LABORATORY MANUAL
CENG 255

Introduction to Computer Architecture

Laboratory Experiment #0

This manual was prepared by

The many dedicated, motivated, and talented graduate students and
faculty members in the Department of Electrical and Computer
Engineering

Copyright (¢) University of Victoria, 2018
preliminary

The laboratory experiments are developed to provide a hands-on introduction to the ARM archi-
tecture. The labs are based on the open source tools Eclipse and OpenOCD.

You are expected to read this manual carefully and prepare in advance of your lab session. Pay
particular attention to the parts that are bolded and underlined. You are required to address these
parts in your lab report. In particular, all items in the Prelab section must be prepared in a written
form before your lab. You are required to submit your written preparation during the lab, which
will be graded by the lab instructor.

Laboratory Experiment 0: Introduction to
Eclipse

1.1 Goal

Eclipse is an integrated development environment (IDE) that can be used to develop applications
with various programming languages such as C and C++. With the proper plug-ins, one can de-
velop ARM assembly applications in Eclipse and execute/debug programs on ARM development
boards. This is a tutorial to introduce Eclipse and the process of developing a C program to be
executed on the STM32F0 Discovery Boards in the lab.

1.2 Part 1: Create a Blinky C Project
1.2.1 Configure Eclipse for STM32F0

You develop and store your source code as projects. To create a project, go to Eclipse menu, File
—>New, and select C Project:

& C/C++ - Eclipse
Edit Source Refactor MNavigate Search Project Run Window Help

Mew Alt+Shift+N » | [&2] Makefile Project with Existing Code] -
Open File... B C++ Project ;
Close Ctrl+W [€] CProject
Close Al Crieshiftew |0 Project-
Save CirleS [+ Convertto a C/C++ Autotools Project
Save A [c+] Convertto a C/C++ Project (Adds C/C++ Nature)
Save Al Ctrl+shiftss | 87 Source Folder
Revert [Folder
¢ Source File
Move... h/ Header File
Rename... = 1 File frem Template
Refresh F5 & Class
Convert Line Delimiters To P = Fask
Print... Ctrl+P =9 Other... Ctrl+N
Switch Workspace v |
Restart
fx Import.
by Export...

Figure 1.1: New C project

Inside the C Project window:

e In the Project name: field enter the name of a new project, for example, Blinky

e In the Project type: section expand the Executable type and select STM32F0xx C/C++
Project

e In the Toolchains: select Cross ARM GCC

e Click the Next> button

C Project &

Create C project of selected type

r |

Project name: Elinky

Uze default location

Location: | ChUsersirexleiworkspace\Blinky Browse...

Choose file systern: | default

Project type: Tocolchains:

GNU Autotools | Cross ARM GCC|
Executable

Emnpty Project

Hello World AMNSI C Project

Hello World ARM C Project

Hello World ARM Cortex-M C/C++ Project
Freescale Kinetis Kl C/C++ Project
Freescale Processor Expert C/C++ Project
STM32F0a0c C/C++ Project |

STM32F10x C/C++ Project

STM32F2:c C/C++ Project

STM32F3:c C/C++ Project

STM32Fdace C/C++ Project

Shared Library

I Static Library

Makefile project

|] | i | » |

dP e O @ SOOTOTERPE®

Show project types and toclchains only if they are supported on the platform

@ < Back Next > Finish

Figure 1.2: Project name and processor selection

In the Target processor settings window, use all the default values:

e Chip family: default value (STM32F051) is the target ARM board
e Flash size (KB): the flash size of our ARM board

e RAM size (KB): the RAM size of our ARM board

e Clock (Hz): the default value of our ARM board

e Content: use this default value Blinky (blink a LED) as this tutorial is to create a Blinky
project. If you want to create another new project, you can switch to Empty (add your own
content)

o Click the Next> button

& C Project L == i_hj

Target processor settings —

Select the target processor family and define flash and RAM sizes.

Chip family: 5TM32F051 -

Flash size (KB}: B4

RAM size (KB): &

Clock (Hz): 8000000

Content: |Blinky (blink led) -
Use system calls: ’Semihosting (POSIX systern calls via host) vl
Trace output: lNc-ne (no trace output) vl

Check some warnings

Check mostwarnings [
Enable -Werror [
Use -Og on debug
Use newlib nano
Exclude unused
Use link optimizations [

@ [<Back | Mea> | Finish

Figure 1.3: Target processor settings

In the Folders settings window:

o Leave the default folders unchanged and click the Next > button.

