh (1 � h � K) is the hth nonzero element of Q. As

such, AQk k2‘2 satisfies x2-distribution (the degree of the

freedom is M) with the mean of Ms2 and the variance of

2Ms4. Since M � 1, AQk k2‘2= Qk k2‘2 can be approximated
by the Gaussian distribution with the following mean

Ms2
.XK

h¼1 u
2
h ¼M � h2 � s2

0 ¼ 1; (17)

and the variance of 2=M. According to the Chernoff
bound,

Pr
�

AQk k2‘2= Qk k2‘2 � 1
�� �� > d

� � 2expð�d2M=8Þ: (18)

Since the possible number ofK-dimensional subspaces

of A is CK
N � ðeN=KÞK , the probability that a K-sparse Q

which satisfies j AQk k2‘2= Qk k2‘2 � 1j > d is at most

eN

K

	 
K

�2exp � d2M

8

	 

¼ 2exp � d2M

8
þKlog

N

K

	 

þ 1

	 

:

(19)

Note that when M ¼ OðKlogðN=KÞÞ, (19) tends to 0.
Thus, the probability for (13) to be satisfied tends to 1. tu

Fig. 5. Histogram plot of the RSS changes. Fig. 6. Q-Q plot of the RSS changes.

Fig. 7. Jarque-Bera test of the RSS changes.11. The definition of S andK are provided in work [32].
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Theorem 2 shows that the sensing matrix A designed in the
form of (5) satisfies RIP, which is the basis to enable this CS-
based framework problem formulation.

4.2 Accuracy Analysis of AOMP for Sparse Signal
Recovery

Theorem 3. When the number of links M satisfies M ¼
OðK log ðN=KÞÞ and the measurement noise n is power lim-

ited E nk k2� 1, AOMP can reconstruct Q correctly with over-
whelming probability for all largeN .

Proof. Let the correlation energy rðjÞ ¼ kRes� ðhAij
PGÞTY 0k2‘2=kPT

GY
0k2‘2 , where Res is the energy of the resid-

ual, and Y 0 is defined in Line 15-17 of Algorithm 1. Let us
consider the following two probabilities, i.e., the missed
detection probability p

MD
¼ Prðminj2G rðjÞ � mÞ, and the

false alarm probability p
FA
¼ Prðmaxj =2 G rðjÞ � mÞ. The

p
MD

corresponds to the event in which the maximum

correlation energy r jð Þ of the correct vectors j 2 Ĝ falls
below the threshold. The p

FA
corresponds to the maxi-

mum energy on one of the “incorrect” indices j =2 Ĝ
exceeding the threshold. Then, the probability of the
reconstruction error perr can be expressed as
perr ¼ p

MD
þ p

FA
.

When m ¼ ð1þ dÞlog ðN �KÞ=ðM �KÞ (where d is the
constant in (13)) and the noise n is power limited

E nk k2� 1 (where n is the noise in (4)), it has been proven
by Fletcher et al. [33] that minj2G rðjÞ=m > 1, i.e.,
p
MD
¼ 0. Thus, it is easy to get that perr ¼ p

FA
in this case.

According to the literature [33], when j =2 G, rðjÞ follows
a Beta Bð2; 2ðM � 1ÞÞ distribution. When M is large, this
beta distribution approximates Rayleigh distribution and
the false alarm probability is given by p

FA
� expð�mMÞ.

Therefore, when m ¼ ð1þ dÞlog ðN �KÞ=ðM �KÞ and
M ¼ OðKlog ðN=KÞÞ, we obtain the following

p
FA
� exp �ð1þ dÞlog ðN �KÞ

cK log ðN=KÞ �K
� cK log ðN=KÞ

	 


< exp �ð1þ dÞlog ðN �KÞð Þ: (20)

Note that p
FA
¼ 0 in this case. Thus, when N !1,

perr ¼ p
FA

tends to 0, i.e., Q can be reconstructed

correctly. tu
Theorem 3 shows that E-HIPA can localize targets accu-
rately when AOMP meets the condition for recovering the
sparse vector Q correctly.

