Digital Signal Processing Using MATLAB

 z-TransformF. Gebali

Outline

1 z
2 ROC
3 Functions
4 Properties
5 Conv
6 Sys
7 Poles
8 DFT
9 Inverse
10 Partial
11 Repeated
12 Equal

z-Transform

The One-Sided z-Transform Equation

$$
x(z)=\sum_{n=0}^{\infty} x[n] z^{-n}
$$

$1 z$ is a complex number
2 -transform is really a polynomial in z^{-1}

$$
\begin{aligned}
& x[n]=x[0] \delta[n]+x[1] \delta[n-1]+x[2] \delta[n-2]+\cdots \\
& x(z)=x[0]+x[1] z^{-1}+x[2] z^{-2}+\cdots
\end{aligned}
$$

ROC

The Region of Convergence (ROC)

1 We express z in Euler's notation as $z=r e^{j \hat{\omega}}$ and the z-transform becomes

$$
X(z)=\sum_{n=0}^{\infty} x[n] r^{-n} e^{-j \hat{\omega} n}
$$

The Region of Convergence (ROC)

1 We express z in Euler's notation as $z=r e^{j \hat{\omega}}$ and the z-transform becomes

$$
X(z)=\sum_{n=0}^{\infty} x[n] r^{-n} e^{-j \omega n}
$$

2 Series converges when $|X(z)|$ is finite

$$
|X(z)|=\left|\sum_{n=0}^{\infty} x[n] r^{-n} e^{-j \omega n}\right|
$$

The Region of Convergence (ROC)

A more strict condition is when

$$
|X(z)| \leq \sum_{n=0}^{\infty}\left|x[n] r^{-n} e^{-j \hat{\omega} n}\right|
$$

The Region of Convergence (ROC)

A more strict condition is when

$$
\begin{aligned}
|X(z)| & \leq \sum_{n=0}^{\infty}\left|x[n] r^{-n} e^{-j \hat{\omega} n}\right| \\
& =\sum_{n=0}^{\infty}\left|x[n] r^{-n}\right|
\end{aligned}
$$

The Region of Convergence (ROC)

A more strict condition is when

$$
\begin{aligned}
|X(z)| & \leq \sum_{n=0}^{\infty}\left|x[n] r^{-n} e^{-j \hat{\omega} n}\right| \\
& =\sum_{n=0}^{\infty}\left|x[n] r^{-n}\right|
\end{aligned}
$$

In other words

$$
|X(z)| \leq \sum_{n=0}^{\infty}\left|\frac{x[n]}{r^{n}}\right|
$$

The Region of Convergence (ROC)

1 Assume $|x[n]| \leq r_{0}$

The Region of Convergence (ROC)

1 Assume $|x[n]| \leq r_{0}$
2 The absolute sum converges for all values of $|z|=r>r_{0}$

The Region of Convergence (ROC)

1 Assume $|x[n]| \leq r_{0}$
2 The absolute sum converges for all values of $|z|=r>r_{0}$
$3|x[n]| / r^{n}$ is summable for $r>r_{0}$.

The Region of Convergence (ROC)

Example

Assume the right-sided sequence $x[n]=a^{n} u[n]$.
1 Find its z-transform
2 Define its ROC.

The Region of Convergence (ROC)

Example

Assume the right-sided sequence $x[n]=a^{n} u[n]$.
1 Find its z-transform
2 Define its ROC.

$$
X(z)=\sum_{n=0}^{\infty} a^{n} z^{-n}
$$

The Region of Convergence (ROC)

Example

Assume the right-sided sequence $x[n]=a^{n} u[n]$.
1 Find its z-transform
2 Define its ROC.

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
\end{aligned}
$$

The Region of Convergence (ROC)

Example

Assume the right-sided sequence $x[n]=a^{n} u[n]$.
1 Find its z-transform
2 Define its ROC.

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}}
\end{aligned}
$$

The Region of Convergence (ROC)

Example

Assume the right-sided sequence $x[n]=a^{n} u[n]$.
1 Find its z-transform
2 Define its ROC.

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}}
\end{aligned}
$$

The ROC is when $\left|a z^{-1}\right|<1$. This could be stated as $|z|>a$.

The Region of Convergence (ROC) Observations

If the ROC is the exterior of a circle, then $x[n]$ is a right-sided sequence with $n \geq 0$.

The Region of Convergence (ROC) Observations

Example

Determine the z-transform of the following sequences and state the ROC for each signal.

$$
\begin{aligned}
1 & x_{1}[n]=\{1,2,3,4\} \\
2 & x_{2}[n]=\delta[n] \\
3 & x_{3}[n]=\delta[n-3] \\
4 & x_{4}[n]=u[n] \\
5 & x_{5}[n]=u[n-3]
\end{aligned}
$$

Simple Functions

z-Transform of Impulse Signal $\delta[n]$

$$
\begin{aligned}
\Delta(z) & =\sum_{n=0}^{\infty} \delta[n] z^{-n} \\
& =1
\end{aligned}
$$

ROC is the entire complex plane

$$
\delta[n] \quad \stackrel{z}{\longleftrightarrow} \quad 1
$$

z-Transform of Delayed Impulse $\delta\left[n-n_{0}\right]$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} \delta\left[n-n_{0}\right] z^{-n} \\
& =z^{-n_{0}}
\end{aligned}
$$

Therefore time delay n_{0} is equivalent to multiplication of the z-transform by the factor $z^{-n_{0}}$. The ROC is $z \neq 0$.

$$
\delta\left[n-n_{0}\right] \quad \stackrel{z}{\longleftrightarrow} \quad z^{-n_{0}}, \quad z \neq 0
$$

z-Transform of Unit Step $u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} u[n] z^{-n} \\
& =\frac{1}{1-z^{-1}}
\end{aligned}
$$

The ROC is $|z|>1$.

$$
u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{1-z^{-1}}, \quad|z|>1
$$

z-Transform of Delayed Unit Step u[$n-n_{0}$]

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} u\left[n-n_{0}\right] z^{-n} \\
& =z^{-n_{0}} \sum_{m=0}^{\infty} u[m] z^{-m} \\
& =\frac{z^{-n_{0}}}{1-z^{-1}}
\end{aligned}
$$

The ROC is $|z|>1$.

$$
u[n] \quad \underset{\longleftrightarrow}{\longleftrightarrow} \quad \frac{z^{-n_{0}}}{1-z^{-1}}, \quad|z|>1
$$

z-Transform of Length- L Pulse $r_{L}[n]$

$$
R_{L}(z)=\sum_{n=0}^{\infty} r_{L}[n] z^{-n}
$$

z-Transform of Length- L Pulse $r_{L}[n]$

$$
\begin{aligned}
R_{L}(z) & =\sum_{n=0}^{\infty} r_{L}[n] z^{-n} \\
& =\sum_{n=0}^{L-1} z^{-n}
\end{aligned}
$$

z-Transform of Length- L Pulse $r_{L}[n]$

$$
\begin{aligned}
R_{L}(z) & =\sum_{n=0}^{\infty} r_{L}[n] z^{-n} \\
& =\sum_{n=0}^{L-1} z^{-n} \\
& =\frac{1-z^{-L}}{1-z^{-1}}
\end{aligned}
$$