Folders settings —
Define the project folders and other options, r
Include folder: fnclude
Source folder: src
Systern folder: system

CMBSIS library folder: cmsis

C library folder: newlib

Linker scripts folder: |dscripts

@ < Back]I Mext = I | Einish | [Cancel

Figure 1.4: Project folder settings

In the Select Configurations window:

o Leave the default settings unchanged and click Next > button to the next step. button.

Select Configurations

=
Select platforms and configurations you wish to deploy on [-

[——

Project type: Executable
Toolchains: Cross &4RM GCC

Configurations:

) Debug [

Select all
%3 Release]

[Dezelect all]

Advanced settings...

Use "Advanced settings” button to edit project's properties.

Additional configurations can be added after project creation.
Use "Manage configurations” buttons either on toclbar or on property pages.

® < Back]E Mext = i | Einish | [Cancel

Figure 1.5: Project select configurations

In the Cross GNU ARM Toolchain window:
e Select the Toolchain name: GNU Tools for ARM Embedded Processors (arm-none-eabi-
gee)

e Click the Finish button

Cross GNU ARM Toolchain —
Select the toolchain and cenfigure path

[—

AL L PG EG MG N Tocls for ARM Embedded Processors (arm-none-eabi-gcc) -

Toolchain path: Browse...

@ [<Back | mea> [[Fnish][Cancel

Figure 1.6: Cross GNU ARM toolchain

The result of this wizard is a simple project, with a main() printing greetings and blinking a LED.

© /e - Binkytsrgmaine Eepe RS TS i e s

File Edit Source Refactor Navigate Search Project Run Window Help

O S e B [O T 0 B A e [R G G e quckaces [g | (ST e Dt

[t ProjectE.. 53 = B | [g mainc 2 = B | 8= outhi.. 32 @ Mak.. [Task. = B
& s 63=1int s a 3 -
&l 54 main(int argc, char* argv[]) E| CEERN %
4[5 Blinky 65 U stdioh
4) Includes 66 // Show the program parameters (passed via semihosting). o stdlibh
& Blinky/include 67 // Output is via the semihosting output channel. U diag/Traceh
(& Blinky/system/ 23 trace_dump_srgs (arge, argv); o Timerh
U Blinky/system/ | 25 /7 Send o greeting o the trace device (skipped on Release). & BlinkLed.h
2 Blinky/system/ | 71 trace_puts("Hello ARM World!"); # BLINK_ON_TICKS
» (& C/Program il || 72 # BLINK_OFF_TICKS
5 (£ C/Program File 73 // Send a message to the standard output. ® main(int, char'[]): int
» (B C/Program Fil 3: puts(“"Standard output message.”); # LOOP COUNT
> (8 C/Program File | 5. // send a message to the standard error.
b (B CyProgramFil | 77 fprintf(stderr, "Standard error message.\n");
i (& C/Program File | 78
(8 e 78 // At this stage the system clock should have already been configured
88 // at high speed.
ite.
E % E“"'Qki:d‘c :; trace_printf("System clock: ¥ubz\n", SystemCoreClock);
» [main.c 53 timer_start();
i g Timerc 84
4 (8 system 85 blink_led_init(});
86
b & include 87 uint32_t seconds = @;
= 88 -
4 = include 89 #define LOOP_COUNT (5)
BlinkLed.h 98 int loops = LOOP_COUNT;
stm3fhocconf | 91 if (arge > 1)
92
o3 // If defined, get the number of loops from the command line,
3a /1 configurable via semihosting-
35 loops = atoi (argv[1]);
96 3 =
4 L
%1 Problems %) Tasks | B) Console £2 | [T Properties G B EE "B B-or=08
CDT Build Console [Blinky]
<[] ol [v

| writable Smartlnsert | 82:1

Figure 1.7: Blinking LED application

1.3 Build the project

e Select the Blinky project in the Project Explorer

e Click the hammer icon, which is the shortcut to build the selected project.