4.3 Conditions of High Localization Accuracy

Theorem 4. The sufficient condition to reconstruct the location
vector Q correctly, i.e., without reconstruction error, is that the
grid side length v satisfies the following

ffiffiffiffiffiffiffiffiffiffiffiffi
ab=K

p
10�0:5

ffiffiffiffiffiffiffiffiffiffiffi
a=ðbKÞ
p

< v <
ffiffiffiffiffiffiffiffiffiffiffiffi
ab=K

p
; (21)

whereK is the number of targets, and a� b is the size of moni-
toring area.

Proof. According to the CS theory [18], the minimum sam-
ples required to recover the sparse location vector Q

exactly, i.e., without reconstruction error, is OðK log
ðN=KÞÞ. Thus, we obtain the following

M > K log ðN=KÞ: (22)

According to Section 3.1,M ¼ a=v, andN ¼ ab=v2. Thus,
(22) can be rewritten as follows

a=v > K log ½ab=ðv2KÞ�: (23)

It is difficult to obtain the explicit and exact solutions of the
above inequality, so we find out the approximate solutions
of (23). Note that the number of targetsK is usually smaller

than the number of gridsN , i.e.,K < N ¼ ab=v2. Thus,

v <
ffiffiffiffiffiffiffiffiffiffiffiffi
ab=K

p
: (24)

It is easy to derive that a=v > a=
ffiffiffiffiffiffiffiffiffiffiffiffi
ab=K

p
. Thus, if v satis-

fies the following inequality

a=
ffiffiffiffiffiffiffiffiffiffiffiffi
ab=K

p
> K log ½ab=ðv2KÞ�; (25)

then v must also satisfy (23). Taking (24) and (25) into
account, we have

ffiffiffiffiffiffiffiffiffiffiffiffi
ab=K

p
10�0:5

ffiffiffiffiffiffiffiffiffiffiffi
a= bKð Þ
p

< v <
ffiffiffiffiffiffiffiffiffiffiffiffi
ab=K

p
: (26)

tu
By Theorem 4, one can set a suitable side length v to ensure
that E-HIPA achieves high localization accuracy.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup

We conduct extensive real-world experiments to validate
the effectiveness of E-HIPA in a 6 m � 6 m monitoring area.
We arrange eight people who act as the targets. Note that
the number of test grids increases as the side length v

decreases. To enrich our experiments, we attempt to deter-
mine the minimum v that satisfies (22), i.e., the lower bound
of the exact solutions of Theorem 4. By our best efforts, we

set v¼0:5 m, where M ¼ a=v ¼ 12 > Klog ½ab=ðv2KÞ� �
10:04. The transceivers used in our experiments are the
MICAZ [34] nodes. Each TX node transmits one packet
every 100 millisecond. We connect one node to a notebook
via an MIB520 [34] to act as the sink, as shown in Fig. 8.

To localize the target(s), E-HIPA has two phases: estab-
lishing the sensing matrix in the pre-deployment phase and
localizing the target(s) in the online phase. (i) Establishing
the sensing matrix: Before the multiple targets enter the
monitoring area, the link i ð1 � i �MÞ records RSS

Fig. 8. The real world scene.
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measurements for 0.5 minutes, and the mean of those scans
is denoted as Fi. Then we ask one person to go through all
theN grids of the monitoring area. In the area, link i records
RSS measurements for 0.5 minutes when a person is located
at grid j, and the mean of those measurements is denoted as
Rij. Then, the sensing matrix A can be obtained by (2) and
(5). (ii) Localizing the target(s): In the monitoring area,K peo-
ple randomly stand at K different grids. Unlike most exist-
ing work [8], [11], [13], [26], [27] that assume the targets are
located at the center of a grid, the targets in our experiment
are randomly positioned within the grid which reflects a
more realistic scenario. All the M links records RSS samples
for 0.5 minutes. For the link i, we use the difference between

the mean of the current measurements and the Fi as the ith

element of YM�1. Finally, at the notebook, we estimate the
locations of theK people using the AOMP algorithm.