The ROC is when $z \neq 0$.

z-Transform of Length- L Pulse $r_{L}[n]$

$$
\begin{aligned}
R_{L}(z) & =\sum_{n=0}^{\infty} r_{L}[n] z^{-n} \\
& =\sum_{n=0}^{L-1} z^{-n} \\
& =\frac{1-z^{-L}}{1-z^{-1}}
\end{aligned}
$$

The ROC is when $z \neq 0$.

$$
r_{L}[n] \quad \underset{z}{\longleftrightarrow} \quad \frac{1-z^{-L}}{1-z^{-1}}, \quad z \neq 0
$$

$$
x(z)=\sum_{n=0}^{\infty} a^{n} u[n] z^{-n}
$$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} z^{-n}
\end{aligned}
$$

z-Transform of Exponential Signal: $x[n]=a^{n} u[n], \quad 0<a<1$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
\end{aligned}
$$

z-Transform of Exponential Signal: $x[n]=a^{n} u[n]$,
 $0<a<1$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}}
\end{aligned}
$$

z-Transform of Exponential Signal: $x[n]=a^{n} u[n]$,

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} z^{-n}=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n} \\
& =\frac{1}{1-a z^{-1}}
\end{aligned}
$$

The ROC is when $\left|a z^{-1}\right|<1$. This could be stated as $|z|>a$.

$$
a^{n} u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{1-a z^{-1}}, \quad|z|>a
$$

z-Transform of Complex Exponential Signal: $x[n]=a^{n} e^{j \omega_{0} n} u[n]$

$$
x(z)=\sum_{n=0}^{\infty} a^{n} e^{\hat{\omega}_{0} n} u[n] z^{-n}
$$

z-Transform of Complex Exponential Signal: $x[n]=a^{n} e^{i \omega_{0} n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} e^{j \hat{\omega}_{0} n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} e^{j \hat{\omega}_{0} n} z^{-n}
\end{aligned}
$$

z-Transform of Complex Exponential Signal: $x[n]=a^{n} e^{i \omega_{0} n} u[n]$

$$
\begin{aligned}
x(z) & =\sum_{n=0}^{\infty} a^{n} e^{\hat{\omega}_{0} n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} e^{\hat{\omega}_{0} n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a e^{\hat{\omega}_{0}} z^{-1}\right)^{n}
\end{aligned}
$$

z-Transform of Complex Exponential Signal: $x[n]=a^{n} e^{j \omega_{0} n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} e^{j \hat{\omega}_{0} n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} e^{j \hat{\omega}_{0} n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a e^{i \hat{\omega}_{0}} z^{-1}\right)^{n} \\
& =\frac{1}{1-a e^{i \hat{\omega}_{0}} z^{-1}}
\end{aligned}
$$

z-Transform of Complex Exponential Signal: $x[n]=a^{n} e^{i \omega_{0} n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} a^{n} e^{j_{0} n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} a^{n} e^{j \hat{\omega}_{0} n} z^{-n} \\
& =\sum_{n=0}^{\infty}\left(a e^{j \hat{\omega}_{0}} z^{-1}\right)^{n} \\
& =\frac{1}{1-a e^{j \hat{\omega}_{0}} z^{-1}}
\end{aligned}
$$

The ROC is when $|z|>a$.

$$
a^{n} e^{j \hat{\omega}_{0} n} u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{1-a e^{j \hat{\omega}_{0}} z^{-1}}
$$

z-Transform of Complex Exponential Signal: $x[n]=e^{j \omega_{0} n} u[n]$

$$
X(z)=\sum_{n=0}^{\infty} e^{i \widehat{\omega}_{0} n} u[n] z^{-n}
$$

z-Transform of Complex Exponential Signal: $x[n]=e^{j \omega_{0} n} u[n]$

$$
\begin{aligned}
x(z) & =\sum_{n=0}^{\infty} e^{i \hat{\omega}_{0} n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} e^{\hat{\omega}_{0} n} z^{-n}
\end{aligned}
$$

z-Transform of Complex Exponential Signal: $x[n]=e^{j \omega_{0} n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} e^{j \widehat{\omega}_{0} n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} e^{j \widehat{\omega}_{0} n} z^{-n} \\
& =\frac{1}{1-e^{j \widehat{\omega}_{0}} z^{-1}}
\end{aligned}
$$

z-Transform of Complex Exponential Signal: $x[n]=e^{j \omega_{0} n} u[n]$

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{\infty} e^{j \widehat{\omega}_{0} n} u[n] z^{-n} \\
& =\sum_{n=0}^{\infty} e^{j \widehat{\omega}_{0} n} z^{-n} \\
& =\frac{1}{1-e^{j \widehat{\omega}_{0}} z^{-1}}
\end{aligned}
$$

The ROC is when $|z|>1$.

$$
e^{j \widehat{\omega}_{0} n} u[n]
$$

$$
\frac{1}{1-e^{j \hat{\omega}_{0}} z^{-1}}
$$

Summary

Sequence	z-Transform	ROC
$\delta[n]$	1	Entire z-plane
$\delta\left[n-n_{0}\right]$	$z^{-n_{0}}$	$z \neq 0$
$u[n]$	$\frac{1}{1-z^{-1}}$	$\|z\|>1$
$u\left[n-n_{0}\right]$	$\frac{z^{-n_{0}}}{1-z^{-1}}$	$\|z\|>1$
$r_{L}[n]$	$\frac{1-z^{-L}}{1-z^{-1}}$	$z \neq 0$
$a^{n} u[n]$	$\frac{1}{1-a z^{-1}}$	$\|z\|>\|a\|$
$e^{j \omega n} u[n]$	$\frac{1}{1-e^{\omega \omega} z^{-1}}$	$\|z\|>1$

Properties

Linearity Property of the z-Transform

$$
\alpha x_{1}[n]+\beta x_{2}[n] \quad \underset{ }{z} \quad \alpha X_{1}(z)+\beta X_{2}(z)
$$

Time Shift Property of the z-Transform

Consider the z-transform of a delayed version of some signal

$$
x\left[n-n_{0}\right] \quad \stackrel{z}{\longleftrightarrow} \quad X(z) z^{-n_{0}}
$$

Convolution

Convolution and the z-Transform

Consider the convolution operation

$$
y[n]=\sum_{k=0}^{N-1} h[k] x[n-k]
$$

Convolution and the z-Transform

Consider the convolution operation

$$
y[n]=\sum_{k=0}^{N-1} h[k] x[n-k]
$$

The z-transform is

$$
Y(z)=\sum_{n=0}^{\infty} y[n] z^{-n}
$$

Convolution and the z-Transform

Consider the convolution operation

$$
y[n]=\sum_{k=0}^{N-1} h[k] x[n-k]
$$

The z-transform is

$$
\begin{aligned}
Y(z) & =\sum_{n=0}^{\infty} y[n] z^{-n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{N-1} h[k] x[n-k] z^{-n}, \quad \text { try } m=n-k
\end{aligned}
$$