& C/C++ - Blinky/src/main.c - Eclipse
File Edit S5Source Refactor

i SN RN N L S

[ProjectE.. 52 | = [|E'-Ii|':| 'DEEI.ng:Drprnject'Elinlc}r' i

= - 63= int
= ‘=b| . 54 main(int argc, char?®
4 |5 Blinky

65 {
4 [l Includes

66 // Show the progre
el Blinkv/include 67 // Output is via t

MNavigate Search Project Rur

Figure 1.8: First method to build a project

Or

e Right click the Blinky project in the Project Explorer

e Select Build Project in the popup window

& C/C++ - Blinky/src/main.c - Eclipse
File Edit Source Refactor MNavigate 5Search Project Run Window Help

mi SR A RN H R A RCRSCRSE
[Proje Mew "
Go Into
“ 65 B Open in New Window
4 [l ters (passed
=S| Copy CtreC pating output
Paste Ctrl+V
3 Delete Delete ;Ti‘;e device
Remove from Context Ctrl+Alt+5Shift+Down S
Source » Eandard outpu
Loe.");
Move... g=-")
Rename... F?2 fandard error
Brror message
v Import.
a [iy Export.. b clock shoul
FuHZ\N", S
Build Project uHzAN", Sy
Clean Project
#| Refresh F5
PR
Close Project

Figure 1.9: Second method to build a project

The build process produces a listing in the Console window like this:

& C/C++ - Blinky/sre/main.c - Eclipse - =
Ele Edit Source Refactor Navigate Search Project Bun Window Help
m SRR SRR UL SRR AR N R SR A RIS ST N=R il P05 w Gle s GOe L0 e qQuickAccess || [| [EEC/Cr+] 45 Debug

‘o | £l Problems = Tasks |] Console 52 |] Properties & B LB &R |mB-B-== |+

i | CDT Build Console Bl o
arm-none-eabi-gee -mcpu-cortex-md -mthumb -Og -fmessage-length- -fsigned-char -ffunction-sections -fdata-sections -fno-move-loop-invariants -Wall -Wextra -g3 -DDEBUG - o | o
*Finished building: ../system/src/cmsis/vectors_stm32f@xx.c’ @
‘Building file: ../src/Blinkled.c’ &
*Invoking: Cross ARM C Compiler’ -
arm-none-eabi-gcc -mcpu=cortex-mé -mthumb -Og -fmessage-length=e -fsigned-char -ffunction-sections -fdata-sections -fno-move-loop-invariants -Wall -Wextra -g3 -DDEBUG - || &
*Finished building: ../src/Blinkled.c’ o
"Building file: ../src/Timer.c'

*Invoking: Cross ARM C Compiler’
arm-none-eabi-gec -mcpuscortex-m@ -mthumb -Og -fmessage-length=@ -fsigned-char -ffunction-sections -fdata-sections -fno-move-loop-invariants -Wall -Wextra -g3 -DDEBUG -
"Finished building: ../src/Timer.c'

‘Building file: ../src/ write.c’

*Invoking: Cross ARM C Compiler’

arm-none-eabi-gcc -mcpu=cortex-m@ -mthumb -Og -fmessage-length-8 -fsigned-char -ffunction-sections -fdata-sections -fno-move-loop-invariants -Wall -Wextra -g3 -DDEBUG -
"Finished building: ../src/_write.c'

*Building file: ../src/main.c’

*Invoking: Cross ARM C Compiler’

arm-none-eabi-gcc -mcpu=cortex-m@ -mthumb -Og -fmessage-length=8 -fsigned-char -ffunction-sections -fdata-sections -fno-move-loop-invariants -Wall -Wextra -g3 -DDEBUG -
*Finished building: ../src/main.c’

‘Building target: Blinky.elf’

'Inveking: Cross ARM C++ Linker'

arm-none-eabi-gHt -mcpu=cortex-m@ -mthumb -Og —fmessage-length=8 -fsigned-char -ffunctien-sections -fdata-sections -fno-move-leop-invariants -Wall -Wextra -g3 -T mem.ld
‘Finished building target: Blinky.clf’

"Invoking: Cross ARM GNU Create Flash Image’
arm-none-eabi-objcopy -0 ihex "Blinky.elf" "Blinky.hex"
"Finished building: Blinky.hex'

