
LABORATORY MANUAL

CENG 255

Introduction to Computer Architecture

Laboratory Experiment #0

This manual was prepared by

The many dedicated, motivated, and talented graduate students and
faculty members in the Department of Electrical and Computer

Engineering

Copyright c© University of Victoria, 2018
preliminary



1

The laboratory experiments are developed to provide a hands-on introduction to the ARM archi-
tecture. The labs are based on the open source tools Eclipse and OpenOCD.

You are expected to read this manual carefully and prepare in advance of your lab session. Pay
particular attention to the parts that are bolded and underlined. You are required to address these
parts in your lab report. In particular, all items in the Prelab section must be prepared in a written
form before your lab. You are required to submit your written preparation during the lab, which
will be graded by the lab instructor.



Laboratory Experiment 0: Introduction to
Eclipse

1.1 Goal
Eclipse is an integrated development environment (IDE) that can be used to develop applications
with various programming languages such as C and C++. With the proper plug-ins, one can de-
velop ARM assembly applications in Eclipse and execute/debug programs on ARM development
boards. This is a tutorial to introduce Eclipse and the process of developing a C program to be
executed on the STM32F0 Discovery Boards in the lab.

1.2 Part 1: Create a Blinky C Project
1.2.1 Configure Eclipse for STM32F0
You develop and store your source code as projects. To create a project, go to Eclipse menu, File
->New, and select C Project:

Figure 1.1: New C project

2



3

Inside the C Project window:

• In the Project name: field enter the name of a new project, for example, Blinky

• In the Project type: section expand the Executable type and select STM32F0xx C/C++
Project

• In the Toolchains: select Cross ARM GCC

• Click the Next> button

Figure 1.2: Project name and processor selection



4

In the Target processor settings window, use all the default values:

• Chip family: default value (STM32F051) is the target ARM board

• Flash size (KB): the flash size of our ARM board

• RAM size (KB): the RAM size of our ARM board

• Clock (Hz): the default value of our ARM board

• Content: use this default value Blinky (blink a LED) as this tutorial is to create a Blinky
project. If you want to create another new project, you can switch to Empty (add your own
content)

• Click the Next> button

Figure 1.3: Target processor settings



5

In the Folders settings window:

• Leave the default folders unchanged and click the Next> button.

Figure 1.4: Project folder settings



6

In the Select Configurations window:

• Leave the default settings unchanged and click Next> button to the next step. button.

Figure 1.5: Project select configurations



7

In the Cross GNU ARM Toolchain window:

• Select the Toolchain name: GNU Tools for ARM Embedded Processors (arm-none-eabi-
gcc)

• Click the Finish button

Figure 1.6: Cross GNU ARM toolchain



8

The result of this wizard is a simple project, with a main() printing greetings and blinking a LED.

Figure 1.7: Blinking LED application



9

1.3 Build the project
• Select the Blinky project in the Project Explorer

• Click the hammer icon, which is the shortcut to build the selected project.

Figure 1.8: First method to build a project

Or

• Right click the Blinky project in the Project Explorer

• Select Build Project in the popup window

Figure 1.9: Second method to build a project



10

The build process produces a listing in the Console window like this:

Figure 1.10: Build process

The files created by the build process are left in a Debug folder

Figure 1.11: Debug folder contents



11

1.4 Configure debugging
To set debugging:

• Select the forward button on the right side of the bug icon.

• Select Debug Configurations... in the popup window

Figure 1.12: Debug menu

In the Debug Configurations window:

• Double click GDB OpenOCD Debugging; this creates a project debug with the project name
Blinky Debug

Figure 1.13: Creating an GDB OpenOCD debug configuration file.