Convolution and the z-Transform

Consider the convolution operation

$$
y[n]=\sum_{k=0}^{N-1} h[k] x[n-k]
$$

The z-transform is

$$
\begin{aligned}
Y(z) & =\sum_{n=0}^{\infty} y[n] z^{-n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{N-1} h[k] x[n-k] z^{-n}, \quad \text { try } m=n-k \\
& =\sum_{k=0}^{N-1} h[k] z^{-k}\left(\sum_{m=0}^{\infty} x[m] z^{-m}\right)
\end{aligned}
$$

Convolution and the z-Transform

Consider the convolution operation

$$
y[n]=\sum_{k=0}^{N-1} h[k] x[n-k]
$$

The z-transform is

$$
\begin{aligned}
Y(z) & =\sum_{n=0}^{\infty} y[n] z^{-n} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{N-1} h[k] x[n-k] z^{-n}, \quad \text { try } m=n-k \\
& =\sum_{k=0}^{N-1} h[k] z^{-k}\left(\sum_{m=0}^{\infty} x[m] z^{-m}\right) \\
& =H(z) X(z)
\end{aligned}
$$

Convolution and the z-Transform

Example

Assume $\quad X(z)=1+2 z^{-1}+3 z^{-2} \quad Y(z)=4+5 z^{-1}+6 z^{-2}$
1 Find $x[n]$ and $y[n]$
2 Do the convolution $c[n]=x[n] * y[n]$
3 Find $C(z)$ and prove that $C(z)=X(z) Y(z)$

System Function

FIR System Function

$$
y[n]=\sum_{k=0}^{N-1} b[k] x[n-k]=h[n] * x[n]
$$

$$
Y(z)=H(z) X(z)
$$

FIR System Function

$$
y[n]=\sum_{k=0}^{N-1} b[k] x[n-k]=h[n] * x[n]
$$

$$
Y(z)=H(z) X(z)
$$

System function $H(z)$ for the FIR is the polynomial

$$
H(z)=\frac{Y(z)}{X(z)}=\sum_{k=0}^{N-1} b[k] z^{-k}
$$

IIR System Function

$$
y[n]=\sum_{k=1}^{M-1} a[k] y[n-k]+\sum_{k=0}^{N-1} b[k] x[n-k]=a[n] * y[n]+b[n] * x[n]
$$

IIR System Function

$$
y[n]=\sum_{k=1}^{M-1} a[k] y[n-k]+\sum_{k=0}^{N-1} b[k] x[n-k]=a[n] * y[n]+b[n] * x[n]
$$

$$
Y(z)=A(z) Y(z)+B(z) X(z)
$$

IIR System Function

$$
y[n]=\sum_{k=1}^{M-1} a[k] y[n-k]+\sum_{k=0}^{N-1} b[k] x[n-k]=a[n] * y[n]+b[n] * x[n]
$$

$$
\begin{gathered}
Y(z)=A(z) Y(z)+B(z) X(z) \\
Y(z)=\frac{B(z)}{1-A(z)} X(z)=H(z) X(z)
\end{gathered}
$$

IIR System Function

$$
y[n]=\sum_{k=1}^{M-1} a[k] y[n-k]+\sum_{k=0}^{N-1} b[k] x[n-k]=a[n] * y[n]+b[n] * x[n]
$$

$$
\begin{gathered}
Y(z)=A(z) Y(z)+B(z) X(z) \\
Y(z)=\frac{B(z)}{1-A(z)} X(z)=H(z) X(z)
\end{gathered}
$$

The IIR system function is given by

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{B(z)}{1-A(z)}=\frac{\sum_{k=0}^{N-1} b[k] z^{-k}}{1-\sum_{k=1}^{M-1} a[k] z^{-k}}
$$

System Function

Example

Given the sequence

$$
y[n]=0.9 y[n-1]+x[n]
$$

1 Find $H(z)$
2 Determine the impulse response $h[n]$

$$
Y(z)=0.9 z^{-1} Y(z)+X(z), \quad H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-0.9 z^{-1}}
$$

From tables we have $h[n]=0.9^{n} u[n]$

Poles and Zeros

Poles and Zeros of the System Function $H(z)$

Must express $H(z)$ as positive powers of z.

$$
\begin{gathered}
H(z)=\frac{\sum_{k=0}^{N-1} b_{k} z^{-k}}{1-\sum_{k=1}^{M-1} a_{k} z^{-k}} \\
H(z)=b_{0} \times \frac{\left(1-q_{0} z^{-1}\right)}{\left(1-p_{0} z^{-1}\right)} \times \frac{\left(1-q_{1} z^{-1}\right)}{\left(1-p_{1} z^{-1}\right)} \times \cdots \times \frac{\left(1-q_{R-1} z^{-1}\right)}{\left(1-p_{R-1} z^{-1}\right)} \\
=b_{0} \times \frac{\left(z-q_{0}\right)}{\left(z-p_{0}\right)} \times \frac{\left(z-q_{1}\right)}{\left(z-p_{1}\right)} \times \cdots \times \frac{\left(z-q_{R-1}\right)}{\left(z-p_{R-1}\right)}
\end{gathered}
$$

Poles and Zeros of the System Function $H(z)$

Example

Find the poles and zeros of the system function defined as a z-transform of a length- L pulse $r_{L}[n]$.

$$
H(z)=\frac{1-z^{-L}}{1-z^{-1}}=\frac{z^{L}-1}{z^{L-1}(z-1)}
$$

Poles and Zeros of the System Function $H(z)$

Example

Find the poles and zeros of the system function defined as a z-transform of a length- L pulse $r_{L}[n]$.

$$
H(z)=\frac{1-z^{-L}}{1-z^{-1}}=\frac{z^{L}-1}{z^{L-1}(z-1)}
$$

The zeros are found by the equation

$$
z^{L}=1=e^{j 2 \pi}
$$

Poles and Zeros of the System Function $H(z)$

Example

Find the poles and zeros of the system function defined as a z-transform of a length- L pulse $r_{L}[n]$.

$$
H(z)=\frac{1-z^{-L}}{1-z^{-1}}=\frac{z^{L}-1}{z^{L-1}(z-1)}
$$

The zeros are found by the equation

$$
z^{L}=1=e^{j 2 \pi}
$$

We can write this as

$$
z_{k}=e^{j 2 \pi k / L}, \quad 0 \leq k<L
$$

Poles and Zeros of the System Function $H(z)$

Example

Find the poles and zeros of the system function defined as a z-transform of a length- L pulse $r_{L}[n]$.

$$
H(z)=\frac{1-z^{-L}}{1-z^{-1}}=\frac{z^{L}-1}{z^{L-1}(z-1)}
$$

The zeros are found by the equation

$$
z^{L}=1=e^{j 2 \pi}
$$

We can write this as

$$
z_{k}=e^{j 2 \pi k / L}, \quad 0 \leq k<L
$$

Those zeros are:

$$
z_{0}=1, z_{1}=e^{j 2 \pi / L}, z_{2}=e^{j 4 \pi / L}, \cdots z_{L-1}=e^{j 2 \pi(L-1) / L}
$$

Poles \& Zeros for Example: Finding the Zeros

Case $L=10$ implies 10 zeros equally spaced around the unit circle in the complex plane. Zeros are shown as the circles.

