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Abstract—The stability regions of two opportunistic scheduling
policies, the utility-based (UB) scheduling and the channel-rate-
based (CRB) scheduling, in wireless networks are discussed,
respectively. The UB scheduling is a generalized proportional fair
scheduling in an unsaturated system, and the CRB schedulingis a
variant of the UB scheduling. We give the closed-form expression
of the stability region of the CRB scheduling, and a numerical
method to obtain the stability region of the UB scheduling. Both
of the two scheduling policies are not throughput-optimal,and
thus in general their stability regions are less than the ergodic
capacity region. With the CRB scheduling, the stability region is
a convex hull, while with the UB scheduling, the stability region
is generally even non-convex and may exhibit some undesirable
properties, such as decreasing the traffic of one flow may lead
another flow being unstable, and proportionally decreasingthe
traffic of all flows may lead a stable system to be unstable. We
further show that, as long as the arrival rate lies inside the
ergodic capacity region, we can assign a proper weight to each
user, and based on the weighted UB/CRB scheduling policies,
the system can be stabilized. Detailed numerical examples and
simulations are given to illustrate the stability region of the two
policies and validate our analysis.

I. I NTRODUCTION

Scheduling and resource allocation is one of the most im-
portant tasks in the operation of wireless networks, especially
for infrastructure-based wireless networks, since the system
performance is mainly determined by the scheduling policy in
a multi-user system.

Traditionally, scheduling is a link layer function, which
is performed separately from the lower layer functions. For
wireless networks, [1] proposed an opportunistic scheduling
policy in the scenario that multiple users share the channel,
which can enhance the system performance by exploiting the
randomness of fading channel. In this work, fading, due to the
user mobility and multipath propagation, was firstly treated as
a constructive factor to the system. Thereafter, opportunistic
scheduling was applied to downlink in [2].

The opportunistic scheduling proposed in [1], [2] has been
generalized to the utility-based scheduling in [3] which aims
to maximize a pre-defined utility based on the long-term
achievable throughput. Based on the stochastic approximation,
the convergence of such policy is guaranteed under a mild
condition [4], [5]. The work has been further extended to
different network scenarios, such as cooperative networks[6],
or networks with different wireless techniques, such as the
downlink and the uplink of an orthogonal frequency-division
multiplexing (OFDM) system [7], [8], [9].
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All these works designed the scheduler based on an as-
sumption that each user always has sufficient data to transmit.
The assumption simplifies the problem, while as shown in
[10], these kinds of schedulers may lead the system to be
unstable, while the system in the same circumstance can be
stabilized by other scheduling policies, such as max-weight
scheduling [11]. The key reason here is because, without
considering the stochastic characteristic of incoming traffic,
although the arrival rate lies inside the ergodic capacity region,
the tie-breaking rule used in the above utility-based scheduling
policies is not efficient as these policies schedule some users
too frequently and lose the chance to explore the multi-user
diversity gain, and thus they are not throughput-optimal.

Little work has been done in quantifying the stability region
of the opportunistic scheduling policies. The stability region
of an opportunistic scheduling policy in a two-user wireless
network with i.i.d. Bernoulli arrival traffic was derived in
[12]. Different from the general utility-based scheduling, the
scheduler discussed in [12] is a normalized signal-to-noise-
ratio (SNR) one, where the user is scheduled based on the
normalized instantaneous SNR. The author observed that the
stability region is less than the ergodic capacity region, while
by varying the normalized factor, the union of the resultant
stability region is equal to the ergodic capacity region. Note
that, with the identical normalized factor, the scheduler is
able to explore the maximal multi-user diversity, but is not
easy to explore other features, such as fairness. By changing
the normalized factor, the fairness feature can be implicitly
explored, while it is unclear how to design the normalized
factor for a specific fairness objective. Also, the prior knowl-
edge assumption of the channel in [12] may bring hardness
to implement such policy. In [13], the authors discussed the
two-user stability region in a static channel configurationwith
concurrent transmissions. The scheduler discussed is a partial
distributed scheduler, combining the user coordination with
an Aloha media access control (MAC), which may not be a
suitable choice for a centralized wireless network due to the
low channel efficiency of the Aloha MAC.

In this work, we quantify the stability region of two oppor-
tunistic scheduling policies with a general traffic arrivalin a
wireless system withN users. The two scheduling policies
include a utility-based (UB) one and a channel-rate-based
(CRB) one. The CRB scheduling can be viewed as a variant of
the UB scheduling, by treating an intermediate control variable
differently. For the UB scheduling, the explicit closed-form
stability region generally cannot be obtained, while we develop
a theorem to examine the stability of a system given the arrival
rate, and a numerical method is provided to obtain the stability
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region in a two-user system. We further study the propertiesof
the stability region of the UB scheduling, and show that it is
generally non-convex and may also exhibit some undesirable
features. For instance, decreasing the arrival rate of one user
may lead the system to be unstable. For the CRB scheduling,
we obtain the closed-form expression of the stability region,
which is a convex hull. Besides the stability region, we further
study the extended stability region by giving a weight to each
user. The results show that by varying the weight assigned to
each user, the union of the resultant stability region is equal to
the ergodic capacity region, for both scheduling policies.This
suggests as long as the system can be stabilized, by assigning
a proper weight to each user, using a non-throughput-optimal
scheduling may also stabilize the system.

