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Abstract—The stability regions of two opportunistic scheduling All these works designed the scheduler based on an as-
policies, the utility-based (UB) scheduling and the chanrieate- sumption that each user always has sufficient data to transmi
based (CRB) scheduling, in wireless networks are discussed e assumption simplifies the problem, while as shown in
respectively. The UB scheduling is a generalized proportital fair 101. th kinds of schedul | ,d th t to b
scheduling in an unsaturated system, and the CRB schedulirig a [10], these _m S of sche u_ers may ea_ € sysiem 1o be
variant of the UB Schedu“ng. We give the closed-form expr&ion Unstable, Wh|le the SyStem n the same circumstance can be
of the stability region of the CRB scheduling, and a numerich stabilized by other scheduling policies, such as max-weigh
method to obtain the stability region of the UB scheduling. Bth scheduling [11]. The key reason here is because, without
of the two scheduling policies are not throughput-optimal,and ¢ nsjgering the stochastic characteristic of incomingfitra

thus in general their stability regions are less than the ergdic . S . L
capacity region. With the CRB scheduling, the stability regon is although the arrival rate lies inside the ergodic capaeigyan,

a convex hull, while with the UB scheduling, the stability rgjion ~the tie-breaking rule used in the above utility-based sutiegl
is generally even non-convex and may exhibit some undesirib policies is not efficient as these policies schedule somesuse

properties, such as decreasing the traffic of one flow may lead too frequently and lose the chance to explore the multi-user
another flow being unstable, and proportionally decreasingthe diversity gain, and thus they are not throughput-optimal.

traffic of all flows may lead a stable system to be unstable. We . . o - .
further show that, as long as the arrival rate lies inside the Litle work has been done in quantifying the stability regio

ergodic capacity region, we can assign a proper weight to eac Of the opportunistic scheduling policies. The stabilitgine
user, and based on the weighted UB/CRB scheduling policies, of an opportunistic scheduling policy in a two-user wirsles

the system can be stabilized. Detailed numerical examplend network with i.i.d. Bernoulli arrival traffic was derived in
S|m_u_lat|ons are given to |IIustrat_e the stability region of the two [12]. Different from the general utility-based schedulinige
policies and validate our analysis. . . . . . .
scheduler discussed in [12] is a normalized signal-toerois
ratio (SNR) one, where the user is scheduled based on the
|. INTRODUCTION normalized instantaneous SNR. The author observed that the
Scheduling and resource allocation is one of the most irstability region is less than the ergodic capacity regiohilev
portant tasks in the operation of wireless networks, egfigci by varying the normalized factor, the union of the resultant
for infrastructure-based wireless networks, since theesys stability region is equal to the ergodic capacity regionteNo
performance is mainly determined by the scheduling policy that, with the identical normalized factor, the scheduler i
a multi-user system. able to explore the maximal multi-user diversity, but is not
Traditionally, scheduling is a link layer function, whicheasy to explore other features, such as fairness. By chgngin
is performed separately from the lower layer functions. Féihe normalized factor, the fairness feature can be implicit
wireless networks, [1] proposed an opportunistic scheduliexplored, while it is unclear how to design the normalized
policy in the scenario that multiple users share the channtlctor for a specific fairness objective. Also, the prior Who
which can enhance the system performance by exploiting teége assumption of the channel in [12] may bring hardness
randomness of fading channel. In this work, fading, due o tho implement such policy. In [13], the authors discussed the
user mobility and multipath propagation, was firstly trelads two-user stability region in a static channel configuratidth
a constructive factor to the system. Thereafter, oppastimni concurrent transmissions. The scheduler discussed istialpar
scheduling was applied to downlink in [2]. distributed scheduler, combining the user coordinatioth wi
The opportunistic scheduling proposed in [1], [2] has beem Aloha media access control (MAC), which may not be a
generalized to the utility-based scheduling in [3] whichsai suitable choice for a centralized wireless network due & th
to maximize a pre-defined utility based on the long-tertow channel efficiency of the Aloha MAC.
achievable throughput. Based on the stochastic approximat In this work, we quantify the stability region of two oppor-
the convergence of such policy is guaranteed under a milchistic scheduling policies with a general traffic arrivala
condition [4], [5]. The work has been further extended twireless system withV users. The two scheduling policies
different network scenarios, such as cooperative netwj@lks include a utility-based (UB) one and a channel-rate-based
or networks with different wireless techniques, such as t€RB) one. The CRB scheduling can be viewed as a variant of
downlink and the uplink of an orthogonal frequency-divisiothe UB scheduling, by treating an intermediate controlalalg
multiplexing (OFDM) system [7], [8], [9]. differently. For the UB scheduling, the explicit closedsfo
X. Wang and L. Cai are with the Department of Electrical andn@ater stability region gengrally Canno.t.be obtained, Wh.lle weslap .
Engineering, University of Victoria, Victoria, BC, Canadd8W 3P6. e-mail: & theorem to examine the stability of a system given thealrriv
{xuan wang, ca} @ece.uvic.ca. rate, and a numerical method is provided to obtain the #abil