'Inveking: Cross ARM GNU Print Size'
arm-nong-eabi-size --format=berkeley "Blinky.elf”
text data bss dec hex filename
6824 132 576 7532 1déc Blinky.elf
‘Finished building: Blinky.siz®

m

14:59:19 Build Finished (tock 47s.387ms)

< i v

Figure 1.10: Build process

The files created by the build process are left in a Debug folder

[Project Explorer 52 =

4 |25 Blinky
4 9:3? Binaries
- %5 Blinky.elf - [arm/le]
+ [ail Includes
2 sre
+ B system
4 = Debug
» = SIC
[systemn
- %5 Blinky.elf - [arm/le]
[5 Blinky.hex
B Blinky.map
| & makefile
| @ objects.mk
| @& sources.mk
. = include
» = ldscripts

Figure 1.11: Debug folder contents

11

1.4 Configure debugging
To set debugging:

e Select the forward button on the right side of the bug icon.

e Select Debug Configurations... in the popup window

A MR MR

(no launch history)

| Debug As 2
Debug Configurations...

" Organize Favorites...

L e

Figure 1.12: Debug menu

In the Debug Configurations window:

e Double click GDB OpenOCD Debugging; this creates a project debug with the project name
Blinky Debug

Debug Configuratiol
 Dsg Confourion:
Create, ge, and run i

CExX| B3

Name: Blinky Debug
type filter text Main . %5 Dabugger} B Startup} By Sourcew B Qommon}
[T] C/C++ Application i
C/C++ Attach to Application [t
Pe!
C/C++ Postmortem Debugger Blinl Browse...
99
I [T] C/C++ Remote Application C/C++ Application:
l [GDB Hardware Debugging DebugBl \f
I 4 [c] GDB OpenOCD Debugging ebug\Blinky.el
F] Blinky Debug| Variables... | [SearchProject..| | Browse.. |
[c] GDB QEMU Debugging . .
[GDB SEGGER J-Link Debugging Build (if required) before launching

= Launch Group

Build configuration: | Select Automatically

]
(©) Enable auto build

(©) Disable aute build
(@ Use workspace settings

Configure Workspace Settings...

Filter matched 10 of 12 items

| @

Apply Revert

I Debug] [Close]

Figure 1.13: Creating an GDB OpenOCD debug configuration file.

12

e Go to the Debugger tab
e In Executable: enter openocd.exe

e In Config options: fill in the following setting (f is a flag indicating the file to be used) :

-f board\stm32f0discovery.cfg

-
& Debug Configurations

Create, manage, and run configurations

N x| B 3p~ Marme: Blinky Debug
type filter text Main | %5 Debugger @ Startup} By Source} = Qommorﬂ
[E] C/C++ Application Open0CD Setup -

[€] C/C++ Attach to Applic Start OpenQOCD locally
[E] C/C++ Postrnortem Del

[t] C/C++ Remote Applica Executable: openoccd.exe [Bmwse...] [Va.:i.abls...l
[£] GDB Hardware Debuggi

GDE port: 3333
4 [£] GDB Open0OCD Debugg
[£] Blinky Debug Telnet port: 4444
= Launch Group Config options: | _f board\stm32fldiscovery.cfg n |
Allocate console for OpenQCD Allocate console for the telnet connection

GDE Client Setup

Executable: S cross_prefix}gdb$] cross_suffin} [Bmwse...] [‘u’a:i.abls...l
Other options:
Commands: st mem inaccessible-by-default off -
Il n 3
Appl Revert
Filter matched 8 of & items [PN l ’ Exve]

® | Debug | [Close]

Figure 1.14: OpenOCD settings

13
Go to the Startup tab

e In the rectangle above the Enable ARM semihosting checkbox, fill in the following setting
(this command tells the debugger to stop at the beginning of the main function so that the
programmer can debug the project step by step).

monitor reset halt

Create, , and run config

I
EX ‘ B Mame: Blinky Debug
|typeﬁ|ter text ‘

Main | %5 Debugger | = Startup - Source} i Qommorﬂ

Initialization Commands

[¥]Initial Reset. Type: init

[€] C/C++ Application

[E] C/C++ Attach to Application

[€] C/C++ Postrortern Debugger

[€] C/C++ Remote Application monitor reset halti -

[£] GDB Hardware Debugging
a [c] GDB OpenOCD Debugging

[T Blinky Debug

[E] GDB QEMU Debugging Enable ARM semihosting.