Poles \& Zeros for Example: Finding the Poles

$H(z)$ has L zeros and L poles. The locations of the poles are $L-1$ poles at $z=0$ and one pole at $z=1$.

z-Transform \& DFT

z-Transform \& DTFT

$1 X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$

z-Transform \& DTFT

$1 X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$
2 Use $z=r e^{j \hat{\omega}}, \quad r>0$ and $-\pi \leq \widehat{\omega}<\pi$

z-Transform \& DTFT

$1 X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$
2 Use $z=r e^{j \hat{\omega}}, \quad r>0$ and $-\pi \leq \widehat{\omega}<\pi$

3 When $r=1$, we get

$$
\begin{aligned}
\left.X(z)\right|_{z=e^{i \hat{\omega}}} & =\sum_{n=0}^{\infty} x[n] e^{-j \widehat{\omega} n} \\
& =X(\widehat{\omega})
\end{aligned}
$$

z-Transform \& DFT

1 Use discrete $\widehat{\omega}_{k}=\frac{2 \pi k}{N}, \quad-N / 2 \leq k<N / 2$

z-Transform \& DFT

1 Use discrete $\widehat{\omega}_{k}=\frac{2 \pi k}{N}, \quad-N / 2 \leq k<N / 2$
$\left.2 X(z)\right|_{z=e^{i{ }_{\omega}^{k}}}=X[k]$

z-Transform \& DTFT \& DFT

Inverse z-Transform

Inverse z-Transform

1 We are given $H(z)$

Inverse z-Transform

1 We are given $H(z)$

2 Need to find $h[n]$

Inverse z-Transform

1 We are given $H(z)$

2 Need to find $h[n]$

3 We consider special form of $H(z)$:

$$
H(z)=\frac{B(z)}{A(z)}
$$

Inverse z-Transform Methods

1 When $H(z)=B(z)$, we use direct inspection of the polynomial terms.

Inverse z-Transform Methods

1 When $H(z)=B(z)$, we use direct inspection of the polynomial terms.

2 When $H(z)=B(z) / A(z)$ we can use polynomial division then do inverse z-transform on the resulting quotient terms.

Inverse z-Transform Methods

1 When $H(z)=B(z)$, we use direct inspection of the polynomial terms.

2 When $H(z)=B(z) / A(z)$ we can use polynomial division then do inverse z-transform on the resulting quotient terms.

3 When $H(z)=B(z) / A(z)$ \&

$$
\operatorname{deg}\left[B\left(z^{-1}\right)\right]<\operatorname{deg}\left[A\left(z^{-1}\right)\right]
$$

we can use the partial fraction approach then do inverse z-transform on the resulting terms.

Inverse z-Transform: Inspection of Polynomial

$$
H(z)=b[0]+b[1] z^{-1}+b[2] z^{-2}+\cdots+b[N-1] z^{-N-1}
$$

Using linearity property, we do inverse z-transform for each term

$$
h[n]=b[0] \delta[n]+b[1] \delta[n-1]+\cdots+b[N-1] \delta[n-N+1]
$$

Inverse z-Transform: Inspection of Polynomial

$$
H(z)=b[0]+b[1] z^{-1}+b[2] z^{-2}+\cdots+b[N-1] z^{-N-1}
$$

Using linearity property, we do inverse z-transform for each term

$$
\begin{aligned}
h[n] & =b[0] \delta[n]+b[1] \delta[n-1]+\cdots+b[N-1] \delta[n-N+1] \\
& =\sum_{k=0}^{N-1} b[k] \delta[n-k]
\end{aligned}
$$

Inverse z-Transform: Inspection of Polynomial

Example

Find the inverse z-transform for the system

$$
H(z)=\left(1-z^{-1}\right)\left(1-2 z^{-1}\right)\left(1-3 z^{-1}\right), \quad z \neq 0
$$

Inverse z-Transform: Inspection of Polynomial

Example

Find the inverse z-transform for the system

$$
\begin{gathered}
H(z)=\left(1-z^{-1}\right)\left(1-2 z^{-1}\right)\left(1-3 z^{-1}\right), \quad z \neq 0 \\
H(z)=1-6 z^{-1}+11 z^{-2}-6 z^{-3}, \quad z \neq 0
\end{gathered}
$$

Therefore we can write by inspection

Inverse z-Transform: Inspection of Polynomial

Example

Find the inverse z-transform for the system

$$
H(z)=\left(1-z^{-1}\right)\left(1-2 z^{-1}\right)\left(1-3 z^{-1}\right), \quad z \neq 0
$$

$$
H(z)=1-6 z^{-1}+11 z^{-2}-6 z^{-3}, \quad z \neq 0
$$

Therefore we can write by inspection

$$
h[n]=\delta[n]-6 \delta[n-1]+11 \delta[n-2]-6 \delta[n-3]
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

| z^{2} | $+z$ | -0.5 | 1 $-z^{-1}$ $+1.5 z^{-2}$ $-2 z^{-3}$
 z^{2}
 z^{2} $+z$ -0.5 | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

z^{2}		1	$-z^{-1}$	$+1.5 z^{-2}$	$-2 z^{-3}$	\ldots
	+z $\begin{array}{ll}\text { - }\end{array}$	$\begin{aligned} & z^{2} \\ & z^{2} \end{aligned}$			$+0.5 z^{-1}$	$-0.75 z^{-2}$
			+z	-0.5		
			-z	+0.5		
			$-z$	-1		
				1.5	$-0.5 z^{-1}$	
				1.5	$1.5 z^{-1}$	
					$-2 z^{-1}$	$+0.75 z^{-2}$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

z^{2}	$+z \quad-0.5$	$\begin{gathered} 1 \\ z^{2} \\ z^{2} \end{gathered}$	$-z^{-1}$	$+1.5 z^{-2}$	$-2 z^{-3}$	\ldots
			+ Z	-0.5		
			$-Z$	$+0.5$		
			$-Z$	-1	$+0.5 z^{-1}$	
				1.5	$-0.5 z^{-1}$	
				1.5	$1.5 z^{-1}$	$-0.75 z^{-2}$
					$\begin{aligned} & -2 z^{-1} \\ & -2 z^{-1} \end{aligned}$	$\begin{gathered} +0.75 z^{-2} \\ -2 z^{-2} \end{gathered}$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1}{1+z^{-1}-0.5 z^{-2}}=\frac{z^{2}}{z^{2}+z-0.5}, \quad|z|>1.36
$$