12

• Go to the Debugger tab

• In Executable: enter openocd.exe

• In Config options: fill in the following setting (f is a flag indicating the file to be used ) :

-f board\stm32f0discovery.cfg

Figure 1.14: OpenOCD settings



13

Go to the Startup tab

• In the rectangle above the Enable ARM semihosting checkbox, fill in the following setting
(this command tells the debugger to stop at the beginning of the main function so that the
programmer can debug the project step by step).

monitor reset halt

Figure 1.15: Startup tab



14

Go to the Common tab

• Tick the Debug checkbox in the rectangle below Display in the favorites menu

• Click the Apply button

• Click the Debug button to start debugging

Figure 1.16: Common tab



15

The debugging configuration wizard creates a debug setting for the Blinky project. The result of
debugging installs the binary of the project into the ARM board (that is, the executable binary file
is downloaded to the RAM on board). At the beginning of debug process, the program stops at the
main function waiting for the programmer to debug the program.

Figure 1.17: Debugging code



16

These icons labeled below in the toolbar of Eclipse are the ones used most frequently in debugging
and they help the programmer to interact with the debugger. Experiment/Play with these icons and
see how they work.

• Icon A: to skip all the breakpoints

• Icon B: to resume the program from debugging

• Icon C: to suspend the program and set it back to debug

• Icon D: to terminate the program

• Icon E: to step into a function

• Icon F: to step over a function

• Icon G: to step return to the function

• Icon H: to restart a process or debug target without terminating and re-launch

Figure 1.18: Debug icons



17

1.5 Part 2: Create an ARM Assembly Project
• Follow the wizards in Part 1 of this tutorial that create an ARM C project.

• Change the .c extension of main.c to .asm or .S and remove all the contents in that file.

• Write assembly codes in the main.asm/main.S to implement your application.

• The build and debug steps are the same as described in Part 1.

Creating an assembly project: (using Blinky project as an example)

• Remove all the files except main.c in the src folder in Blinky project and replace the exten-
sion of main.c by .asm.

• Clear the contents in main.asm and write some simple assembly codes for experimentation.

Figure 1.19: Assembly code



18

1.6 Part 3: Tips for using eclipse
Changing displayed format in register tab: During the debugging process you will be examining
registers in the processor. You can change the displayed format of a register by right clicking
on the specific registers and selecting the Number Format option. You can also change a group
of registers. Changing the format is show in the image below. If the register tab is not being
displayed you can display it by selecting the Window option on the main menu then selecting
Show View->Registers.

Note: In other sections of eclipse you find number format also called radix.

Figure 1.20: Changing number format

Changing cell size and format in the memory browser:

The memory browser allows you to examining sections of memory in you program. The cell size
is the numbers Eclipse will use in each cell in the Memory Browser tab. To change your cell size
right click on the displayed data in your Memory Browser tab and select the Cell Size option, then
select the cell size to be used. This is shown in the image below.

Figure 1.21: Changing memory browser cell size



19

To change the formatted display also known as Radix right click on displayed data and select the
Radix option then select displayed format. This is shown in the image below.

Figure 1.22: Changing memory browser displayed radix

Disabling console switching: During the debugging process when the debugger steps or encoun-
ters a break point it will print information on the console tab. When this occurs Eclipse will
automatically switch to the console window to display this information. In specific labs such as
the bubble sort lab it would be more convenient to not have Eclipse switch to the console and just
to stay in the Memory Browser tab. There are two ways to achieve this.

The first is to disable console switching. This option can be found in the windows-¿preferences
dialog box. In the preference dialog expand the Run/Debug section and select console. Unselect
the options “Show when program writes to standard out” and ”Show when program writes to
standard error” as shown in the image below. This is a global setting and will apply to all projects
in the Eclipse workspace.

Figure 1.23: Disabling console switching



20

The second method is by dragging the Memory browser to a vacant area on the computer screen
not being used by any program. Eclipse will automatically create a new window specifically for
the memory browser. This feature can be used with any view in Eclipse.

Disassembly not showing in disassembly window: If you are using the disassembly view there is
a known issue with this feature. When you first enter debug mode you will notice that the window
does not update. See picture on the left. The simple resolution is to close the current disassembly
tab and open it from the main menu. Windows->Show View->Disassembly. See picture
to the right.

Figure 1.24: Disassembly windows


	Goal
	Part 1: Create a Blinky C Project
	Configure Eclipse for STM32F0

	Build the project
	Configure debugging
	Part 2: Create an ARM Assembly Project
	Part 3: Tips for using eclipse