It is further noted that, the results of the CRB scheduling is
similar to the work in [12], while our work is more general.
We use a more general traffic model, consider a generalN
user system, and discuss a scheduling algorithm that can be
easily designed to achieve certain utility objective.

The rest of the paper is organized as follows. Sec. II intro-
duces the system models, including channel model, queueing
model and scheduling policies. In Sec. III and Sec. IV, the
stability regions of the CRB scheduling and UB scheduling
are presented, respectively. The extended stability region is
discussed in Sec. V. Evaluations are shown in Sec. VI,
followed by the conclusion and discussion.

In the following, bold face letters represent vectors, and
calligraphic letters represent sets.

II. SYSTEM MODELS

A. Channel Model

The system has one server who has packets to transmit
through a shared wireless channel toN independent users.
The set of users is denoted byN = {1, 2, ..., N}. The power
set ofN is denoted byS, and the cardinality ofS is |S| = 2N .
We useSi to denote thei-th element inS.

We assume that the shared wireless channel is time slotted
block fading channel. The set of channel state is finite, which
is represented asM = {1, 2, ...,M}. Within each time slot,
the channel state is constant. Crossing time slots, certainrule
is used to govern the transition of the channel state. There is
a vector of ratesum = (um

1 , um
2 , ..., um

N) associated with each
channel statem ∈ M. The elementum

i ∈ N
⋃

{0} means the
number of packets that can be transmitted if the time slot is
all allocated to useri in statem.

We further assume that the shared wireless channel state
process is an irreducible discrete-time Markov chain with the
state spaceM. The stationary distribution of this Markov
chain is denoted asπ = (π1, π2, ..., πM ).

The capacity region of the system in statem is denoted as

Cm
N =

⋃

∑
i t

m
i =1

(um
1 tm1 , ..., um

N tmN ),

wheretmi is the time portion allocated to useri in statem.
The ergodic capacity region of the system is obtained as:

C̄N =
⋃

∑
i t

m
i =1

(
∑

m

um
1 tm1 πm, ...,

∑

m

um
N tmNπm). (1)

Given the user setA, the corresponding capacity region in
statem and the ergodic capacity region can be obtained by
assigningtmi = 0 for all i /∈ A, and are denoted byCm

A andC̄A
respectively. DenoteCA(t) as the capacity region of user set
A in time slott. Since statem and time slott are associated,
so if the state int is m, we haveCm

A = CA(t).

B. Queueing Model

Data packets are arrived randomly and queued up in an
infinite buffer reserved for each user. The packet arrival
process is considered as a stationary ergodic stochastic process
with finite moments. The state of thei-th buffer is the queue
length and denoted byqi(t). All queue states form a vector
q(t) ∈ RN

+ , and are updated by

q(t+ 1) = [q(t)− r(t) + a(t)]+, (2)

where[x]+i = max{0, xi},∀i ∈ N , r(t) ∈ RN
+ is the amount

of transmitted data that is determined by the scheduling
decision, anda(t) ∈ RN

+ is the amount of arrived data in time
t, which is a bounded random variable. The average arrival and
service rates areλ = Et[a(t)] andµ = Et[r(t)], respectively.

C. Scheduling Policy

We assume that at the beginning of each time slot, the server
can observe the state of the channel and allocate the resource
based on the observation.

Under the assumption that each user always has enough
data to transmit, a utility-based scheduling policy, whichis a
generalized proportional fair scheduling [3], [5], allocates the
rate to user in time slott based on the following problem:

r(t) = argmax
η∈CN (t)

∑

i∈N

f(Ri(t))ηi, (3)

with ties being broken randomly, where functionf is a
derivative of a strictly concave smooth utility functionU ,
Ri(t) is the smoothed rate measurement of useri in time slot
t, which can be updated by an exponentially weighted moving
average algorithm [5]

R(t) = R(t− 1) + ǫ(r(t)−R(t− 1)),

whereǫ is the step size.
According to [4], [5], by choosing a proper step sizeǫ, R(t)

weakly converges to the average allocated rateRN which can
be obtained based on the following problem

RN = argmax
η∈C̄N

∑

i∈N

U(ηi).

Note that the online algorithm (3) cannot be directly used
in a system without the assumption of enough backlogs, since
otherwise it may allocate the resource to users with no packet
to transmit. With some modifications to (3), two scheduling
policies, the UB and the CRB scheduling, can be obtained for
a system with stochastic arrival traffic.
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1) The UB Scheduling: In time slot t, a user setA(t) is
selected satisfying the condition that the queue length of each
user in A(t) is sufficiently large, for instanceqi(t) ≥ qthi ,
whereqthi is the queue length threshold for useri. This treat-
ment avoids the wireless resource been wasted that choosinga
user without enough data to transmit. The specific value ofqthi
does not affect the stability region, as long as it is sufficiently
large. With such treatment, the queue length dynamic in (2)
becomes

q(t+ 1) = q(t) − r(t) + a(t). (4)

Then the rate allocated to the user inA(t) is

rUB
A(t)(t) = argmax

η∈CA(t)(t)

∑

i∈A(t)

f(RUB
i (t))ηi, (5)

with ties being broken randomly, and the rate allocated to the
user inN|A(t) is 0. UsingrUB(t) to denote the allocated rate
in time slot t, thenRUB

i is updated based on

RUB(t) = RUB(t− 1) + ǫ(rUB(t)−RUB(t− 1)),

which is used to track the average throughput of the system.
2) The CRB Scheduling: For the CRB scheduling, in time

slot t, based on the same method as the UB scheduling, we
select the candidate user setA(t). The rate allocated to the
user inA(t) is based on

rCRB
A(t)(t) = argmax

η∈CA(t)(t)

∑

i∈A(t)

f(RCRB
i (t))ηi, (6)

with ties being broken randomly, and the rate allocated to user
in N|A(t) is 0. We userCRB(t) to denote the allocated rate
in time slot t.