Inverse z-Transform: Polynomial Division, Continued

Therefore our system function is

$$
H(z)=1-z^{-1}+1.5 z^{-2}-2 z^{-3}+2.75 z^{-4} \ldots
$$

and the impulse response is
$h[n]=\delta[n]-\delta[n-1]+1.5 \delta[n-2]-2 \delta[n-3]+2.75 \delta[n-5]+\cdots$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1-0.1 z^{-1}-z^{-2}-0.5 z^{-3}}{1-0.5 z^{-1}-0.2 z^{-2}-0.1 z^{-3}}, \quad|z|>0.8649
$$

$$
\begin{array}{cccccccc}
& & & & 1 & +0.4 z^{-1} & -0.6 z & -0.62 z^{-3} \\
z^{3} & -0.5 z^{2} & -0.2 z & -0.1 & \sqrt{z^{3}} & -0.1 z^{2} & -z & -0.5 \\
\hline
\end{array}
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1-0.1 z^{-1}-z^{-2}-0.5 z^{-3}}{1-0.5 z^{-1}-0.2 z^{-2}-0.1 z^{-3}}, \quad|z|>0.8649
$$

$$
\begin{array}{cccccccc}
& & & & 1 & +0.4 z^{-1} & -0.6 z & -0.62 z^{-3} \\
z^{3} & -0.5 z^{2} & -0.2 z & -0.1 & \sqrt{z^{3}} & -0.1 z^{2} & -z & -0.5 \\
z^{3} & -0.5 z^{2} & -0.2 z & -0.1 \\
\hline
\end{array}
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1-0.1 z^{-1}-z^{-2}-0.5 z^{-3}}{1-0.5 z^{-1}-0.2 z^{-2}-0.1 z^{-3}}, \quad|z|>0.8649
$$

$$
\begin{array}{cccccccc}
& & & & \begin{array}{ccc}
1 & +0.4 z^{-1} & -0.6 z
\end{array} & -0.62 z^{-3} \\
z^{3} & -0.5 z^{2} & -0.2 z & -0.1 & \sqrt{z^{3}} & -0.1 z^{2} & -z & -0.5 \\
z^{3} & -0.5 z^{2} & -0.2 z & -0.1 \\
& & 0.4 z^{2} & -0.8 z & -0.4
\end{array}
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1-0.1 z^{-1}-z^{-2}-0.5 z^{-3}}{1-0.5 z^{-1}-0.2 z^{-2}-0.1 z^{-3}}, \quad|z|>0.8649
$$

Inverse z-Transform: Polynomial Division

Example

Find the inverse z-transform using polynomial division for

$$
H(z)=\frac{1-0.1 z^{-1}-z^{-2}-0.5 z^{-3}}{1-0.5 z^{-1}-0.2 z^{-2}-0.1 z^{-3}}, \quad|z|>0.8649
$$

z^{3}				1	$+0.4 z^{-1}$	-0.6z	$-0.62 z^{-3}$
	$-0.5 z^{2}$	$-0.2 z$	-0.1	z^{3}	-0.17 ${ }^{2}$	-z	-0.5
				z^{3}	$-0.5 z^{2}$	-0.2z	-0.1
					$0.4 z^{2}$	-0.8z	-0.4
					$0.4 z^{2}$	-0.2z	-0.08
						-0.6z	-0.32

Inverse z-Transform: Polynomial Division, Continued

Therefore our system function is

$$
H(z)=1+0.4 z^{-1}-0.6 z^{-2}-0.62 z^{-3}-0.39 z^{-4}+\cdots
$$

and the impulse response is
$h[n]=\delta[n]+0.4 \delta[n-1]-0.6 \delta[n-2]-.62 \delta[n-3]-0.39 \delta[n-4]+\cdots$

Partial Fractions

Useful Formulas Often Seen in Partial Fractions Method

$1 \delta[n]$

1
$2 u[n]$

$1 /\left(1-z^{-1}\right)$,
$|z|>1$
$3 n u[n] \quad{ }^{z} \quad z^{-1} /\left(1-z^{-1}\right)^{2}, \quad|z|>1$
$4 a^{n} u[n] \quad{ }^{z} \quad 1 /\left(1-a z^{-1}\right), \quad|z|>a$
$5 n a^{n} u[n] \quad \underset{ }{\longleftrightarrow} \quad a z^{-1} /\left(1-a z^{-1}\right)^{2}, \quad|z|>a$
$6(n+1) a^{n} u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{\left(1-a z^{-1}\right)^{2}}, \quad|z|>a$
$7 x\left[n-n_{0}\right] \quad z \quad X(z) z^{-n_{0}}$
8 z-transform is linear

Partial Fraction Steps

1 Ensure $H(z)$ is expressed in powers of z^{-1}

Partial Fraction Steps

1 Ensure $H(z)$ is expressed in powers of z^{-1}
2 Ensure $H(z)$ is proper: $\operatorname{deg}\left[B\left(z^{-1}\right)\right]<\operatorname{deg}\left[A\left(z^{-1}\right)\right]$

Partial Fraction Steps

1 Ensure $H(z)$ is expressed in powers of z^{-1}
2 Ensure $H(z)$ is proper: $\operatorname{deg}\left[B\left(z^{-1}\right)\right]<\operatorname{deg}\left[A\left(z^{-1}\right)\right]$
3 Use polynomial division if $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$

Partial Fraction Steps

1 Ensure $H(z)$ is expressed in powers of z^{-1}
2 Ensure $H(z)$ is proper: $\operatorname{deg}\left[B\left(z^{-1}\right)\right]<\operatorname{deg}\left[A\left(z^{-1}\right)\right]$
3 Use polynomial division if $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$
4 Express $H(z)$ as a sum

$$
H(z)=\frac{r_{1}}{1-p_{1} z^{-1}}+\frac{r_{2}}{1-p_{2} z^{-1}}+\cdots
$$

Partial Fraction Steps

1 Ensure $H(z)$ is expressed in powers of z^{-1}
2 Ensure $H(z)$ is proper: $\operatorname{deg}\left[B\left(z^{-1}\right)\right]<\operatorname{deg}\left[A\left(z^{-1}\right)\right]$
3 Use polynomial division if $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$
4 Express $H(z)$ as a sum

$$
H(z)=\frac{r_{1}}{1-p_{1} z^{-1}}+\frac{r_{2}}{1-p_{2} z^{-1}}+\cdots
$$

5 Find inverse z-transform of the sum

Inverse z-Transform: Partial Fraction Expansion

$$
H(z)=\frac{B(z)}{A(z)}
$$

Inverse z-Transform: Partial Fraction Expansion

$$
\begin{aligned}
H(z) & =\frac{B(z)}{A(z)} \\
& =\frac{\left(1-q_{0} z^{-1}\right)}{\left(1-p_{0} z^{-1}\right)} \times \frac{\left(1-q_{1} z^{-1}\right)}{\left(1-p_{1} z^{-1}\right)} \times \cdots \times \frac{\left(1-q_{R-1} z^{-1}\right)}{\left(1-p_{R-1} z^{-1}\right)}
\end{aligned}
$$