[£] GDBE SEGGER J-Link Debugging

= Launch Group

Load Symbols and Executable
Load symbols
(@ Use project binary: Blinky.elf

() Use file: | H Workspace... ‘ ‘ File System...

Symbols offset (hex):
Load executable
(@ Use project binary: Blinky.elf

(@) Use file: | H Workspace... ‘ ‘ File System...

Executable offset (hex):

Runtime Options
[Debug in RAM

Run/Restart Commands
Pre-run/Restart reset. Type: halt (always executed at Restart)

Filter matched 10 of 12 items [apply | Revet |

® l Debug I [Close]

Figure 1.15: Startup tab

14

Go to the Common tab

e Tick the Debug checkbox in the rectangle below Display in the favorites menu
e Click the Apply button

e Click the Debug button to start debugging

& Debug Configuration: X
I Create, , and run configurati p i
|
OB X ‘ }:5 M Mame: Blinky Debug |

|t_~,rpe filter text
[€] C/C++ Application

Main (ﬁ Debugger (ﬁ Startup (Ep Source (E LCommon

Save as
[E] €/C++ Attach to Application @ Local file
[£] C/C++ Postmortern Debugger : -
[E] C/C++ Remote Application () Shared file: |\B\ink_\,r | | Browse... |
[©] GDB Hardware Debugging
4 [E] GDB Open0CD Debugging Display in faverites menu Encoding
[£] Blinky Debug 45 Debug @ Default - inherited (GBK)
[€] GDB QEMU Debugging () Other |ISO-8853-1 - |

[c] GDB SEGGER J-Link Debugging
= Launch Group

Standard Input and Output
Allocate console (necessary for input)

File: | |
Workspace... | | File System... | | Variables... |
[] Append
Launch in background
Filter matched 10 of 12 items | Apply | | Revert |

® l Debug I [Close]

Figure 1.16: Common tab

15

The debugging configuration wizard creates a debug setting for the Blinky project. The result of
debugging installs the binary of the project into the ARM board (that is, the executable binary file
is downloaded to the RAM on board). At the beginning of debug process, the program stops at the
main function waiting for the programmer to debug the program.

S Debug - Binkyrre/main— = I e

File Edit Source Refactor MNavigate Search Project Run Window Help

mi Glaine i@t b |S%iH-0-@-®@c v-Feid-d-0 0 0 Quick Access | [| g ¢/C++ (%5 Debug)
45 Debug 12 i ¥ = B - Variables 3 ¢ ints 374 Reg fodules =g
4[] Blinky Debug [GDE OpenOCD Debugging] B & RK M T

4 (B Blinky.if . Name Type
4 P Thread #1 (Suspended : Breakpoint) .
= main(at main.c:65 0x8000bad 9= arge ":1 .
5 openocd-164-0.8.0.exe b argv char
- (9= seconds uint32_t
W srm-none-eabi-gdb
- loops int
< i v
0 v
[main.c 22 | [T]0x0 = 0 | 5= Outline 2 = g
63= int A a 5 -
54 main(int argc, char® argv[]) CEEN e %
55 U stdioh
56 // Show the program parameters (passed via semihosting)- U sdlibh
67 // Output is via the semihosting output channel. 21 disg/Traceh
= trace_dump_args(argc, argv); o Timerh
@ // Send a greeting to the trace device (skipped on Release). & Blinkledh
1 trace_puts("Hello ARM World!™); 3 # BLINK_ON_TICKS
: |i| # BLINK_OFF_TICKS
3 // Send a message to the standard cutput. @ main(int, char'[]): int
-51 puts("Standard cutput message."); # LOOP_COUNT
6 // Send a message to the standard error.
7 fprintf(stderr, "Standard error message.\n");
78 R
3 v
B Console 52 2] Tasks 37 Problems () Exe s ¢k | BB BIEE rB-m-=0

Blinky Debug [GDE OpenGCD Debugging] arm-nene-eabi-gdb
¢http://www. gnu.org/sof tware/gdb/documentation/>. -
For help, type "help”.