Different from the UB scheduling, in the CRB scheduling,
RCRB(t) is used to track the average channel-rate, and is
updated by

RCRB(t) = RCRB(t− 1) + ǫ(r(t)−RCRB(t− 1)),

wherer(t) is the solution to (3).
How to updateRUB(t) andRCRB(t) is the only difference

between the UB and the CRB scheduling policies. For the
CRB scheduling, the update is independent of the scheduling
decision, while for the UB scheduling, the update depends on
the scheduling decision in each time slot.

As shown in [5], under a mild condition,RUB(t) and
RCRB(t) are all weakly converge. In the following, we only
consider the case thatRUB(t) andRCRB(t) converge.

By abusing the notation a bit, we also useRA to denote
the rate vector ofN users and satisfies∀j /∈ A, Rj = 0, i.e.,
RT

A = [RT
A RT

N|A], whereRN|A = 0.

D. Stability

In this paper, we apply the stability definition as it is used
in [14].

Definition 1. A system of queues is said to be strongly stable
if

lim
t→∞

supE[‖q(t)‖] < ∞,

where‖q(t)‖ is the norm of vectorq(t).

Since we only consider the case thatRCRB(t) or RUB(t)
converges, and after the convergence ofRCRB(t) or RUB(t),
the scheduling decision is only related to the current channel
state and the queue state. Therefore, we can simplify the
stability condition.

First, for the CRB scheduling we assume that at time slot
0, RCRB(t) has converged. Due to (4), whent is sufficiently
large, we have

q(t) = q(0)−
t−1
∑

τ=0

r(τ) +
t−1
∑

τ=0

a(τ)

= q(0)− µt+ λt ≥ 0,

which suggests for alli, λi ≥ µi.
Since the dimension ofq(t) is finite, here we only consider

L1 norm ofq(t), and we have

‖q(t)‖

= ‖q(0)− µt+ λt‖

= t
∑

i

(λi − µi) +
∑

i

qi(0).

Therefore

lim
t→∞

supE[‖q(t)‖] < ∞,

requires

lim
t→∞

supE[t
∑

i

(λi − µi) +
∑

i

qi(0)]

= lim
t→∞

t
∑

i

(λi − µi) +
∑

i

E[qi(0)] ≤ ∞,

which suggests
∑

i(λi − µi) ≤ 0.
In summary, the stability of the system requiresλ = µ, i.e.,

the average arrival rate is the identical to the average through-
put. For the UB scheduling, based on the same argument, we
can have the same result.

We further define the stability region of the system as
follows:

Definition 2. The stability region of a system with scheduling
policy p is defined asΛp, and we have∀λ ∈ Λp, the system
is strongly stable;∀λ 6∈ Λp, the system is not strongly stable;

Without confusing, we also use the stability region of
scheduling policyp to refer to the stability region of a system
with scheduling policyp.

III. STABILITY REGION OF THECRB SCHEDULING

We first tackle a simple case, the static channel case
(M = 1), to obtain the stability region. Thereafter, the
general stochastic channel case is discussed. We show that by
replacing the capacity region with the ergodic capacity region,
all the discussions for the static channel case also hold forthe
stochastic channel case.
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A. Static Channel Case

Since the channel only has one state, so we have∀A ∈ S,
C̄A = C1

A andCA(t) = C1
A.

Theorem 1. The stability region of the CRB scheduling policy
is ΛCRB, and

ΛCRB =
⋃

∑
i ti=1

|S|
∑

i=1

RCRB
Si

ti, (7)

where ti ∈ R+

⋃

{0},

RCRB
Si

= argmax
r∈C̄Si

∑

j∈Si

f(RCRB
j )rj , (8)

and RCRB = RCRB
N .

Proof: Since the scheduler is the CRB one, the update of
RCRB(t) is independent of the scheduling decision in each time
slot, andRCRB(t) converges toRCRB

N , i.e., RCRB = RCRB
N .

Comparing (6) with (8), we can conclude that

Et[r
CRB
A(t)(t)] = Ei[R

CRB
Si

]

if RCRB(t) converges. This is becauseRCRB
Si

is the average
throughput of user setSi over time, and by taking the
expectation overi, Ei[R

CRB
Si

] is the average throughput of the
system. SincerCRB

A(t)(t) is the throughput of the system in time
slot t, by taking expectation over time,Et[r

CRB
A(t)(t)] is also the

average throughput of the system.
If the system is stable, the average arrival rate should be

equal to the average throughput,i.e.,

λ = Et[r
CRB
A(t)(t)] = Ei[R

CRB
Si

],

therefore the necessary condition for the system to be stable
is that we can find at (

∑

i ti = 1) such that

λ =

|S|
∑

i=1

RCRB
Si

ti = Ei[R
CRB
Si

],

which is equivalent toλ ∈ ΛCRB.
The sufficient condition can be proved by contradiction.