Inverse z-Transform: Partial Fraction Expansion

$$
\begin{aligned}
H(z) & =\frac{B(z)}{A(z)} \\
& =\frac{\left(1-q_{0} z^{-1}\right)}{\left(1-p_{0} z^{-1}\right)} \times \frac{\left(1-q_{1} z^{-1}\right)}{\left(1-p_{1} z^{-1}\right)} \times \cdots \times \frac{\left(1-q_{R-1} z^{-1}\right)}{\left(1-p_{R-1} z^{-1}\right)} \\
& =\frac{r_{1}}{1-p_{1} z^{-1}}+\frac{r_{2}}{1-p_{2} z^{-1}}+\cdots
\end{aligned}
$$

The residue r_{k} is given by

$$
r_{k}=H(z) \times\left.\left(1-p_{k} z^{-1}\right)\right|_{z=p_{k}}
$$

Example

Use partial fraction expansion to find $h[n]$ for

$$
H(z)=\frac{1+2 z^{-1}}{1-1.5 z^{-1}+0.5 z^{-2}}, \quad|z|>1
$$

$r_{1}=-5$ with pole at $z=0.5, r_{2}=6$ with pole at $z=1$

Partial Fraction Expansion: Alternative Method

Example

Find $h[n]$ for the system function

$$
H(z)=\frac{1-3 z^{-1}}{\left(1-4 z^{-1}\right)\left(1-8 z^{-1}\right)}, \quad|z|>8
$$

Partial Fraction Expansion: Alternative Method

Example

Find $h[n]$ for the system function

$$
H(z)=\frac{1-3 z^{-1}}{\left(1-4 z^{-1}\right)\left(1-8 z^{-1}\right)}, \quad|z|>8
$$

Since $N<M$, we can write

$$
\frac{1-3 z^{-1}}{\left(1-4 z^{-1}\right)\left(1-8 z^{-1}\right)}=\frac{r_{1}}{1-4 z^{-1}}+\frac{r_{2}}{1-8 z^{-1}}
$$

Partial Fraction Expansion: Alternative Method

Example

Find $h[n]$ for the system function

$$
H(z)=\frac{1-3 z^{-1}}{\left(1-4 z^{-1}\right)\left(1-8 z^{-1}\right)}, \quad|z|>8
$$

Since $N<M$, we can write

$$
\frac{1-3 z^{-1}}{\left(1-4 z^{-1}\right)\left(1-8 z^{-1}\right)}=\frac{r_{1}}{1-4 z^{-1}}+\frac{r_{2}}{1-8 z^{-1}}
$$

Equating denominators on both sides we have

$$
1-3 z^{-1}=r_{1}\left(1-8 z^{-1}\right)+r_{2}\left(1-4 z^{-1}\right)
$$

Partial Fraction Expansion: Alternative Method

Example

Find $h[n]$ for the system function

$$
H(z)=\frac{1-3 z^{-1}}{\left(1-4 z^{-1}\right)\left(1-8 z^{-1}\right)}, \quad|z|>8
$$

Since $N<M$, we can write

$$
\frac{1-3 z^{-1}}{\left(1-4 z^{-1}\right)\left(1-8 z^{-1}\right)}=\frac{r_{1}}{1-4 z^{-1}}+\frac{r_{2}}{1-8 z^{-1}}
$$

Equating denominators on both sides we have

$$
1-3 z^{-1}=r_{1}\left(1-8 z^{-1}\right)+r_{2}\left(1-4 z^{-1}\right)
$$

Hence $r_{1}=-0.25$ and $r_{2}=1.25$.

$$
h[n]=-0.25 \times 4^{n} u[n]+1.25 \times 8^{n} u[n]
$$

Inverse z-Transform: Partial Fraction Expansion

Example

Find $h[n]$ for the system function

$$
H(z)=\frac{1}{\left(1-0.25 z^{-1}\right)\left(1-0.5 z^{-1}\right)}, \quad|z|>0.5
$$

$r_{1}=4$ for $z=0.5$ and $r_{2}=-4$ for $z=0.25$

Inverse z-Transform: Partial Fraction Expansion

Example

Find $h[n]$ for the system function

$$
H(z)=\frac{1-z^{-1}}{\left(1-0.2 z^{-1}\right)\left(1-0.3 z^{-1}\right)}
$$

$r_{1}=-7$ for $\mathrm{z}=0.3$ and $r_{2}=8$ for $\mathrm{z}=0.2$

Inverse z-Transform: Partial Fraction Expansion

Example

Assume the system function is given by

$$
H(z)=\frac{1}{\left(1-z^{-1}\right)\left(1+2 z^{-1}\right)}, \quad|z|>2
$$

Express this function in partial fractions and determine its time-domain description.
$r_{1}=2 / 3$ for $\mathrm{z}=-2$ and $r_{2}=1 / 3$ for $\mathrm{z}=1$

Inverse z-Transform: Partial Fraction Expansion

Example

Assume the system function is given by

$$
H(z)=\frac{1}{\left(1-0.2 z^{-1}\right)\left(1-0.5 z^{-1}\right)}, \quad|z|>0.5
$$

Express this function in partial fractions and determine its time-domain description.

Inverse z-Transform: Partial Fraction Expansion

Example

Assume the system function is given by

$$
H(z)=\frac{1-z^{-1}}{1-0.5 z^{-1}+0.06 z^{-2}}, \quad|z|>0.3
$$

Express this function in partial fractions and determine its time-domain description.

Review of Exponential Signal z Transform

We remember the following facts:
1 Assume we have $X(z)=\frac{a}{1-p z^{-1}}=\frac{a z}{z-p}$

Review of Exponential Signal z Transform

We remember the following facts:
1 Assume we have $X(z)=\frac{a}{1-p z-1}=\frac{a z}{z-p}$

2 The inverse z-transform is given by

$$
x[n]=a p^{n} u[n]
$$

Repeated Poles

Inverse z-Transform: Repeated Poles

Example

Assume the system function is given by

$$
H(z)=\frac{1}{\left(1-z^{-1}\right)^{2}\left(1-2 z^{-1}\right)}, \quad|z|>2
$$

Express this function in partial fractions and determine its time-domain description.