region in a two-user system. We further study the propedfies Given the user se#, the corresponding capacity region in
the stability region of the UB scheduling, and show that it istatem and the ergodic capacity region can be obtained by
generally non-convex and may also exhibit some undesirakigsigning’” = 0 for all i ¢ A, and are denoted b/} andC 4
features. For instance, decreasing the arrival rate of see urespectively. Denot€'4(¢) as the capacity region of user set
may lead the system to be unstable. For the CRB scheduligyjn time slott¢. Since staten and time slott are associated,
we obtain the closed-form expression of the stability regioso if the state irt is m, we haveC} = C4(t).

which is a convex hull. Besides the stability region, wetiert

study the extended stability region by giving a weight toreac

user. The results show that by varying the weight assignedBo Queueing Model

each user, the unipn of t_he resultant stability _region _iaét_pj Data packets are arrived randomly and queued up in an
the ergodic capacity region, for both scheduling policl8S  infinite buffer reserved for each user. The packet arrival
suggests as long as the system can be stabilized, by agsigRifycess is considered as a stationary ergodic stochastiess
a proper weight to each user, using a non-throughput-optimigi, finite moments. The state of theth buffer is the queue

scheduling may also stabilize the system. _length and denoted by;(t). All queue states form a vector
It is further noted that, the results of the CRB scheduling §t) < Rf and are updated by

similar to the work in [12], while our work is more general.

We use a more general traffic model, consider a gen¥ral a(t+1) = [q(t) — r(t) + a(t)]*, ()
user system, and discuss a scheduling algorithm that can be
easily designed to achieve certain utility objective. where[z]} = max{0,z;},Vi € N, r(t) € RY is the amount

The rest of the paper is organized as follows. Sec. Il introf transmitted data that is determined by the scheduling
duces the system models, including channel model, queuedegision, anch(t) € Rf is the amount of arrived data in time
model and scheduling policies. In Sec. Il and Sec. IV, thg which is a bounded random variable. The average arrival and
stability regions of the CRB scheduling and UB schedulingervice rates ard = E;[a(¢)] and u = E,[r(¢)], respectively.
are presented, respectively. The extended stability negio
discussed in Sec. V. Evaluations are shown in Sec. VI,
followed by the conclusion and discussion. C. Scheduling Policy

In the following, bold face letters represent vectors, and \yg assume that at the beginning of each time slot, the server
calligraphic letters represent sets. can observe the state of the channel and allocate the resourc
based on the observation.

Under the assumption that each user always has enough
A. Channel Model data to transmit, a utility-based scheduling policy, whista

The system has one server who has packets to transgfteralized proportional fair scheduling [3], [5], alltesithe
through a shared wireless channel &b independent users. rate to user in time slot based on the following problem:

The set of users is denoted By = {1,2,..., N}. The power
set of \/ is denoted bys, and the cardinality of is [S| = 2V. r(t) = argmax Y f(Ri(t))m:, 3)
We useS; to denote the-th element inS. neCn () jen

We assume that the shared wireless channel is time slotigé ties being broken randomly, where functioh is a
block fading channel. The set of channel state is finite, Whigjerjyative of a strictly concave smooth utility functidi,
is represented a8t = {1,2, ..., M}. Within each time slot, p. () is the smoothed rate measurement of usertime slot

_the channel state is consta_n_t. Crossing time slots, centiéeén ¢, which can be updated by an exponentially weighted moving
is used to govern the transition of the channel state. Thiereaberage algorithm [5]

a vector of rates1” = (uy", u3, ..., u’{}) associated with each

Il. SYSTEM MODELS

channel staten € M. The elemenu)” € N|J{0} means the R(t) = R(t — 1) + e(x(t) — R(t — 1)),
number of packets that can be transmitted if the time slot is
all allocated to uset in statem. wheree is the step size.

We further assume that the shared wireless channel statéccording to [4], [5], by choosing a proper step sizdR ()
process is an irreducible discrete-time Markov chain whith t weakly converges to the average allocated Rite which can
state spaceM. The stationary distribution of this Markovbe obtained based on the following problem
chain is denoted as = (7', 72, ..., 7M).

The capacity region of the system in stateis denoted as Ry = argmax Z U(n:).
m mam mam TIGCN ZEN
Cir = U (u" 1", s uRERN), ) _ _
>, =1 Note that the online algorithm (3) cannot be directly used

wherer 1 he e porion alocate t usein stater, %3 Withou the ssumptonoferaugh bacdogs sice
The ergodic capacity region of the system is obtained as; . . e .