Supposeλ ∈ ΛCRB, but the system is not stable, and therefore
at least one queue is unstable. Suppose that the queues in
set Q are unstable, and the queues in setN|Q are stable.
Since queuei ∈ Q is unstable, we haveE[qi(t)] → ∞ which
suggests that useri is always scheduled. Suppose that user set
D is the scheduled user set, then we haveQ ⊆ D. We further
construct a setD which is made up of allD. Therefore the
average throughput of the system is

R̄ =
∑

D∈D

πDR
CRB
D ,

and
∑

D∈D
πD = 1. BecauseD is nonempty, we have

R̄ ∈ ΛCRB,

and for anyǫ, with
∑

i ǫi > 0, ǫi ∈ R+

⋃

{0},

R̄+ ǫ 6∈ ΛCRB.

Due to the assumption of the stability of the system, we have
{

R̄i < λi, ∀i ∈ Q,

R̄i = λi, ∀i ∈ N|Q,

which means there exists anǫ that R̄+ ǫ = λ ∈ ΛCRB, which
is contracted with (9). Thus the assumption cannot hold, and
we have proved∀λ ∈ ΛCRB, the system is stable.

In summary, the stability region of the system isΛCRB.
Here, due to the special property of the capacity region,

the stability region equals the capacity region. Note that the
capacity region is a Euclidean simplex withN + 1 vertices
and each vertex represents a rate vector. Suppose theN + 1
vertices make up a setV . SinceRSi is on the boundary of the
capacity regionCSi thus lies in the hyperplane determined by
the points inV . Since the stability region is the convex hull
of RSi , which equals the convex hull ofV , i.e., the capacity
region.

B. Stochastic Channel Case

For the stochastic channel case, we have a similar result as
in the static channel case.

Theorem 2. Theorem 1 holds for the stochastic channel case.

Proof: Similar to the static channel case,RCRB(t) con-
verges to

RCRB = argmax
r∈C̄N

∑

j∈N

U(rj),

and we have

rCRB
Si

(t) = argmax
r∈CSi

(t)

∑

j

f(RCRB
j )rj .

Taking expectation over time, we have

RCRB
Si

= argmax
r∈C̄Si

∑

j

f(RCRB
j )rj .

Also as

RCRB = RCRB
N ,

and based on the same approach as in the static channel case,
we can prove that Theorem 1 holds for the stochastic channel
case.

Worth to note that, different from the static channel case
where the stability region is identical to the capacity region,
the stability region in the stochastic channel case is generally
less than the capacity region due to the fact that the ergodic
capacity region is a convex polytope, but not necessarily a
Euclidean simplex.

IV. STABILITY REGION OF THEUB SCHEDULING

Similar to the discussion of the CRB scheduling, we first
discuss the simple case, the static channel case, and then
study the complicated stochastic channel case. Furthermore,
we show that, the results obtained in the static channel casecan
be directly used in the stochastic channel case, by replacing the
capacity region with the ergodic one. Different from the CRB
scheduling, where the stability region can be easily obtained
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in closed-form, the stability region of the UB scheduling
generally cannot be obtained in closed-form, and thereforewe
develop a numerical method to tackle the two-user case.

A. Static Channel Case

According to [5],RUB(t) converges to the average through-
put. OnceRUB(t) converges, we have

RUB
Si

= argmax
r∈C̄Si

∑

j

f(RUB
j )rj ,

and

RUB = Ei[R
UB
Si

].

Note that generally

RUB 6= argmax
r∈C̄N

∑

i∈N

U(ri),

andRUB may not lie on the boundary of the capacity region.
We have the following theorem to verify whether a system

with a specific arrival rate vector is stable or not.

Theorem 3. A system using the UB scheduling policy with
average arrival rate λ is stable if and only if λ ∈ Λ̃UB(λ),
where

Λ̃UB(λ) =
⋃

∑
i ti=1

|S|
∑

i=1

RUB
Si
ti,

and

RUB
Si

= argmax
r∈C̄Si

∑

j

f(λj)rj .

Proof: Suppose that the system is stable, and then we
haveλ = RUB. Thus, the average rate allocated to user setSi

is

RUB
Si

= argmax
r∈C̄Si

∑

i

f(RUB
i )ri = argmax

r∈C̄Si

∑

i

f(λi)ri,

if Si is scheduled. SinceRUB = Ei[R
UB
Si

], we haveλ =

Ei[R
UB
Si

] ∈ Λ̃UB(λ).
Based on the same argument as that in Sec. III, we can

prove that∀λ ∈ ΛUB, the system is stable. Thus, the theorem
is proved.

Based on the above theorem, we have the following corol-
lary.

Corollary 4. If λ = argmax
r∈C̄N

U(ri), then the system is
stable.

Proof: Since

λ = argmax
r∈C̄N

U(ri), (9)

we have

λ = RUB
N = argmax

r∈C̄N

∑

i∈N

f(λi)ri,

which meansλ ∈ Λ̃UB(λ), and thus the system is stable.

The corollary states that at least one point on the outer-
bound1 of the capacity region can be stabilized by the UB
scheduling.

Based on Theorem 3, we have the following theorem to
quantify the stability region of the UB scheduling.

