Digital Signal Processing Using MATLAB Sinusoidal Signals

F. Gebali

EOW 433

Office Phone: 250-721-6509
https://ece.engr.uvic.ca/~fayez/

Outline

1 Sinusoid

2 Euler's Formula

3 Complex Numbers

4 Phasors

5 Spectrum

Cosine Function

Canonic Form of Sinusoidal Function

$$
x(\theta)=\cos \theta
$$

General Form of Sinusoidal Signal

$$
x(t)=A \cos (\omega t+\phi)=A \sin \left[\omega\left(t+t_{0}\right)\right]
$$

$1 A$ is the signal amplitude with dimensions similar to those of the signal, e.g. volts (V) if the signal represents changes of voltage with time
2ω is the radian frequency in radians/s
3ϕ is the phase in radians
$4 t_{0}$ is time shift

Relation between ϕ and t_{0}

We have

$$
\phi=\omega t_{0}
$$

and we can write

$$
\begin{aligned}
x(t) & =A \cos (\omega t+\phi) \\
& =A \cos (2 \pi f t+\phi) \\
& =A \cos \omega\left(t+t_{0}\right)
\end{aligned}
$$

Time Shift	Advance $\left(t_{0}>0\right)$	Delay $\left(t_{0}<0\right)$
Phase Shfit	Lead $(\phi>0)$	Lag $(\phi<0)$

Example

A sinusoidal current signal is given by

$$
x(t)=10^{-3} \cos (800 \pi t-\pi / 3) \quad A
$$

Find the signal's parameters: A, ω, f, T, ϕ and t_{0}. And state whether this signal is delayed or advanced in time.

Example

Obtain the sinusoid parameters A, ω and the time shift value t_{0}

Euler's Formula

Euler's Formula

$$
e^{j \theta}=\cos \theta+j \sin \theta
$$

For negative θ values

$$
e^{-j \theta}=\cos \theta-j \sin \theta
$$

Inverse Euler's Formula

$$
\begin{aligned}
\cos \theta & =\frac{e^{j \theta}+e^{-j \theta}}{2} \\
\sin \theta & =\frac{e^{j \theta}-e^{-j \theta}}{2 j}
\end{aligned}
$$

Another simpler form for a sinusoid that does not have j and negative sign:

$$
\sin \theta=\frac{e^{j(\theta-\pi / 2)}+e^{-j(\theta-\pi / 2)}}{2}
$$

Complex Numbers

Complex Numbers: Cartesian

$$
\begin{aligned}
& z=x+j y \\
& x=r \cos \theta \quad y=r \sin \theta
\end{aligned}
$$

Complex Numbers: Polar

$$
z=r e^{j \theta}
$$

$$
r=\sqrt{x^{2}+y^{2}} \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right)
$$

Sinusoid as Real Part of a Complex Exponential

1 The form $x(t)=A \cos (\omega t+\phi)$ is cumbersome
2 Define complex exponential signal $z(t)=A e^{j(\omega t+\phi)}$

Using Euler's form we can write

$$
\begin{aligned}
& z(t)=A \cos (\omega t+\phi)+j \sin (\omega t+\phi) \\
& x(t)=\mathcal{R}\{z(t)\}
\end{aligned}
$$

Phasors

Phasor Representation of a Sinusoidal Signal

$$
\begin{aligned}
z(t) & =A e^{j(\omega t+\phi)} \\
& =A e^{j \omega t} \times e^{j \phi} \\
& =A e^{j \phi} \times e^{j \omega t} \\
& =X e^{j \omega t}
\end{aligned}
$$

where X is the phasor representation of $z(t)$

$$
X=A e^{j \phi}
$$

(a)

(b)

At time $t=0$
At time $t>0$

Spectrum of a Sinusoid

What is Spectrum?

1 Spectrum shows the amplitude \& phase vs. frequency of a signal

2 Helps in studying frequencies of a composite signal

3 In effect we move from time-domain description to frequency-domain description

Use Inverse Euler's Formula

$$
\begin{aligned}
x(t) & =A \cos (\omega t+\phi) \\
& =\frac{A}{2} e^{j(\omega t+\phi)}+\frac{A}{2} e^{-j(\omega t+\phi)}
\end{aligned}
$$

We can write the above equation in phasor form as

$$
x(t)=X e^{j \omega t}+X^{*} e^{-j \omega t}
$$

where $X=(A / 2) e^{j \phi}$.

You must note first appearance of negative frequency!

Two-Sided Spectrum of a Sinusoid

Radian frequency (ω)	$-\omega$	ω
Phasor	$\frac{A}{2} e^{-j \phi}$	$\frac{A}{2} e^{j \phi}$

Valid result for real signals only

Two-Sided Spectrum of a Sinusoid

Example

Find the two-sided spectrum of the sinusoidal signal

$$
x(t)=4 \cos (500 \pi t+\pi / 3)
$$

General Two-Sided Spectrum of a Multi-Frequency Signal

Two-Sided Spectrum of a Signal

Example

Find the two-sided spectrum of the composite signal

$$
x(t)=5+8 \cos (20 \pi t+\pi / 3)+6 \cos (50 \pi t-\pi / 5)
$$

Two-Sided Spectrum of a Signal

Example

Find the two-sided spectrum of the signal

$$
x(t)=\cos 3 \pi t \times \cos 5 \pi t
$$

Amplitude Modulation

Consider the product of two sinusoids

$$
x(t)=x_{2}(t)\left[1+m x_{1}(t)\right]=\cos \omega_{2} t\left(1+m \cos \omega_{1} t\right)
$$

$x_{1}(t)$ is the signal and $x_{2}(t)$ is the carrier

Amplitude Modulation

Our low-frequency signal $x_{1}(t)$ is now replaced by three high-frequency signals:

$$
x(t)=x_{2}(t)+0.5 m \cos \left(\omega_{2}+\omega_{1}\right) t+0.5 m \cos \left(\omega_{2}-\omega_{1}\right) t
$$

We now have the carrier signal plus two high-frequency sidebands

Superheterodyning (Opposite of amplitude modulation)

1 Objective is to extract the low-frequency signal from the modulated high-frequency signal

2 Assume a high-frequency signal $x(t)=A \cos \omega_{1} t$

3 We can mix with a lower frequency signal

$$
\begin{aligned}
z(t) & =A \cos \omega_{1} t \times \cos \omega_{2} t \\
& =\frac{A}{2} \cos \left(\omega_{1}-\omega_{2}\right) t+\frac{A}{2} \cos \left(\omega_{1}+\omega_{2}\right) t
\end{aligned}
$$

4 We can use a filter to obtain the low-frequency signal

$$
y(t)=\frac{A}{2} \cos \left(\omega_{1}-\omega_{2}\right) t
$$