Type "apropos word” to search for commands related to "word”.
Temporary breakpoint 1, main (argc=1, argv=8x28@88@98 <argv_buf>) at ../src/main.c:65 |:|
65 1 E
3 v

| wiitable Smartlnsert | 65:1

Figure 1.17: Debugging code

16

These icons labeled below in the toolbar of Eclipse are the ones used most frequently in debugging
and they help the programmer to interact with the debugger. Experiment/Play with these icons and
see how they work.

e Icon A:

to skip all the breakpoints

e Icon B: to resume the program from debugging

e Icon C: to suspend the program and set it back to debug

e Jcon D:

to terminate the program

e Icon E: to step into a function

e Icon F: to step over a function

e Icon G:

e Jcon H:

to step return to the function

to restart a process or debug target without terminating and re-launch

Figure 1.18: Debug icons

17

1.5 Part 2: Create an ARM Assembly Project

e Follow the wizards in Part 1 of this tutorial that create an ARM C project.
e Change the .c extension of main.c to .asm or .S and remove all the contents in that file.
e Write assembly codes in the main.asm/main.S to implement your application.

e The build and debug steps are the same as described in Part 1.

Creating an assembly project: (using Blinky project as an example)

e Remove all the files except main.c in the sre folder in Blinky project and replace the exten-
sion of main.c by .asm.

e Clear the contents in main.asm and write some simple assembly codes for experimentation.

[(5 ProjectExplo.. 22 = B [5 main.asm &

B & | .text
L Bli - .global main
A Bgﬂk‘? i Y r4, #5 //Load register r4 with the value 5
i TR IOV, r5, #4 //Load register r5 with the value 4
> [Includes add ré, rd4, rS //Add r5 and r4 and store in r@
4 (@ src sub r@é, rs
. [8) main.asm 7 stop: E;p -
» 22 system stop
> = Debug

Figure 1.19: Assembly code

18

1.6 Part 3: Tips for using eclipse

Changing displayed format in register tab: During the debugging process you will be examining
registers in the processor. You can change the displayed format of a register by right clicking
on the specific registers and selecting the Number Format option. You can also change a group
of registers. Changing the format is show in the image below. If the register tab is not being
displayed you can display it by selecting the Window option on the main menu then selecting
Show View->Registers.

Note: In other sections of eclipse you find number format also called radix.

(x)= Variables ®g Breakpoints | i} Registers 5 |2, Peripherals @) Modules E = | B s 7
MName Value Description
a & General Registers General Purpose and FPU Regist
1 9
g S2E0TNO1E
lon g Select All Ctrl+A
e = Copy Registers Ctrl+C
ool 4 | Enable
1010
015 | Disable
. | T
1 [Mumber Format 3 Hex 1
Name : rl | Find... Ctrl+F Decimal
Hex: @2y Octal
Decimal| Add Register Group ce
Octal: g : Binary
- | Restore Default Register Groups
: 5?,.), Watch Default
L = { F C
= g- oo Restore To Preference
» » & TaEm .

Figure 1.20: Changing number format

Changing cell size and format in the memory browser:

The memory browser allows you to examining sections of memory in you program. The cell size
is the numbers Eclipse will use in each cell in the Memory Browser tab. To change your cell size
right click on the displayed data in your Memory Browser tab and select the Cell Size option, then
select the cell size to be used. This is shown in the image below.

Panes 3
Endian 3
4 et |
. = | Cell Si 3 1b
: E] Console J=| Tasks |/ Problems {2 Executables | [J Memory Br{ A | e [
- | Radix » 2 bytes l.
brosdalEiait: Columns b || @ 4bytes

020000020 - (void *)table <Traditional= &3 Update Mode » 8 bytes [
ex2eeea020 . "'m'mmwéi
Bx2 4C Copy 2 2B6ABER BRBBGI
Bx20000678 Reset To Base Address 5 4 25578t

ax2eeaa8ad Refresh pEEEEEE GREeB
Bx2 D& @eessRaa0e8 COEOEEEE00 BRRARREGAE DOCROEROE: DEDEGUERDE DUTTOUEODEY BepEEREERE DRBBBL
@x200000FC GROB280000 C0ODOOLOOD BREERRBREE OO 0E00 GoDaRRERER 00 20 bpopooRRRE O 200 poboe

x20000128 GOPDO00E0E BEEEREEEEE APODODDRRE DEBBREEEEE 1746553641 1117488845 3892236288 1244416804 12444

Figure 1.21: Changing memory browser cell size

19

To change the formatted display also known as Radix right click on displayed data and select the
Radix option then select displayed format. This is shown in the image below.