5.2 Comparison and Metric

Compared approaches. We implement three state-of-the-art
methods for comparison, i.e., the RTI method [8], the SCPL
method [21] and the RASS method [11]. Note that, (i) RTI
estimates the location of a target with an image area rather
than an exact grid, thus we consider the center grid of the
imaged area as the exact location; (ii) we use a 2 order trajec-
tory ring for SCPL as suggested in [21]; (iii) RASS fails to
localize multiple targets even when targets located sparsely
in the same area [11], thus we let the targets enter the area
sequentially (with short time separation), and conduct local-
ization for different targets as successive events in time. We
also test the ability of AOMP in sparse recovery by compar-
ing with two well-known CS recovery algorithms including
OMP [24] and SAMP [25]. Note that OMP requires the avail-
ability of the sparsity level K, which is an unknown param-
eter in this study. Therefore, we tailor OMP by changing its
exit condition from “iterating K times” to “iterating until

the residual is smaller than a threshold ð< 10�3Þ”.
Performance metric. The performancemetric is the localiza-

tion error, i.e., the distance between the true location and the
estimated location. Let K be the actual number of targets
with locations ðx1; y1Þ, ðx2; y2Þ; . . . ; ðxK; yKÞ. Suppose that the
corresponding estimated locations are ðx01; y01Þ, ðx02; y02Þ, . . . ,
ðx0

K̂
; y0

K̂
Þ, where K̂ is the estimated target number. Let

Kmin ¼ minfK; K̂g. To assign an estimated location to a tar-
get, we compute all pairs of the distance between ðxk; ykÞ and
ðx0k; y0kÞ, where 14k4Kmin. We then sort these in a nonde-
creasing order and assign a target to the first unused esti-
mated location. Then the localization error is expressed as

Error ¼
PKmin

k¼1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � x0kÞ2 þ ðyk � y0kÞ2

q
Kmin

: (27)

Also note that if E-HIPA regards multiple targets as one tar-
get, then we use the location of this equivalent one as the
estimated locations for the multiple targets.

We evaluate performance by adjusting the following
parameters: (i) K: the number of targets, (ii) M: the number
of links, (iii) v: the length of grid side, (iv) b: the length of
link, (v) As: the size of monitoring area. Unless specifically
mentioned, the default values are shown in Table 1. In the
following figures, E-HIPA-OMP (or E-HIPA-SAMP) indi-
cates the proposed CS-based framework problem formula-
tion with OMP (or SAMP) as solution, since this CS-based
framework problem formulation requires the CS recovery
algorithm to estimate the target locations. Note that,
E-HIPA includes AOMP, as we mentioned previously.

5.3 Comparison of Energy Consumption and
Localization Accuracy

1) Comparison of energy consumption: First, we compare the
energy consumption among E-HIPA, RTI, SCPL and RASS
under a given localization accuracy. For each method, we
increase the number of links until the localization accuracy
reaches a given value, and then calculate the energy con-
sumption. Based on the first order radio model [35], the
energy consumption for each link is calculated as Eradio ¼
elBb

2 þ 2BEelc, where B is the size of a packet in bits, b is

the link length, el=100 pJ/(bit/m2), and Eelc=50 nJ/bit. In
our experiments, B ¼ 320 bits, b ¼ 6m and each link repeat-
edly send and receive 30 packets in one localization phase.
Thus, the energy consumption for a given method with M
links is M � 0:99 mJ. Fig. 9 shows the energy consumption
for different average localization error values. To achieve a
given accuracy, E-HIPA consumes the least energy, while
RTI, SCPL and RASS consume more energy. For example,
when the targets are localized accurately (i.e., when the
localization error is 0), compared with RTI, SCPL and RASS,
the proposed E-HIPA reduces the energy consumption