B g pacty reg y to transmit. With some modifications to (3), two scheduling
Cv=|J O_uptya™, ... ultia™). (1) policies, the UB and the CRB scheduling, can be obtained for

Sth=1 m m a system with stochastic arrival traffic.



1) The UB Scheduling: In time slott, a user setd(t) is where||q(t)| is the norm of vectog(t).
selected satisfying the condition that the queue lengtraohe
user in A(t) is sufficiently large, for instance;(t) > ¢t*

]

Since we only consider the case tiatR5(¢) or RYB(¢)

B UB
whereq!" is the queue length threshold for ugefThis treat- CONVerges, gnd aft.er. the_ convergenceRSF(¢) or RY5(¢),
ment avoids the wireless resource been wasted that chomsinge scheduling decision is only related to the current ct_alann
user without enough data to transmit. The specific valug'of state and the queue state. Therefore, we can simplify the

does not affect the stability region, as long as it is suffitlie stability condition.

large. With such treatment, the queue length dynamic in (Z)Firésé,Bfor the CRB scheduling we assume that at time slot
0, R*"®(t) has converged. Due to (4), wheris sufficiently

becomes
large, we have
alt+1) = q(t) = x(t) +a(b). (4)
Then the rate allocated to the user.ft) is q(t) = q(0)— Z r(r) + Za(r)
T7=0 T7=0
9y (H) = argmax Y F(RY (1), ) = q(0) — put + At >0,

NECAw) () iCA(t)

with ties being broken randomly, and the rate allocated ¢o tWhiFh sugges.ts for _aH’ Ai = K- _
user inA/]A(t) is 0. UsingrU8(¢) to denote the allocated rate Since the dimension af(¢) is finite, here we only consider
in time slot¢, then RY® is updated based on Ly norm of q(t), and we have

R () = R%(t — 1) + e(x”®(t) - RYP(t - 1)), la(®)ll

which is used to track the average throughput of the system. = 9(0) — pt + M|

2) The CRB Scheduling: For the CRB scheduling, in time =ty (Ni—pm)+ Y a0).
slot ¢, based on the same method as the UB scheduling, we i i
select the candidate user sd{t). The rate allocated to the 1o refore
user in.A(t) is based on

ri?g(ﬁ) = argmax Z F(RERB())m;, (6) tlggo sup Effa(#)[l] < oo,
nECA(r)(t) iCA(t) .
requires
with ties being broken randomly, and the rate allocated & us
in V| A(t) is 0. We user®RB(t) to denote the allocated rate lim supE[t Y (A — i) + Y _ ¢i(0)]
in time slot¢. e i ;
Different from the UB scheduling, in the CRB scheduling, = lim ¢ty (A — )+ ZE[qi(O)] < oo,
RCRB(¢) is used to track the average channel-rate, and is tmoo & .
updated by

. . . which suggest$ ~, (A; — ;) < 0.
RERE(t) = REFB(t — 1) + €(x(t) — REFB(t — 1)), In summary, the stability of the system requides- , i.e.,
the average arrival rate is the identical to the averagautiiro
How to updateRVB(¢) and RERE(¢) is the only difference put. For the UB scheduling, based on the same argument, we

between the UB and the CRB scheduling policies. For tf&" have the same result. . .
8?ﬁNe further define the stability region of the system as

wherer(t) is the solution to (3).

CRB scheduling, the update is independent of the schedulin _
decision, while for the UB scheduling, the update depends 8H'OWS:

the scheduling decision in each time slot. Definition 2. The stability region of a system with scheduling
As shown in [5], under a mild conditionR“®(t) and policy p is defined as\?, and we haverA € A?, the system

RCR8(t) are all weakly converge. In the following, we onlyjs strongly stableyA ¢ A?, the system is not strongly stable;
consider the case th&VE(t) and R°R8(¢) converge.

By abusing the notation a bit, we also uBgy to denote Without confusing, we also use the stability region of
the rate vector ofV users and satisfiesj ¢ A, R; =0, i.e, scheduling policy to refer to the stability region of a system

R% = R} Rf/lA]' whereR 4 = 0. with scheduling policyp.

D. Sability I1l. STABILITY REGION OF THECRB SCHEDULING

In this paper, we apply the stability definition as it is used \\a first tackle a simple case, the static channel case

in [14]. (M = 1), to obtain the stability region. Thereafter, the
Definition 1. A system of queues is said to be strongly stabigeneral stochastic channel case is discussed. We showythat b
if replacing the capacity region with the ergodic capacityareg
_ all the discussions for the static channel case also holthéor
Jim sup Eff|q(#)]]] < oo, stochastic channel case.