Inverse z-Transform: Repeated Poles

Example

Assume the system function is given by

$$
H(z)=\frac{1}{\left(1-z^{-1}\right)^{2}\left(1-2 z^{-1}\right)}, \quad|z|>2
$$

Express this function in partial fractions and determine its time-domain description.

$$
H(z)=\frac{1}{\left(1-z^{-1}\right)^{2}\left(1-2 z^{-1}\right)}=\frac{r_{1}}{1-z^{-1}}+\frac{r_{2}}{\left(1-z^{-1}\right)^{2}}+\frac{r_{3}}{1-2 z^{-1}}
$$

Inverse z-Transform: Repeated Poles

Example

Assume the system function is given by

$$
H(z)=\frac{1}{\left(1-z^{-1}\right)^{2}\left(1-2 z^{-1}\right)}, \quad|z|>2
$$

Express this function in partial fractions and determine its time-domain description.
$H(z)=\frac{1}{\left(1-z^{-1}\right)^{2}\left(1-2 z^{-1}\right)}=\frac{r_{1}}{1-z^{-1}}+\frac{r_{2}}{\left(1-z^{-1}\right)^{2}}+\frac{r_{3}}{1-2 z^{-1}}$
Nominators on both sides give

$$
1=r_{1}\left(1-z^{-1}\right)\left(1-2 z^{-1}\right)+r_{2}\left(1-2 z^{-1}\right)+r_{3}\left(1-z^{-1}\right)^{2}
$$

Inverse z-Transform: Repeated Poles, Continued

$$
\begin{aligned}
r_{1} & =-2, \quad r_{2}=-1, \quad r_{3}=4 \\
H(z) & =\frac{-2}{1-z^{-1}}+\frac{-1}{\left(1-z^{-1}\right)^{2}}+\frac{4}{1-2 z^{-1}}
\end{aligned}
$$

Inverse z-Transform: Repeated Poles, Continued

$$
\begin{aligned}
r_{1} & =-2, \quad r_{2}=-1, \quad r_{3}=4 \\
H(z) & =\frac{-2}{1-z^{-1}}+\frac{-1}{\left(1-z^{-1}\right)^{2}}+\frac{4}{1-2 z^{-1}}
\end{aligned}
$$

We have the pair:

$$
(n+1) u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{\left(1-z^{-1}\right)^{2}}
$$

Inverse z-Transform: Repeated Poles, Continued

$$
\begin{aligned}
r_{1} & =-2, \quad r_{2}=-1, \quad r_{3}=4 \\
H(z) & =\frac{-2}{1-z^{-1}}+\frac{-1}{\left(1-z^{-1}\right)^{2}}+\frac{4}{1-2 z^{-1}}
\end{aligned}
$$

We have the pair:

$$
(n+1) u[n] \quad \stackrel{z}{\longleftrightarrow} \quad \frac{1}{\left(1-z^{-1}\right)^{2}}
$$

and

$$
h[n]=-(n+1) u[n]-2 u[n]+4 \times 2^{n} u[n]
$$

Partial Fractions: Repeated Roots

Example

Find inverse of

$$
X(z)=\frac{1-0.6 z^{-1}+0.06 z^{-2}}{1-1.7 z^{-1}+0.96 z^{-2}-0.18 z^{-3}}, \quad|z|>0.6
$$

where $z_{1}=0.5$ and $z_{2,3}=0.6$
$>\operatorname{roots}([1-1.7 \quad 0.96-0.18])$
$x=1$ for $z=0.5$
$r_{2}=1$ for $z=0.6$
$r_{1}=-1$ for $z=0.6$

General Formula to find a Residue

Assume $H(z)$ is a function of z^{-1} and pole p is repeated m times

$$
H(z)=\left[\frac{x_{1}}{\left(1-p z^{-1}\right)}+\cdots \frac{x_{m}}{\left(1-p z^{-1}\right)^{m}}\right]
$$

General Formula to find a Residue

Assume $H(z)$ is a function of z^{-1} and pole p is repeated m times

$$
H(z)=\left[\frac{x_{1}}{\left(1-p z^{-1}\right)}+\cdots \frac{x_{m}}{\left(1-p z^{-1}\right)^{m}}\right]
$$

We use substitution $w=z^{-1}$

General Formula to find a Residue

Assume $H(z)$ is a function of z^{-1} and pole p is repeated m times

$$
H(z)=\left[\frac{x_{1}}{\left(1-p z^{-1}\right)}+\cdots \frac{x_{m}}{\left(1-p z^{-1}\right)^{m}}\right]
$$

We use substitution $w=z^{-1}$

The residue x_{i} for pole p of order m is given in general by
$x_{i}=\frac{1}{(m-i)!(-p)^{m-i}} \lim _{w \rightarrow p^{-1}}\left[\frac{d^{m-i}}{d w^{m-i}}(1-p w)^{m} H(w)\right], \quad i=1,2, \cdot$.

General Formula to find a Residue

Assume $H(z)$ is a function of z and pole p is repeated m times

$$
H(z)=\left[\frac{x_{1}}{(z-p)}+\cdots \frac{x_{m}}{(z-p)^{m}}\right]
$$

General Formula to find a Residue

Assume $H(z)$ is a function of z and pole p is repeated m times

$$
H(z)=\left[\frac{x_{1}}{(z-p)}+\cdots \frac{x_{m}}{(z-p)^{m}}\right]
$$

The residue x_{i} for pole p of order m is given in general by

$$
x_{i}=\frac{1}{(m-i)!} \lim _{z \rightarrow p}\left[\frac{d^{m-i}}{d z^{m-i}}(z-p)^{m} H(z)\right], \quad i=1,2, \cdots m
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$

Example

Find the inverse z-transform for the system function

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$

Example

Find the inverse z-transform for the system function

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

We can start by doing one step of long division using the positive powers of z form to get

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$

Example

Find the inverse z-transform for the system function

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

We can start by doing one step of long division using the positive powers of z form to get

$$
\begin{array}{lllll}
z^{2} & -5 z & +6 & \left.\begin{array}{ccc}
1 & \\
z^{2} & -z & -1 \\
z^{2} & -5 z & +6 \\
\hline & & 4 z
\end{array}\right)-7
\end{array}
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$ Continued

$$
\begin{aligned}
H(z) & =1+\frac{4 z-7}{z^{2}-5 z+6}=1+\frac{4 z^{-1}-7 z^{-2}}{1-5 z^{-1}+6 z^{-2}} \\
& =1+z^{-1} \times \frac{4-7 z^{-1}}{1-5 z^{-1}+6 z^{-2}}
\end{aligned}
$$

Notice that now we have an expression where $N<M$ as desired.

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$ Continued

$$
\begin{aligned}
H(z) & =1+\frac{4 z-7}{z^{2}-5 z+6}=1+\frac{4 z^{-1}-7 z^{-2}}{1-5 z^{-1}+6 z^{-2}} \\
& =1+z^{-1} \times \frac{4-7 z^{-1}}{1-5 z^{-1}+6 z^{-2}}
\end{aligned}
$$

Notice that now we have an expression where $N<M$ as desired.
Using partial fractions we can write

$$
H(z)=1+z^{-1} \times\left(\frac{r_{1}}{1-2 z^{-1}}+\frac{r_{2}}{1-3 z^{-1}}\right)
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]$ Continued

$$
\begin{aligned}
H(z) & =1+\frac{4 z-7}{z^{2}-5 z+6}=1+\frac{4 z^{-1}-7 z^{-2}}{1-5 z^{-1}+6 z^{-2}} \\
& =1+z^{-1} \times \frac{4-7 z^{-1}}{1-5 z^{-1}+6 z^{-2}}
\end{aligned}
$$

Notice that now we have an expression where $N<M$ as desired.
Using partial fractions we can write

$$
H(z)=1+z^{-1} \times\left(\frac{r_{1}}{1-2 z^{-1}}+\frac{r_{2}}{1-3 z^{-1}}\right)
$$