Theorem 5. The stability region of the UB scheduling policy
is ΛUB, and for any λ ∈ ΛUB, Theorem 3 holds; for any
λ 6∈ ΛUB, Theorem 3 does not hold.

Proof: The theorem can be directly obtained based on the
definition of the stability region and Theorem 3.

Similar to the CRB scheduling in the static channel case,
the stability region of the UB scheduling also equals to the
capacity region in the static channel case.

B. Stochastic Channel Case

Theorem 6. Theorem 3 and Theorem 5 hold for the stochastic
channel case.

Proof: Similar to the static channel case,RUB(t) con-
verges to the average throughput of the system. Then we have

rUB
Si

(t) = argmax
r∈CSi

(t)

∑

i

f(RUB
i )ri.

Taking expectation over time, we have

RUB
Si

= argmax
r∈C̄Si

∑

i

f(RUB
i )ri,

andRUB = Ei[RSi ]. Then we can follow the same approach
as in the static channel case. By replacing the static capacity
region with the ergodic capacity region, the discussions in
the static channel case also hold for the stochastic channel
case, therefore proved that Theorem 3 holds for the stochastic
channel case. Then based on the definition of the stability
region, we can show that Theorem 5 holds for the stochastic
channel case.

While different from the static channel case, where the
stability region can be obtained in closed-form, the stability
region in the stochastic channel case is hard to be derived in
closed-form. But we discover two properties as follows.

Proposition 7. The stability region of the UB scheduling
policy can be non-convex.

Proposition 8. With the UB scheduler, even though the system
is stable when the arrival rate is λ, the system can be unstable
when the arrival rate is reduced to xλ, where 0 < x < 1.

For these two properties, we only need to show that they
hold for some scheduling policies with specific functionf .
This will be done in the Sec. VI.

Remark. These two properties make the UB scheduling very
undesirable if the functionf is selected improperly. The non-
convexity means if one user decreases its arrival rate, the
system may be unstable which is harmful for the quality of

1A point lies on the outer-bound of a set should satisfies two conditions.
First is that the point lies on the boundary of a set; second isthat the point
is no longer belongs to the set if any increment in any dimension is made to
the point.
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service. The second property means that reducing the traffic
intensity may bring a stable system to an unstable system
which will also damage the QoS for all on-going traffic.

Although the closed-form expression of the stability region
is difficult to obtain, a numerical method can be used to
obtain the stability region. Here, we give the method to obtain
the stability region of two-user systems, and it can be easily
extended to a more general case.

Numerical method to obtain the stability region of two-
user systems: Since the ergodic capacity region is a compact,
convex, coordinate convex polyhedron, it can be represented
as

C = {(r1, r2) : akr1 + r2 ≤ bk, k = 1, 2, ...K},

whereak is in the increasing order w.r.t.k, and if ak = ∞,
then the corresponding equation isr1 = bk.

Let rk = (rk1 , r
k
2 ) be the solution of
{

akr1 + r2 = bk,

ak+1r1 + r2 = bk+1,

where0 < k < K, r0 be the solution of
{

a1r1 + r2 = b1,

r1 = 0,

andrK be the solution of
{

aKr1 + r2 = bK ,

r2 = 0.

Geometrically,rk is the vertex on the outer bound of the
capacity region.

If f(λ1)/f(λ2) ∈ (ak, ak+1), i.e.,

λ ∈ Zk = {(λ1, λ2) : f(λ1)/f(λ2) ∈ (ak, ak+1)},

the stability region is the convex hull of{0, r0, rk, rK}, which
is represented as

Λk = {(r1, r2) = β1r
0 + β2r

k + β3r
K :

∀i, βi > 0,
∑

i βi ≤ 1}.

If f(λ1)/f(λ2) = ak, then the stability region is

Λk = {(r1, r2) : akr1 + r2 ≤ bk, f(r1)/f(r2) = ak}.

Overall, the stability region can be represented as

ΛUB =
⋃

k

(Λk

⋂

Zk)
⋃

Λk.

Remark. The key idea of the numerical method is to partition
the capacity region into zones (Zk) and partition curves (Λk).
Each partition curve is the curve along the boundary of two
neighboring zones. Since the capacity region is a convex
polyhedron, the number of zones is finite2. For each zone,
the allocated rate is identical, and thus the stability region for
the arrival rate in each zone can be obtained. Examples are
given in Sec. VI to show how to use the proposed method to
obtain the stability region.

2Note that if the outer bound of the capacity region is strict convex, then
the number of zones is infinite, and this method cannot work.

V. EXTENDED STABILITY REGION

A. Extended Stability Region of the CRB Scheduling

If we give a weight to each user, then a more general CRB
scheduling policy is to allocate the rate based on the following
optimization problem if user setA(t) is selected:

r
w,CRB
A(t) (t) = argmax

η∈CA(t)(t)

∑

i∈A(t)

wif(R
CRB
i (t))ηi,

wherewi ∈ R+

⋃

{0} is the normalized weight, satisfying
∑

i wi = 1.
Since with the CRB scheduler,RCRB(t) converges to

Rw,CRB = argmax
r∈C̄N

∑

i∈N

wiU(ri). (10)

Similar to (8), we have

R
w,CRB
Si

= argmax
r∈C̄Si

∑

j∈Si

wjf(R
w,CRB
j )rj ,

andRw,CRB = R
w,CRB
N .