A. Satic Channel Case Due to the assumption of the stability of the system, we have

~ Since the channel only has one state, so we hadec S, Ri <\, VieQ,
Ca=ChandC(t) =Cl. {RZ-A“VZ‘GJ\HQ,
rshfgégmarl]a The stability region of the CRB scheduling policy which means there exists arthatR +e = A € ARB, which
' is contracted with (9). Thus the assumption cannot hold, and
ISI we have prove\ € ACRE, the system is stable.
ACRE = U ZR&RB% (7) In summary, the stability region of the systemASRE, m
>, ti=1i=1 Here, due to the special property of the capacity region,
_ the stability region equals the capacity region. Note that t
where ¢; € R U{0}, capacity region is a Euclidean simplex wifti + 1 vertices
RCRB = arg max Z F( RCRB)% (8) and each vertex represents a rate vector. Suppos# thel
reCs, jcs, vertices make up a sét. SinceRsg, is on the boundary of the
capacity regiorCgs, thus lies in the hyperplane determined by
and R® = R, the points inV. Since the stability region is the convex hull

Proof: Since the scheduler is the CRB one, the update 8f Rs:, which equals the convex hull df, i.e., the capacity
RCRB(1) is independent of the scheduling decision in each tinff8910N-
slot, andRCRE(t) converges tR$FE, i.e, RCRE = RRE.
Comparing (6) with (8), we can conclude that B. Sochastic Channel Case

For the stochastic channel case, we have a similar result as

CRB _ 1 CRB
By [rA(t> ()] = Ei[Rg™] in the static channel case.

if RSR®(t) converges. This is becau®R§® is the average Theorem 2. Theorem 1 holds for the stochastic channe! case.
throughput of user setS; over time, and by taking the

expectation ovet, E;[RS?] is the average throughput of the  Proof: Similar to the static channel casB“%(t) con-
system. SinceS(5 (¢) is the throughput of the system in timeVerges to
slott, by taking expectation over tim&, [r575 ()] is also the RCRB _ arg max Z U(r)),
average throughput of the system. reCn  jen
If the system is stable, the average arrival rate should be

equal to the average throughpiig,, and we have

CRB CRB
rg o(t) = argmax » f(R;)r;
A = eSS 1) = RS, D
therefore the necessary condition for the system to beestalbhking expectation over time, we have
is that we can find & t; = 1) such that
(2 ) Rg?B = arg maxz f(RJCRB)rj.
‘S‘ I‘Eési
A=Y RGP = B[RS, Also as

i=1

J

CRB _ CRB

which is equivalent to\ € ACRB, R =Ry

The sufficient condition can be proved by contradictiorand based on the same approach as in the static channel case,
Suppose\ € ARB, but the system is not stable, and thereforee can prove that Theorem 1 holds for the stochastic channel
at least one queue is unstable. Suppose that the queuesase. u
set Q are unstable, and the queues in 3élQ are stable.  Worth to note that, different from the static channel case
Since queué € Q is unstable, we havE[q;(t)] — oo which where the stability region is identical to the capacity oegi
suggests that useris always scheduled. Suppose that user séte stability region in the stochastic channel case is gdiyer
D is the scheduled user set, then we h&/€ D. We further less than the capacity region due to the fact that the ergodic
construct a seD which is made up of allD. Therefore the capacity region is a convex polytope, but not necessarily a

average throughput of the system is Euclidean simplex.
B, CRB
R = Z m™Rp™, IV. STABILITY REGION OF THEUB SCHEDULING
pep Similar to the discussion of the CRB scheduling, we first
and) . mp = 1. BecauseD is nonempty, we have discuss the simple case, the static channel case, and then

_ CRB study the complicated stochastic channel case. Furthesmor
R e AT we show that, the results obtained in the static channelaase
and for anye, with 3. ¢; > 0, ¢; € R, {0}, be dirgctly u§ed in_ the stochast_ic chanm_al case, by regjdlean
B capacity region with the ergodic one. Different from the CRB
R +e ¢ ACRB scheduling, where the stability region can be easily okethin



in closed-form, the stability region of the UB scheduling The corollary states that at least one point on the outer-
generally cannot be obtained in closed-form, and theraf@e bound of the capacity region can be stabilized by the UB
develop a numerical method to tackle the two-user case. scheduling.

Based on Theorem 3, we have the following theorem to

A Satic Channel Case quantify the stability region of the UB scheduling.

According to [5], RUB(¢) converges to the average throughTheorem 5. The stability region of the UB scheduling policy
put. OnceRYB(¢) converges, we have is AYB, and for any A € AY®, Theorem 3 holds; for any

X ¢ AYB, Theorem 3 does not hold.
UB _ UB\ ...