by approximately 60%ð¼ 20�8
20 � 100%Þ, 65%ð¼ 23�8

23 � 100%Þ
and 69%ð¼ 26�8

26 � 100%Þ, respectively. The reason is that

E-HIPA employs CS to localize targets accurately with just a
small number of measurements, while RTI, SCPL and RASS
require more measurements for an accurate localization.
Fig. 9 also shows that the energy consumption increased as
the localization error decreased. The reason is that the num-
ber of links increases, the localization error decreases, as
shown in Fig. 12 which will be discussed later.

TABLE 1
Default Values of Experimental Parameters

Parameters Default Values

The number of targetsK 8
The number of linksM 12
The length of grid side v 0.5 m
The length of link b 6 m
The size of monitoring area As 6 m �6 m

Fig. 9. Comparison of energy consumptions.
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2) Comparison of localization accuracy: Fig. 10 shows the
cumulative distribution function (CDF) of the localization
errors for E-HIPA, RTI, SCPL and RASS. E-HIPA performs
the best with 50th and 80th percentile errors of 0.3 m and
0.4 m, respectively, while RTI, SCPL and RASS yield a large
error with values of 1.7 m (80th percentile), 1.9 m (80th per-
centile) and 2.1 m (80th percentile), respectively. The reason
why RTI does not perform as well is that (i) RTI requires a
denser deployment to collect sufficient measurements to
localize the targets accurately, and (ii) RTI estimates the
location of a target with an area rather than an exact loca-
tion [8]. The poor performance of RASS is primarily because
RASS fails to localize multiple targets even when targets
located sparsely in the same triangle. RASS combines all
distortions from theK targets to locate a single “equivalent”
target [11]. Since we let the targets enter the area sequen-
tially, the localization errors would increase with the
increased number of targets, as shown in Fig. 11. The perfor-
mance of SCPL is similar to RASS since both of them are fin-
gerprinting based approach. While, SCPL utilises the
temporal transitions in target trajectories to improve the
localization accuracy.

This experiment investigates how many targets can be
localized accurately by E-HIPA. We increase the number of
targetsK from 2 to 16 with a step size 2, while other parame-
ters use the default values. As we can see in Fig. 11, the maxi-
mum number of targets that can be localized accurately by
E-HIPA depends on the number of links, i.e., under the
restriction M > Kðlog ðN=KÞÞ. For example, when K > 10,
the number of links required isKðlog ðN=KÞÞ�12:58, which
is greater than what we deployed in this scenario. For the

similar reason in the previous paragraph, E-HIPA outper-
forms the RTI, SCPL and RASSmethods.

Here, we evaluate the feasibility of sparser deployment.
We decrease the number of links M from 12 to 5, by ran-
domly removing the links deployed on two sides of the
monitoring area, while other parameters use the default val-
ues. As shown in Fig. 12, compared with the default deploy-
ment scenario, the results indicate that E-HIPA supports
sparser deployment with a particular number of targets,
e.g., the localization error of E-HIPA still maintains a
smaller value when M¼11 < 12, as it still satisfies
M¼11 > Kðlog ðN=KÞÞ¼10:04 according to the CS theory.
The poor performance of RTI, SCPL and RASS is due to the
same reason in the previous paragraph.