Similar to (7), for any given weightw, the corresponding
stability region is obtained as

Λw,CRB =
⋃

∑
i ti=1

|S|
∑

i=1

R
w,CRB
Si

ti,

whereti ∈ R+

⋃

{0}, and we have the following theorem.

Theorem 9.

C̄N =
⋃

∑
i wi=1

Λw,CRB,

where Λw,CRB is the stability region of the CRB scheduling
with weight w assigning to users.

Proof: In order to prove that the union of the weighted
stability region is the ergodic capacity region, essentially we
need to show that, all the boundary points of the capacity
region are the solutions to (10) by varying the weightw.

By mappingC̄N to C̄U
N throughU(x), i.e.,

C̄U
N = {(U(x1), U(x2), ..., U(xN ))|x ∈ C̄N },

(10) can be represented as

yw,CRB = argmax
y∈C̄U

N

∑

i∈N

wiyi. (11)

If C̄U
N is a closed convex set, then according to the supporting

hyperplane theorem [15], for any pointy lies on the boundary
of C̄U

N , we can find the correspondingw such thaty = yw,CRB.
Thus all the boundary points of̄CU

N are the solutions to (11)
by varying w. Since U(x) is a monotonic non-decreasing
function, the images of the boundary points ofC̄U

N in C̄N are
still the boundary points. Then, the theorem can be proved if
C̄U
N is a closed convex set.
For any xm,xn ∈ C̄N whose image inC̄U

N is m,n,
respectively, we have

αm + (1− α)n

=α(U(xm

1 ), ..., U(xm

N )) + (1− α)(U(xn

1 ), ..., U(xn

N ))

=(y1, ..., yN ),
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where

yi = αU(xm

i ) + (1 − α)U(xn

i ).

Without loss of generality, we assumexm

i ≥ xn

i .
Because U(x) is monotonically non-decreasing,yi ∈
[U(xn

i ) U(xm

i )]. i.e., xi = U−1(yi) ∈ [xn

i xm

i ]. Conse-
quently,x ∈ C̄N due to the convexity of̄CN , and therefore
y ∈ C̄U

N and the convexity ofC̄U
N is proved. SinceC̄N is

closed,C̄U
N is also closed. ThereforēCU

N is indeed a closed
convex set.

B. Extended Stability Region of the UB Scheduling

Similar to the CRB scheduling, for the UB scheduling, a
slight modification to the scheduling policy by giving a weight
to each user, the resultant stability region is denoted byΛw,UB,
and we have the following theorem.

Theorem 10.

C̄N =
⋃

∑
i wi=1

Λw,UB,

where Λw,UB is the stability region of the UB scheduling with
weight w assigning to users.

Proof: First, based on the supporting hyperplane theorem,
for any givenλ and any boundary point of̄CSi , we can find a
w such that the boundary pointRw,UB

Si
is the solution to the

following problem,

R
w,UB
Si

= argmax
r∈C̄Si

∑

j∈Si

wjf(λj)rj ,

where
∑

j wj = 1. Also note that the boundary points ofC̄Si

also lie on the boundary of̄CN ; therefore, we have

C̄N =
⋃

∑
i wi=1

Co{Rw,UB
Si

: i ∈ N},

=
⋃

∑
i wi=1

Λ̃w,UB(λ)

whereCo means convex hull, and

Λ̃w,UB(λ) =
⋃

∑
i ti=1

|S|
∑

i=1

RUB
Si

ti.

According to Theorem 5, we know that

λ ∈ Λw,UB ⇔ λ ∈ Λ̃w,UB(λ).

So we have

λ ∈
⋃

∑
i wi=1

Λw,UB ⇔ λ ∈
⋃

∑
i wi=1

Λ̃w,UB(λ) = C̄N ,

which suggests
⋃

∑
i wi=1

Λw,UB = C̄N .

C. Discussion

Although the stability regions of the CRB and the UB
scheduling policies are less than the capacity region, re-
spectively, by assigning the weights to users, the resultant
scheduling algorithms can stabilize the system. Further note
that, by giving the weights to users, the equivalent utility
function has changed from a homogeneous one (U(.)) to a
heterogeneous one (wiU(.)). Therefore, for any givenw, the
discussion in Sec. III and Sec. IV can still be used to analyze
the stability of the system.

The advantage of the weighted opportunistic scheduling is
that when the arrival rate lies outside the capacity region,the
operation point (the throughput) is determined by the utility
functionU (in both UB and CRB scheduling policies), which
is typically designed based on the fairness concern. Therefore
the weighted opportunistic scheduling can provide a better
fairness.

Although the approach is promising, it may not be easy. The
weight-design is to find the supporting hyperplane (weight)of
a closed convex set (capacity region) in a specific boundary
point (the intersection of the arrival rate vector and the capacity
region). Since the solution highly depends on the shape of the
closed convex set, we lack a general analytic method. Further
works should be done to obtain a simple method to design the
weight.

VI. EXAMPLES AND SAMPLE VALIDATION

In this section, we give examples about the stability region
of the UB scheduling and the CRB scheduling policies.
Simulation is conducted to compare the two policies, and
validate the analytic results.