Rs. = aigec—nfxz (B, Proof: The theorem can be directly obtained based on the
R definition of the stability region and Theorem 3. ]
and Similar to the CRB scheduling in the static channel case,
RUS — [, R the stability region of the UB scheduling also equals to the

= E;[RJ].

capacity region in the static channel case.
Note that generally

RUB £ arg max Z Ur:), B. Sochastic Channel Case

reln  jenN Theorem 6. Theorem 3 and Theorem 5 hold for the stochastic

uB : _ . channel case.
andR** may not lie on the boundary of the capacity region.

We have the following theorem to verify whether a system  Proof: Similar to the static channel casR"(¢) con-

with a specific arrival rate vector is stable or not. verges to the average throughput of the system. Then we have
Theorem 3. A system using the UB scheduling policy with rg®(t) = argmax »  f(R®)r;.
average arrival rate X is stable if and only if A € AYB()), reCs; (1) 7
where Taking expectation over time, we have
IS|
TUB/y\ _ UB, RY® = argmax f(R,EJB)n-,
- U Yo, o)
Zi ti=11=1

andRYB = E;[Rs,|. Then we can follow the same approach

as in the static channel case. By replacing the static cgpaci

RgiB - argmafo(Aj)rj. region with the ergodic capacity region, the discussions in
r the static channel case also hold for the stochastic channel

case, therefore proved that Theorem 3 holds for the stdchast
Rannel case. Then based on the definition of the stability
region, we can show that Theorem 5 holds for the stochastic

and

reCs;

Proof: Suppose that the system is stable, and then
havel = RYB. Thus, the average rate allocated to userSset
is

channel case. ]
Rg’f’ _ argmaxz F(RYBYr; = arg mafo()\i)m W_h_ile diff_erent from the _static_ channel case, where _the
reCs;, reCs;, stability region can be obtained in closed-form, the sibil

region in the stochastic channel case is hard to be derived in

TP inclRUE _ [.[RUB _ \ .
if S; is scheduled. Sinc®™ = E;[Rg’], we haveX = . jqsaq form. But we discover two properties as follows.

Ei[R®] € AUB(N). o o . .
Based on the same argument as that in Sec. Ill, we c&FPPOSition 7. The stability region of the UB scheduling
prove thatvA € AY8, the system is stable. Thus, the theorerolicy can be non-convex.

is proved. B proposition 8. With the UB scheduler, even though the system
Based on the above theorem, we have the following cor@k gapie when the arrival rateis \, the system can be unstable
lary. when the arrival rate is reduced to z\, where 0 < z < 1.
Corollary 4. If A = argmax,cc, U(r;), then the sytem is  For these two properties, we only need to show that they
stable. hold for some scheduling policies with specific functign
Proof: Since This will be done in the Sec. VI.

Remark. These two properties make the UB scheduling very

A= argelglaXU(m’ (9 undesirable if the functiorf is selected improperly. The non-
reCa . . . .
convexity means if one user decreases its arrival rate, the
we have system may be unstable which is harmful for the quality of
_ pUB _ N
A= RJ\/ = argmax Z fo‘l)“’ 1A point lies on the outer-bound of a set should satisfies twaditons.
reCy jeN First is that the point lies on the boundary of a set; secorttias the point

) . ) is no longer belongs to the set if any increment in any dineng made to
which means\ € AYB(X), and thus the system is stablem the point.



service. The second property means that reducing the traffic V. EXTENDED STABILITY REGION

intensity may bring a stable system to an unstable systeM Extended Stability Region of the CRB Scheduling

which will also damage the QoS for all on-going traffic. If we give a weight to each user, then a more general CRB
Although the closed-form expression of the stability r‘*gioscheduling policy is to allocate the rate based on the fotigw

obtain the stability region. Here, we give the method to imbta

the stability region of two-user systems, and it can be pasil Tl (t) = argmax > w; f(RF®(t))n;,
extended to a more general case. n€Can (M) e a(t)
Numerical method to obtain the stability region of two-  wherew; € R, |J{0} is the normalized weight, satisfying
user systems: Since the ergodic capacity region is a compact~ , — 1.
convex, coordinate convex polyhedron, it can be repredente Since with the CRB scheduleR°RB(¢) converges to
as