Panes 3
Endian 3
4 | Text 3
. - [Cell Size >
: & Console J= Tasks |2 Problems 3 Executables [J Memory Brg : T
| Radix > Hex
(void *)&table | Columns 3 Decimal Signed
(20000020 - (void *)table <Traditional> &2 | Update Mode | & Decimal Unsigned
Bx2@000020 GODBBRBE34 DOODEOEESC DDBBREBBLZ BEBEEEEETI 4 z | Octal B
»
BX2008064C @EERRRAGAA DOGECD 24 = o8
inary
Ax%260000878 Reset To Base Address ,_r 20
Bx2B000044 Refresh P BREEEEREEE DOOODAGBRE DOBRRE
ex2aeaaaie
ax2aeaaarc
ex2aeaa123

Figure 1.22: Changing memory browser displayed radix

Disabling console switching: During the debugging process when the debugger steps or encoun-
ters a break point it will print information on the console tab. When this occurs Eclipse will
automatically switch to the console window to display this information. In specific labs such as
the bubble sort lab it would be more convenient to not have Eclipse switch to the console and just
to stay in the Memory Browser tab. There are two ways to achieve this.

The first is to disable console switching. This option can be found in the windows-; preferences
dialog box. In the preference dialog expand the Run/Debug section and select console. Unselect
the options “Show when program writes to standard out” and ”Show when program writes to
standard error” as shown in the image below. This is a global setting and will apply to all projects
in the Eclipse workspace.

r 5
& Preferences l =g X
type filter text Console dmin g - v

: G |

C?Eera Debug Console Settings.
» JL++ : :

Changelog [Fixed width console

Createrepo a0
> Help [¥] Limit console output
> Install/Update :

7 Console buffer size (characters): 80000

> Library Hover
> Mylyn Displayed tab width: 8

> Remote Development [/] Show when program writes to standard out

» Remote Syst .
s [#] Show when program writes to standard error

4 Run/Debug
Console Standard Out text color: E
External Tools
: Standard Error text color: E
> Launching
Open0CD Standard In text color: E
Peripherals views
Perspectives Background color: @

String Substitution

Wiew Management

View Performance
- Specfile Editor

> Team
> I::?:;al ’Restore Defaults‘ ’ Apply]
Ii?jl [oK] I Cancel ‘

- 4

Figure 1.23: Disabling console switching

20

The second method is by dragging the Memory browser to a vacant area on the computer screen
not being used by any program. Eclipse will automatically create a new window specifically for
the memory browser. This feature can be used with any view in Eclipse.

Disassembly not showing in disassembly window: If you are using the disassembly view there is
a known issue with this feature. When you first enter debug mode you will notice that the window
does not update. See picture on the left. The simple resolution is to close the current disassembly
tab and open it from the main menu. Windows—>Show View->Disassembly. See picture
to the right.

5 Disassembly 52 = B= Outline 22 Disassembly 3 = =
Enter location here | | Enter location here b4 | &] !
- -
Mo debug context ad | mav rs, #4 -
o ¥ BEPPA5Ra: movs r5, #d
5 add ré, rd4, rs5
BEBBA5EC: adds r@, r4, rs =|
6 sub ré, rs
BE@0a5s8e: subs r@, r@, rs
7 stop: nap
stop:
BERea500 : nop ; (mov r8, r8)
8 bl stop
BEBBASA2 bl @x28868598 <stop>
8888596 : movs ré, ré
__udivsi3:
BEBER598; cmp rl, #0
B300859%a beqg.n @x3@ees8s <_ udivsi3
BE30aa50c: movs r3, #1
- BE3eaa50e: movs r2, #8 =
1 ’ TETTE T 3

Figure 1.24: Disassembly windows

	Goal
	Part 1: Create a Blinky C Project
	Configure Eclipse for STM32F0

	Build the project
	Configure debugging
	Part 2: Create an ARM Assembly Project
	Part 3: Tips for using eclipse