A. Channel Assumption

Considering a two-user four-state channel, the transmission
rate vector is

um =























[RON
1 , 0]T , m = 1,

[0, RON
2 ]T , m = 2,

[RON
1 , RON

2 ]T , m = 3,

[0, 0]T , m = 4,

and the stationary distribution isπ = (1/4, 1/4, 1/4, 1/4).
Note that this is a channel model for a two-user system, where
each user has two states (ON and OFF), and the channel states
for different users are independent. The achievable throughput
of user i is RON

i when its channel state is ON, and0 if its
channel state is OFF. Without loss of generality, we assume
RON

1 ≥ RON
2 .

Based on (1), we can obtain the ergodic capacity region as:

C̄ = {(R1, R2) : R1/R
ON
1 +R2/R

ON
2 ≤ 3/4,

R1/R
ON
1 ≤ 1/2, R2/R

ON
2 ≤ 1/2}.
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B. Utility Function

1) α-Fairness Utility: The utility function chosen to be
evaluated is theα-fairness ones [16]:

U(x) =

{

log(x), α = 1,

(1− α)−1x1−α, otherwise,

wherex is the average throughput, whose unit is bps/Hz in
this paper and is omitted in the following. The derivative of
U(x) is

f(x) = x−α.

By choosing a differentα, the objective is to maximize
the fairness measurement based on different principles, and
the relative value of the measurement is of more interests.
For instance, ifα = 0, then the objective is to maximize
the system throughput; ifα = 1, then it is to maximize the
proportional fairness; ifα → ∞, then it is to maximize the
max-min fairness.

2) Exponential Utility: Another utility function chosen to
be evaluated is exponential utility [17]:

U(x) = −
1

a
e−ax,

and

f(x) = e−ax.

For the exponential utility, the marginal utility is exponentially
decreasing, and the changing rate of the marginal utility isa
constant and independent ofx.

C. Stability Region of the UB Scheduling

1) α-Fairness Utility: Based on the numerical method
proposed in Sec. IV, we can obtain the stability region, as
shown in Fig. 1.

The point P in the figure is the intersection of the bound-
ary of the capacity region and curvef(λ1)

f(λ2)
= β where

β = RON
2 /RON

1 . With the increasing ofα, P moves along
the boundary of the capacity region, and results in the shape
changing of the stability region. From the figure we also can
observe that the stability region is non-convex all the time.
When the value ofα is proper, the stability region is the
union of a convex set and a line segment. Whenα is large
or small, P moves to the lineR1 = RON

1 /2 or R2 = RON
2 /2,

then the stability region is a trapezoid minus a triangular.The
non-convex property of the stability region makes the system
behavior hard to predict and the QoS hard to meet, since
decreasing the arrival rate of one flow may lead the system
changing from stable to unstable.

2) Exponential Utility: We already know that, with the UB
scheduler, for a stable system with arrival rateλ, decreasing
any element inλ may lead the system to be unstable. Here we
give another example to show that, proportionally decreasing
all the elements inλ (down-scaleλ) may also lead the system
to be unstable.

Based on the same approach as inα-fairness utility, the sta-
bility region can be obtained. Since we change the functionf ,
so the curvef(λ1)

f(λ2)
= β determiningP is λ2−λ1 = 1/a logβ.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

λ
1

λ 2

Capacity Region

α=1

α>α
h

α<α
l

Fig. 3. Stability Region of a system with four-state channelandα-fairness
CRB scheduling.RON

1
= 6, RON

2
= 2, αl = 0.61, αh = 2.71

If the arrival rateλ is downscaled byx, the new arrival rate
is no longer lies in the partition curvef(λ1)

f(λ2)
= β therefore

cannot guarantee the stability, and the stability propertyshould
be examined by finding which zone the newλ lies in. As
illustrated in Fig. 2, whena = 1 or 3, if the system is stable
in point P, then ‘down-scale’λ by x, the system becomes
unstable,i.e., suffering the ‘down-scale’ unstable; but when
a = 0.4, the ‘down-scale’ unstable situation does not happen.

D. Stability Region of the CRB Scheduling

α-Fairness Utility: We enumerate S as S =
{(1), (2), (1, 2), ∅}. For each A ∈ S, we have
R(1) = [RON

1 /2, 0]T , R(2) = [0, RON
2 /2]T , R∅ = [0, 0]T , and

R(1,2) =











[RON
1 /2, RON

2 /4]T , α < αl,

[
3RON

1 /4

1+β1/α−1 ,
3RON

2 /4

1+β1−1/α ]
T , αl ≤ α ≤ αh,

[RON
1 /4, RON

2 /2]T , α > αh,

whereαl = log β/ log β
2 , αh = log β/ log 2β.

The capacity region and the stability region are illustrated in
Fig. 3. By varyingα, R(1,2) is moving on the outer bound of
the capacity region, and the stability region is always a convex
hull.

Comparing Figs. 1 and 3, under the four-state channel
assumption in a two-user system, the CRB scheduling policy
can always provide a larger stability region than the UB
scheduling policy if using the same utility function.

E. Scheduling Policy Comparison

We have conducted simulation to compare the UB and the
CRB scheduling policies. We chooseα-fairness as the utility
function, andα = 0.5. We use Poisson traffic as the arrival
traffic, ǫ is chosen as 0.01, and we run 10 times to take the
average. We setλ1 = RON

1 /2 for all 20000 time slots, set
λ2 = RON

2 /4 for the first 10000 time slots andλ2 = RON
2 /10

for the last 10000 time slots. This is used to simulate the
arrival-rate decreasing of one flow.