RYCRE — argmax Y  w;U(r;). (10)
C={(ri,re) apr1 +r2 < by, k=1,2,.. K}, reCy 1;«
wherea;, is in the increasing order w.r.k, and if a;, = oo, Similar to (8), we have
then the corresponding equationris= by. w,CRB w,CRB
: RYR® = i F(RCRB)
Let r* = (r¥,7%) be the solution of Si arrgeglij;v wi f (B0
axry + r9 = by, w, _ »w,CRB
k7112 = Ok andR* CRE_R. _ _ _
ap4171 + 12 = by, Similar to (7), for any given weightv, the corresponding

stability region is obtained as
IS|

where0 < k < K, r° be the solution of

airy + 72 = by, AWCRB _ U Z Rvsvi,CRBti’
r =0, >, ti=1i=1
andrX be the solution of wheret; € Ry [ J{0}, and we have the following theorem.
agri +ry = b, Theorem 9.
ro = 0. C_N _ U Aw,CRB7
Geometrically,r* is the vertex on the outer bound of the 2 wi=l
capacity region. where AW:CRB js the stability region of the CRB scheduling
If f(M)/f(N2) € (ak, ak+1), 1., with weight w assigning to users.
A€ Zp={( A, 2) : f(M)/f(X2) € (ar, ar+1)}s Proof: In order to prove that the union of the weighted

stability region is the ergodic capacity region, esselytiale
need to show that, all the boundary points of the capacity
region are the solutions to (10) by varying the weight

the stability region is the convex hull b, r°, r* rX}, which
is represented as

Ay = {(r1,72) = Bir® + Bor® + Bork By mappingCy to C§; throughU (), i.e,
Vi, B > 0,3, Bi < 1} CX = {(U(21),U(x2), ..., U(zn))|x € Cnr},
If f(A1)/f(X\2) = ax, then the stability region is (10) can be represented as
AR = {(r1,7r2) s agr1 + 12 < bg, f(r1)/f(r2) = ax}- yW’CRB = arg max Z W;iYi- (11)
YECK  ieN

Overall, the stability region can be represented as ~

UB X X If C¥; is a closed convex set, then according to the supporting

AT = U(Ak m 4 )UA : hyperplane theorem [15], for any pointlies on the boundary
k of C,, we can find the correspondingsuch thaty = y™:CRE,

Remark. The key idea of the numerical method is to partitiomrhus all the boundary points @ are the solutions to (11)
the capacity region into zoneg{) and partition curves*). by varying w. Since U(z) is a monotonic non-decreasing
Each partition curve is the curve along the boundary of twanction, the images of the boundary points@§ in Cy- are
neighboring zones. Since the capacity region is a conve#ll the boundary points. Then, the theorem can be proved if
polyhedron, the number of zones is fikitécor each zone, C¥; is a closed convex set.
the allocated rate is identical, and thus the stabilitygedor For any x™,x® € Cy whose image inC§; is m,n,
the arrival rate in each zone can be obtained. Examples eggpectively, we have
given in Sec. VI to show how to use the proposed method to
obtain the stability region. m +(1-o)n
, _ S =a(U(a1?), ... U@@R)) + (1 = a)(U(a]), .., U(z}))
Note that if the outer bound of the capacity region is strimbwex, then

the number of zones is infinite, and this method cannot work. :(yl’ o yN)’



where C. Discussion

yi = aU(xi™) + (1 — a)U (7). Although the stability regions of the CRB and the UB
scheduling policies are less than the capacity region, re-
Without loss of generality, we assumei™ > . gpectively, by assigning the weights to users, the resultan
Because U(z) is monotonically non-decreasingy; € scheduling algorithms can stabilize the system. Furthée no
U(@}) U@P)] ie, z; = U H(y:) € [a} ="]. Conse- that, by giving the weights to users, the equivalent utility
quently,x € Cy due to the convexity of, and therefore fynction has changed from a homogeneous diié)j to a
y € C{ and the convexity olC§. is proved. SinceCx is heterogeneous ones(U(.)). Therefore, for any giver, the
closed,Cf; is also closed. Therefor€f; is indeed a closed giscussion in Sec. Il and Sec. IV can still be used to analyze

convex set. B the stability of the system.
The advantage of the weighted opportunistic scheduling is
B. Extended Stability Region of the UB Scheduling that when the arrival rate lies outside the capacity redioa,

operation point (the throughput) is determined by the tytili
function U (in both UB and CRB scheduling policies), which
is typically designed based on the fairness concern. Toeref
the weighted opportunistic scheduling can provide a better

Similar to the CRB scheduling, for the UB scheduling,
slight modification to the scheduling policy by giving a wieig
to each user, the resultant stability region is denoted By'2,
and we have the following theorem.

fairness.
Theorem 10. Although the approach is promising, it may not be easy. The
_ w.UB weight-design is to find the supporting hyperplane (weigit)
Cnv = U AT, a closed convex set (capacity region) in a specific boundary
2 wi=l point (the intersection of the arrival rate vector and theacaty

region). Since the solution highly depends on the shapeeof th

closed convex set, we lack a general analytic method. Rurthe

works should be done to obtain a simple method to design the
Proof: First, based on the supporting hyperplane theoremeight.

for any givenA and any boundary pomt dfs,, we can find a

w such that the boundary pom“” is the solution to the

where A™UB is the stability region of the UB scheduling with
weight w assigning to users.

following problem, VI. EXAMPLES AND SAMPLE VALIDATION
w,UB
Rg ™" = argmax Z w; f(X;)r5, In this section, we give examples about the stability region
reCs;i jes; of the UB scheduling and the CRB scheduling policies.