3) Comparison of sparse recovery capabilities: We now report
our comparative study of AOMP vs. SAMP [25] and OMP
[24]. We evaluate the performance of these three algorithms
in solving the proposed CS-based framework problem for-
mulation with different link counts and target counts. As
can be seen in Fig. 12 and Fig. 11, AOMP (i.e., E-HIPA) is
superior in terms of localization error compared with OMP
(i.e., E-HIPA-OMP); while, compared with SAMP (i.e.,
E-HIPA-SAMP), the accuracy of AOMP is not improved
significantly. The poor performance of OMP is due to that
OMP requires the availability of the sparsity level K, which
is unknown in this scene. Although OMP can iterate until
the residual is minimum, it may still encounter an incorrect
sparsity level K which can lead to a large localization error.
SAMP can estimate the sparsity level adaptively during the
iterating, thus, it can perform as well as AOMP. Figs. 12
and Fig. 11 also show that the localization errors of the
three algorithms increased with the increased number of
targets K or the decreased number of links M. The reason
for this is that the proposed CS-based DFL framework with
these recovery algorithms could not satisfy the CS theory,
i.e., (22) could not be satisfied, when K increased or M
decreased. Fig. 10 shows the CDF of the localization errors
for AOMP, SAMP and OMP. Fig. 10 also illustrates that
both AOMP and SAMP achieve high localization accuracy.
However, AOMP suffers from high computational com-
plexity. Fig. 13 shows the running time for AOMP, SAMP
and OMP under different target counts. We test this using
Matlab 7.0 on a laptop (2.0 GHz CPU and 2 GB memory).
Compared with AOMP, the running time of SAMP and
OMP increase significantly, since they require more itera-
tions to recover the sparse signal. Taking into account

Fig. 10. Localization performance.

Fig. 11. Impact of target count.

Fig. 12. Impact of link count.
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the localization accuracy and the complexity, the AOMP
algorithm demonstrates the best performance.

5.4 Robustness of E-HIPA

In this section, we evaluate the robustness of the E-HIPA
method through the following two experiments.

This experiment investigates the robustness of E-HIPA
when it localizes a new category of targets that are not used
for modeling the sensing matrix. Usually, different catego-
ries or types of targets (such as tigers and monkeys) are
always of disparate shapes, and hence yield a different RSS
change measurements, even when they are located at the
same location. To test robustness, we need to measure the
difference of RSS change distributions across different target
categories. For two given sets of RSS change measurements
~R1 ¼ ðr1i Þ and ~R2 ¼ ðr2i Þ, where r1i 2 Rn1 and r2i 2 Rn2 ,
this study uses the maximum mean discrepancy
(MMD) [36], which can measure the distribution distance
directly without density estimation, to quantify the differ-

ence in distributions. The distance is distðDR1;DR2Þ ¼
jj 1n1

Pn1
i¼1 r

1
i � 1

n2

Pn2
i¼1 r

2
i jj2, where r1i 2 DR1 and r2i 2 DR2.

A new target category means a new MMD across the
existing target categories, thus, we only need to investigate
how the differences of MMD among targets affect the locali-
zation performance. To mimic different MMDs among tar-
gets, we intend to add Gaussian noise with different means
and variances to the RSS changes measurements YM�1 in
(4). Fig. 14 shows the average localization errors for differ-
ent MMD values. We observe that E-HIPA outperforms the
other three schemes, no matter how much the MMD is
increased. An interesting observation is that when the
MMD is greater than 4 dBm, the localization error of E-
HIPA increased linearly, while for the other two algorithms,
the error remains nearly a constant large value. According
to [37], if the measurement error or the noise is power-lim-

ited to �, the reconstructed signal Q̂ is guaranteed to be

within d� of the original signal Q, i.e., kQ̂�Qk‘2�d�, where

the constant d depends only on the measurement parame-
ters, not on the level of noise. MMD quantifies the bound of
noise, therefore, the localization error of E-HIPA increases
linearly as the MMD varies linearly.