The throughput comparison is shown in Fig. 4. From the
figure, after 10000 time slots, the throughput of Q1 with the
UB scheduler (the curve UB Q1) starts to decrease and is
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Fig. 1. Stability Region of a system with four-state channelandα-fairness UB scheduling.RON
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Fig. 2. Stability Region of a system with four-state channeland exponential UB scheduling.RON
1

= 6, RON
2

= 2.

less than the throughput of Q1 with the CRB scheduler. For
the throughput of Q2, both schedulers can maintain the same
throughput, which equals the arrival rate of the second flow.
Here we can conclude, by decreasing the arrival rate of one
flow, the throughput of another flow can be decreased, if the
UB scheduler is used. This phenomenon can be explained by
examining the system stability based on Theorem 6 with the
new arrival rate. An intuitive explanation is as follows: asthe
utility functionU(x) is strictly concave, the derivative function
f(x) is a decreasing function. SinceRUB

i (t) is used to estimate
the average throughput of useri and if the arrival rate of
useri decreases, the estimated average throughput should also
decrease,i.e., RUB

i (t) decreases. Therefore,f(RUB
i (t)) will

increase. From (5) we can see, this generally results in the
increase ofrUB

i (t), i.e., the increase of the instantaneous rate of
useri. The probability that the system stays in a state without
useri will increase, as a joint results of the decreasing of the
arrival rate and the increasing of the instantaneous rate. As the
number of users has decreased, the system will lose certain
multi-user diversity,i.e., the achievable rate region thanks to
the opportunistic scheduling will shrink. This may lead to a
situation that the average throughput of a user excepti is less
than its arrival rate, and therefore leads to an unstable flow.

If we give weights to users3, we can see the weighted UB
scheduler can maintain the throughputs for both users. But
further note that, although the specific weighted UB scheduling
can stabilize the system with the arrival-rate decreasing of one

3Here we assign weight 0.75 to user 1 and 0.25 to user 2, and the
corresponding curves are UBw Q1 and UBw Q2. The weight is specifically
designed in order to stabilize the system, and such design isalso non-unique.
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Fig. 4. Throughput Comparison.RON
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= 6, RON
2

= 2, α = 0.5.

flow in the given scenario, there will exist some scenarios
that the system still cannot be stabilized if one flow decreases
its arrival rate, as the stability region of the weighted UB
scheduling is still less than the capacity region.

The queue length is compared in Fig. 5. The y-axis is in
the logarithm form. After 10000 time slots, while the arrival
rate of Q2 is reduced, with the UB scheduler, the queue length
of Q1 starts to increase. From the increasing trend we could
tell that, the system cannot be stabilized. But with a proper
weight assigning to each user, the system can be stabilized by
the weighted UB scheduling policy. These results validate our
analytical conclusion.



10

0 0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t

lo
g 10

 Q

 

 

UB Q1
UB Q2
CRB Q1
CRB Q2

UBw Q1

UBw Q2

UB Q1
UBw Q1

UB Q2

UBw Q2
CRB Q1

CRB Q2

Fig. 5. Queue Length Comparison.RON
1

= 6, RON
2

= 2, α = 0.5.

VII. D ISCUSSION ANDCONCLUSION

In this paper, the stability regions of two opportunistic
scheduling policies have been discussed. One is the UB
scheduling policy and the other is a variant of the UB
scheduling policy, called the CRB scheduling policy. We have
proposed a numerical method to obtain the stability region
of the UB scheduling policy, and the results show that the
stability region of the UB scheduling policy is generally non-
convex and may exhibit some undesirable properties, such as
decreasing the arrival rate of one flow may lead the system to
be unstable, and proportionally decreasing the arrival rates of
flows may lead the system to be unstable. Such properties
suggest that in a system using the UB scheduling policy,
reducing the traffic intensity may have a negative impact on
the QoS for all on-going traffic, which is contradict to the
intuition. Different from the UB scheduling policy, the stability
region of the CRB scheduling policy is derived in closed-
form, and is a convex hull. In addition to the stability region,
we have further discussed the extended stability region. The
results show that by assigning a proper weight to each user,
the weighted scheduling policy can stabilize the system if the
arrival process is stationary and the average arrival rate lies
inside the capacity region. Simulation and numerical examples
have been given to explain the analytical results and validate
our analysis.

Although the CRB scheduling policy is better than the UB
scheduling policy in terms of the stability region, it needs
explicit knowledge of the number of users in the system,
which may bring some difficulties to implement, since how
frequently to update this information may be hard to design.

There are several open research issues beckon for further
research. First, what is the impact ofǫ when updating the
smoothed rate measurement. Since ifǫ is not proper, the
smoothed rate measurement may not be able to converge,
especially if the flow exhibits a bursty feature. Thus the rate
allocation is not stationary, and the resultant impact on the
stability region is unclear. Second, given the average arrival
rate, how to design the weight to each user to stabilize
the system and how the designed weight affects the system
performance needs to be investigated further. Under some
special assumptions, the system can be modeled as a Markov
Chain [18], [19], therefore the performance can be numerically

studied. While a system under general assumptions may not
be easy to be modeled as a simple Markov Chain, the
performance study is still challenging.
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