Simulation is conducted to compare the two policies, and

wherez w; = 1. Also note that the boundary points 6§, . )
validate the analytic results.

also lie on the boundary df.; therefore, we have

v = |J Co{RI™P:ien},
>, wi=1 A. Channel Assumption
w,UB . . ..
= U A Considering a two-user four-state channel, the transarissi
2 wi=1 rate vector is
wher mean nvex hull, an
ereCo means convex hull, and [RON 0], m=1,
S| [0 RON]T m =2
AwUB(x) = RYB,. wr =4 R ’
Zyzl ; ' [R?Nv RSN]Tv m =3,
_ [0,0]7, m =4,
According to Theorem 5, we know that
A€ AWUB o\ e AWUB(Y), and the stationary distribution is = (1/4,1/4,1/4,1/4).
Note that this is a channel model for a two-user system, where
So we have each user has two states (ON and OFF), and the channel states
w.UB wB ) for different users are independent. The achievable thrpug
A€ U AV e e U A =Cw, of useri is RPN when its channel state is ON, andif its
2 wi=1 > wi=1 channel state is OFF. Without loss of generality, we assume

ON ON
RON > ROV,

which suggests . . . .
Based on (1), we can obtain the ergodic capacity region as:

U AW,UB 75
= N B
>, wi=1 C :{(Rl,Rg) ZR1/R?N+R2/R20N§3/4,
| Ri/RPN < 1/2, Ry/RSN < 1/2}.



B. Utility Function 1
1) «-Fairness Utility: The utility function chosen to be ISR

evaluated is thex-fairness ones [16]: 0.8 ‘ /\ TR
U(z) = 4 1°8@) a=1 o8l wr Y
(1 — o)~ tzl== otherwise < asq SR
wherez is the average throughput, whose unit is bps/Hz in oar R
this paper and is omitted in the following. The derivative of AT
U(z) is oz
_ —Q L L L L L “y
fla) =27 % 0.5 1 1.5)\ 2 25 3
By choosing a differenty, the objective is to maximize !

the fairness measurement based on different principles, afy. 3. stability Region of a system with four-state chanmet! a-fairness
the relative value of the measurement is of more interes@RB scheduling RPN = 6, RSN = 2, oy = 0.61, = 2.71

For instance, ifa = 0, then the objective is to maximize

the system throughput; ifr = 1, then it is to maximize the

proportional fairness; ifv — oo, then it is to maximize the If the arrival rateX is downscaled by, the new arrival rate

max-min fairness. is no longer lies in the partition curvé&—;) = B therefore
2) Exponential Utility: Another utility function chosen to cannot guarantee the stability, and the staf:)ility propsnguld
be evaluated is exponential utility [17]: be examined by finding which zone the newlies in. As
1 illustrated in Fig. 2, wherm = 1 or 3, if the system is stable
Uz) = —567‘”, in point P, then ‘down-scale) by z, the system becomes

unstable,i.e., suffering the ‘down-scale’ unstable; but when

and a = 0.4, the ‘down-scale’ unstable situation does not happen.

flz) =e 9.

For the exponential utility, the marginal utility is exporilly D- St@bility Region of the CRB Scheduling
decreasing, and the changing rate of the marginal utilitg is «-Fairness Utility,: We enumerate S as S =

constant and independent of {(1),(2),(1,2),0}. For each A € S, we have
R(l) = [R?N/Z,O]T, R(g) = [O,RSN/Q]T, Rq) = [O,O]T, and
C. Sability Region of the UB Scheduling [RON /2, RON /4T o< o,
1) a-Fairness Utility: Based on the numerical method _ SEON/4 3RN/4 p
proposed in Sec. IV, we can obtain the stability region, as (1.2) = [1+ﬂl/a*1’ 1+ﬂ1*1/°‘] ;S S Qn,
shown in Fig. 1. [R9N/4, RON/2)T a > ap,

The point P in the figure is the intersection of the bounq,\-/here — log 8/ log & — log 3/ l0g 23

ary of the capacity region and curvﬁi—;g = B where Th 1 = 1089/ 108 51 Oh = 108 [/ 108 &0 : .
ON / BON  \nr i ) e capacity region and the stability region are illustlate