All the experiments we conducted are with link length
b ¼ 6 m, i.e., the localization area is limited to 6 m � 6 m. To
investigate the performance of E-HIPA under other link len-
gths and other area sizes, we conduct additional experiments

(area size of 6 m �b), with link length b ¼ 2 m to b ¼ 16 m
with a step size 2 m. In each experiment, we use the same
implementation and deployment settings described previ-
ously except for the link length. For a fair comparison, we nor-
malize the localization error with the link length. Since these
experiments require a significant amount of human efforts,
we randomly test only 20 grids in each experiment due to
time and resource constraints. Fig. 15 shows the average local-
ization errors for eight link lengths. As can be seen, when the
link length is less than 8 m, the errors of all the three methods
are relatively stable and E-HIPA demonstrated the best per-
formance. When the link length is greater than 10 m, large
errors are observed for all methods for the following reasons.
Fig. 16 (bottom) shows the standard deviation of RSS
changes for different link lengths. We observe that the maxi-
mum standard deviation is less than 2 dBm, i.e., the noise is
bounded under 2 dBm. Fig. 16 (top) shows the absolute RSS
change measurement for different link lengths. As we can
see that the absolute RSS change measurements distorted by
the target decreased as the increase of link length. Due to
the prorogation fading, the longer the link length is, the
smaller the signal to noise ratio (SNR) is [28]. Thus, the small
RSS changes will be absorbed by the noise when the link
length is too long. For example in Fig. 16 (bottom), the abso-
lute RSS change measurements are around 2 dBm when the
link length is larger than 10m. The 2 dBm RSS changes
would be mixed into the noise, thus these measurements
cannot be used for localization. This experiment indicates
that, for the given transmission power/transceivers, we
should choose a suitable link length to guarantee the SNR
for target localization.

Fig. 13. Running time of recovery algorithm.
Fig. 14. Performance of new target.

Fig. 15. Performance of other link lengths.

726 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 3, MARCH 2017



5.5 Scalability of E-HIPA

To evaluate the scalability of E-HIPA, we increase the size of
the localization area from 4 m � 4 m to 12 m � 12 m and the
number of targets K from 5 to 30 with a sept of 5. As men-
tioned in Section 5.4, the link length is limited within 10 m
when we using the MICAz nodes, which leads to a limited
monitoring area. To deal with this problem, we use the
approach discussed in the last paragraph of Section 3.1. For
simplicity, we set the size of each subarea as 4 m � 4 m.
Fig. 17 shows the average localization errors for different
area sizes and target counts. It illustrates that the maximum
area to which E-HIPA is applicable depends on the maxi-
mum number of targets. For example, when K ¼ 15, the
localization error increased drastically in the 4 m � 4 m area
while the error remains small in the 8 m� 8 m area. The rea-
son is that the maximum number of targets that can be local-
ized precisely in each subarea is less than 10, since

KlogðN=KÞ � 8:1 > 8 when K ¼ 10, N ¼ ð4=0:5Þ2. There-
fore, the maximum number of targets can be localized pre-
cisely in 4 m� 4m area and 8m� 8m area are 10 (< K¼15)
and 20 ð> K¼15Þ, respectively.

These results indicate that the maximum area where
E-HIPA is applicable depends on the maximum number of
targets. Here, we analyse and discuss the scalability of
E-HIPA. Based on the CS theory [18] and the experimental
results shown in Fig. 11, there exists a maximum number
Kmax of targets that can be localized precisely in each sub-
area. Considering a large monitoring area which is divided
into � subareas, thus the maximum number of targets
(located randomly in the area) that can be localized precisely

is less than �Kmax. If the maximum number of targets in the
monitoring area is less than �Kmax, E-HIPA can scale to any
area size with high localization accuracy. Otherwise, the
localization error has the following two characteristics: (i) if
the area size is fixed, more targets lead to higher localization
errors; and (ii) if the number of targetsK is fixed, larger area
sizes lead to lower localization errors, as illustrated in Fig. 17.

5.6 A Case Study

In this section, we illustrate an example of target localization
using the generalized E-HIPA. In a 12 m � 12 m monitoring
area, we conduct four experiments. For each experiment, we
use T equal subareas to cover the monitoring area and
deployM links in each subarea. The grid side length v ¼ 0:5
m. The experimental parameters are shown in Table 2.

