MK&REŽ Telecommunications 

Home 


About Us  
Project Description  
Reports  
Project Supervisor  
Contact Us  

Design of Good Linear Error Correcting Codes One of the major issues in algebraic coding theory is the determination of bounds on the maximum achievable distance between codewords for a given code size. Lower bounds are usually devised through construction techniques which provide a code with the required parameters. A good code is defined as one which achieves the largest known minimum distance. The resulting "errorcontrol codes" of our program insert redundancy into the transmitted codeword. As a result, the receiver can detect and correct errors that occur through the transmission path.
This project, supervised by Dr. Aaron Gulliver of Electrical and Computer Engineering Department, investigated the development of techniques and/or application of existing techniques for constructing good codes which improve these bounds. The aim of this project, was to design and test a C program which generates all the "errorcorrection codes", which would be used in any communication system's receiver. These codes, namely "Greedy Codes", are generated, using the following parameters as the program's inputs:
The program's results will be based on the three parameters. The result will comprise of the errorcorrection codes PLUS the dimension of the matrix which contains the codes. This would give Dr.Gulliver the chance to doublecheck his results on any system which he is analyzing, for his research. These codes must be "orthogonal" and "selforthogonal". The first one means that ANY two code vectors must have inner product of zero. Second means that they must be orthogonal with respect to each other, PLUS any codeword be orthogonal to itself also.
At the end, the summary of results of our program are
tabulated according to Dr.Gulliver's request inside the final report. The
final report could be found from the Reports page.