B = R"/RYV. With the Increasing Of, P Moves along g 3 By varyinga, R 2y is moving on the outer bound of
the bqundary of the _c_apacny region, and rt_asults in the Shqﬂ capacity region, and the stability region is always avegn
changing of the stability region. From the figure we also el
observe that the stability region is non-convex all the time
When the value ofa is proper, the stability region is the
union of a convex set and a line segment. Wheis large
or small, P moves to the lin&, = RON/2 or Ry = R9V/2,
then the stability region is a trapezoid minus a triangulae
non-convex property of the stability region makes the syste
behavior hard to predict and the QoS hard to meet, sinEe Scheduling Policy Comparison
decreasing the arrival rate of one flow may lead the systemwe have conducted simulation to compare the UB and the
changing from stable to unstable. CRB scheduling policies. We choosefairness as the utility

2) Exponential Utility: We already know that, with the UB function, ando = 0.5. We use Poisson traffic as the arrival
scheduler, for a stable system with arrival ratedecreasing traffic, e is chosen as 0.01, and we run 10 times to take the
any element il\ may lead the system to be unstable. Here wg/erage. We seh; = RON/2 for all 20000 time slots, set
give another example to show that, proportionally decreasi), = RSN/4 for the first 10000 time slots and, = RgN/m
all the elements irk (down-scale\) may also lead the systemfor the last 10000 time slots. This is used to simulate the
to be unstable. arrival-rate decreasing of one flow.

Based on the same approach asifairness utility, the sta-  The throughput comparison is shown in Fig. 4. From the
bility region can be obtained. Since we change the funcfion figure, after 10000 time slots, the throughput of Q1 with the
so the CUfVG% = [ determiningP is A\, — A1 = 1/alog3. UB scheduler (the curve UB Q1) starts to decrease and is

Comparing Figs. 1 and 3, under the four-state channel
assumption in a two-user system, the CRB scheduling policy
can always provide a larger stability region than the UB
scheduling policy if using the same utility function.
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Fig. 1. Stability Region of a system with four-state chanmetl o-fairness UB schedulingR‘fN =6, RSN =2.
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Fig. 2. Stability Region of a system with four-state chanaedl exponential UB scheduling{’?’\‘ =6, R‘Q)N =2.

less than the throughput of Q1 with the CRB scheduler. For as
the throughput of Q2, both schedulers can maintain the same
throughput, which equals the arrival rate of the second flow.
Here we can conclude, by decreasing the arrival rate of one
flow, the throughput of another flow can be decreased, if the
UB scheduler is used. This phenomenon can be explained by
examining the system stability based on Theorem 6 with the

UB" QL CRrBQL

UB QL

- - UBQL

uBQ2 |
———CRBQ1
CRB Q2
us" Q1| |
uB® Q2

Throughput

new arrival rate. An intuitive explanation is as follows: the 11/ Us Q2 _UB"Q2_crB Q2

utility function U () is strictly concave, the derivative function ol NN

f(z) is a decreasing function. Siné&’8(¢) is used to estimate - -

the average throughput of useérand if the arrival rate of % 0s I 15 2

user; decreases, the estimated average throughput should also

decreasej.e, R;®(t) decreases. Therefor¢(R;®(t)) will Fig. 4. Throughput ComparisoN = 6, RN = 2, o = 0.5.
increase. From (5) we can see, this generally results in the

increase ofYB(t), i.e, the increase of the instantaneous rate of

useri. The probability that the system stays in a state without

user: will increase, as a joint results of the decreasing of the

arrival rate and the increasing of the instantaneous ratehé
number of users has decreased, the system will lose cer
multi-user diversity,.e., the achievable rate region thanks t
the opportunistic scheduling will shrink. This may lead to
situation that the average throughput of a user excéptess
than its arrival rate, and therefore leads to an unstable flow The queue length is compared in Fig. 5. The y-axis is in

If we give weights to usefs we can see the weighted UBype logarithm form. After 10000 time slots, while the artiva
scheduler can maintain the throughputs for both users. Bite of Q2 is reduced, with the UB scheduler, the queue length
further note that, although the specific weighted UB schiedul ¢ 31 starts to increase. From the increasing trend we could
can stabilize the system with the arrival-rate decreasfrane g that, the system cannot be stabilized. But with a proper

3 . . weight assigning to each user, the system can be stabilized b

Here we assign weight 0.75 to user 1 and 0.25 to user 2, and t{he weighted UB scheduli i Th It lidate
corresponding curves are UBQ1 and UB' Q2. The weight is specifically (€ Welghte scheduling policy. 1hese resufts vall 0
designed in order to stabilize the system, and such desigisasnon-unique. analytical conclusion.

flow in the given scenario, there will exist some scenarios
%‘Et the system still cannot be stabilized if one flow de@sas

%s arrival rate, as the stability region of the weighted UB
gcheduling is still less than the capacity region.



10

35 ‘ ‘ — studied. While a system under general assumptions may not
3l usol\/,/ugwm' ] be easy to be modeled as a simple Markov Chain, the
K performance study is still challenging.
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