Fig. 18 shows the localization results of the four experi-
ments. Here, “Ture” indicates the true locations and “Exp.
x” indicates the locations estimated in the xth experiment.
The results of Exp. 3 and Exp. 4 illustrate that the generalized
E-HIPA localize all the targtes accurately. While, the results
of Exp. 1 and Exp. 2 demonstrate some large errors. The rea-
son is that some of the links are distorted by more than one
target in these two experiments. However, the distorted RSS
of multiple targets are not linear additive [28], thus, E-HIPA
cannot localize each of these targets accurately. For example,
for the three collinear targets (the targets with coordinate of
y = 6.25) in Exp. 1, E-HIPA consider them as one target and
localize this “equivalent” target at (5.75, 6.25).

5.7 Tracking Targets by E-HIPA

The tracking scheme of E-HIPA is described as follows.
Firstly, we align the RSS change measurements of all the

M links in accordance with the same time. For a set of RSS
change time series measurements of each link, we then apply

Fig. 16. Impact of link length on RSS changes.

Fig. 17. Scalability of E-HIPA.

TABLE 2
Experimental Parameters

Subarea
number (T)

Subarea
size (A)

Subarea links
number (M)

Subarea grids
number (N)

Exp.1 1 12 m� 12 m 24 576
Exp.2 4 6 m� 6 m 12 144
Exp.3 9 4 m� 4 m 8 64
Exp.4 16 3 m� 3 m 6 36

Fig. 18. Results of generalized E-HIPA.
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a mean sliding window algorithm to filter noise. Let the
measurements of link i over T moments be fyði; 1Þ; . . . ;
yði; tÞ; . . . yði; T Þg. Then the output of the mean sliding win-

dow algorithm can be described as ŷði; tÞ ¼ 1
Q

PQ�1
x¼0 yði; tþ xÞ,

where Q is the size of sliding window. Secondly, we run
AOMP to estimate a set of location vectors fQðtÞg,
1 � t � T with the corresponding pre-processed measure-
ments fŷði; tÞg, 1 � i �M, 1 � t � T . Finally, we refine
the estimated locations, since lots of the locations are
repeated while a few of them are chaotic. To do so, we
divide the set of location vectors fQðtÞg, 1 � t � T into
several blocks with the length of jQj. In each block, we
regard the highest frequency location as the final esti-
mated location. At last, we arrange these final estimated
locations in chronological order to get the trajectories of
targets.

To evaluate the tracking performance of E-HIPA, we let
two people with height of about 1.8 m move along different
paths in the 6 m � 6 m monitoring area. The moving speed
of the two people is about 0.5 m/s. We set Q as one second.
Fig. 19 shows the estimated trajectories of the two people.
As we can see that the tracking errors are under 1 m and
most trajectories match the true paths well.

6 CONCLUSION AND FUTURE WORK

This paper proposed E-HIPA, an energy-efficient frame-
work for high-precision multi-target DFL. The goal of
E-HIPA is to reduce energy consumption while providing
precise localization of multiple targets without carried devi-
ces. We proved that the designed sensing matrix obeys RIP,
which validates the CS-based framework problem formula-
tion. To recover the location vector of targets under the
restriction of unknown target number, E-HIPA includes a
low computational AOMP algorithm to estimate the target
locations accurately without prior information of the num-
ber of targets. Additionally, theoretical analyses were pro-
vided to validate the proposed problem formulation and
solution. The experimental results illustrate the effective-
ness and advantages of E-HIPA.

In the future work, we will try to relax the “located rela-
tively sparsely” constraint for localizing multiple targets. The
challenge lies in handlingmultiple targets who distort a same
link. In this case, E-HIPA may regard them as one target due
to the lack of effective analysis for single interference distorted

by multiple targets. To the best of our knowledge, this prob-
lem is still an open issue [28]. One possibility is to assume that
these entities will affect the area sequentially, and try to
address them as successive events in time. This will require
further research to determine how the environment is affected
by the simultaneous and non-simultaneous changes due to
multiple targets who are close to each other. We plan to dev-
elop probabilisticmodels to analyze such dynamic changes.
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