$r_{1}=-1$ and $r_{2}=5$.

$$
h_{1}[n]=\delta[n]-2^{n-1} u[n-1]+5 \times 3^{n-1} u[n-1]
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method (Ex. 7.14)

1 Consider case when $N=M$

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method (Ex. 7.14)

1 Consider case when $N=M$

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

2 Express $H(z)$ in terms of positive powers of z

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method (Ex. 7.14)

1 Consider case when $N=M$

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

2 Express $H(z)$ in terms of positive powers of z
3 Now obtain a new system function:

$$
H^{\prime}(z)=\frac{H(z)}{z}=\frac{B(z)}{z A(z)}
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method (Ex. 7.14)

1 Consider case when $N=M$

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

2 Express $H(z)$ in terms of positive powers of z
3 Now obtain a new system function:

$$
H^{\prime}(z)=\frac{H(z)}{z}=\frac{B(z)}{z A(z)}
$$

4 This ensures that that $N<M$.

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method (Ex. 7.14)

1 Consider case when $N=M$

$$
H(z)=\frac{1-z^{-1}-z^{-2}}{1-5 z^{-1}+6 z^{-2}}=\frac{z^{2}-z-1}{z^{2}-5 z+6}, \quad|z|>3
$$

2 Express $H(z)$ in terms of positive powers of z
3 Now obtain a new system function:

$$
H^{\prime}(z)=\frac{H(z)}{z}=\frac{B(z)}{z A(z)}
$$

4 This ensures that that $N<M$.
5 Proceed with partial fractions on $H^{\prime}(z)=H(z) / z$.

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

$$
\frac{H(z)}{z}=\frac{z^{2}-z-1}{z(z-2)(z-3)}, \quad|z|>3
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

$$
\begin{aligned}
\frac{H(z)}{z} & =\frac{z^{2}-z-1}{z(z-2)(z-3)}, \quad|z|>3 \\
& =\frac{r_{1}}{z}+\frac{r_{2}}{z-2}+\frac{r_{3}}{z-3}
\end{aligned}
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

$$
\begin{aligned}
\frac{H(z)}{z} & =\frac{z^{2}-z-1}{z(z-2)(z-3)}, \quad|z|>3 \\
& =\frac{r_{1}}{z}+\frac{r_{2}}{z-2}+\frac{r_{3}}{z-3}
\end{aligned}
$$

We have

$$
r_{1}=\left.H(z)\right|_{z=0}=-1 / 6
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

$$
\begin{aligned}
\frac{H(z)}{z} & =\frac{z^{2}-z-1}{z(z-2)(z-3)}, \quad|z|>3 \\
& =\frac{r_{1}}{z}+\frac{r_{2}}{z-2}+\frac{r_{3}}{z-3}
\end{aligned}
$$

We have

$$
r_{1}=\left.H(z)\right|_{z=0}=-1 / 6
$$

and

$$
r_{2}=\left.(z-2) \frac{H(z)}{z}\right|_{z=2}=-0.5
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

$$
\begin{aligned}
\frac{H(z)}{z} & =\frac{z^{2}-z-1}{z(z-2)(z-3)}, \quad|z|>3 \\
& =\frac{r_{1}}{z}+\frac{r_{2}}{z-2}+\frac{r_{3}}{z-3}
\end{aligned}
$$

We have

$$
r_{1}=\left.H(z)\right|_{z=0}=-1 / 6
$$

and

$$
r_{2}=\left.(z-2) \frac{H(z)}{z}\right|_{z=2}=-0.5
$$

and

$$
r_{3}=\left.(z-3) \frac{H(z)}{z}\right|_{z=3}=5 / 3
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

Therefore we can write

$$
\frac{H(z)}{z}=-\frac{1 / 6}{z}-\frac{0.5}{z-2}+\frac{5 / 3}{z-3}
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

Therefore we can write

$$
\frac{H(z)}{z}=-\frac{1 / 6}{z}-\frac{0.5}{z-2}+\frac{5 / 3}{z-3}
$$

or

$$
H(z)=-1 / 6-\frac{0.5 z}{z-2}+\frac{5 z / 3}{z-3}=-1 / 6-\frac{0.5}{1-2 z^{-1}}+\frac{5 / 3}{1-3 z^{-1}}
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

Therefore we can write

$$
\frac{H(z)}{z}=-\frac{1 / 6}{z}-\frac{0.5}{z-2}+\frac{5 / 3}{z-3}
$$

or
$H(z)=-1 / 6-\frac{0.5 z}{z-2}+\frac{5 z / 3}{z-3}=-1 / 6-\frac{0.5}{1-2 z^{-1}}+\frac{5 / 3}{1-3 z^{-1}}$
and we can write

$$
h_{2}[n]=-\frac{1}{6} \delta[n]-0.5 \times 2^{n} u[n]+\frac{5}{3} \times 3^{n} u[n]
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

The methods gave us

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

The methods gave us

$$
h_{1}[n]=\delta[n]-2^{n-1} u[n-1]+5 \times 3^{n-1} u[n-1]
$$

Case $\operatorname{deg}\left[B\left(z^{-1}\right)\right] \geq \operatorname{deg}\left[A\left(z^{-1}\right)\right]:$ Alternative Method Continued

The methods gave us

$$
\begin{aligned}
& h_{1}[n]=\delta[n]-2^{n-1} u[n-1]+5 \times 3^{n-1} u[n-1] \\
& h_{2}[n]=-\frac{1}{6} \delta[n]-0.5 \times 2^{n} u[n]+\frac{5}{3} \times 3^{n} u[n]
\end{aligned}
$$

The two solutions are identical.

Transient \& Steady State Response of an FIR Filter

$$
h[n]=\sum_{n=0}^{N-1} x[n] h[n-k]
$$

Transient \& Steady State Response of an FIR Filter

$$
h[n]=\sum_{n=0}^{N-1} x[n] h[n-k]
$$

1 FIR is always stable, bounded-input bounded-output (BIBO)

Transient \& Steady State Response of an FIR Filter

$$
h[n]=\sum_{n=0}^{N-1} x[n] h[n-k]
$$

1 FIR is always stable, bounded-input bounded-output (BIBO)

2 Transient response for times $0 \leq n<N-1$

Transient \& Steady State Response of an FIR Filter

$$
h[n]=\sum_{n=0}^{N-1} x[n] h[n-k]
$$

1 FIR is always stable, bounded-input bounded-output (BIBO)

2 Transient response for times $0 \leq n<N-1$

3 Steady-state response for $n \geq N-1$

Transient, Steady State Response of an IIR Filter

Assume

$y[n]=a y[n-1]+b x[n]$

$$
Y(z)=\frac{b}{1-a z^{-1}} \times X(z),
$$

$$
|z|>a
$$

Transient, Steady State Response of an IIR Filter

Assume

$y[n]=a y[n-1]+b x[n]$

$$
Y(z)=\frac{b}{1-a z^{-1}} \times X(z), \quad|z|>a
$$

Assume

$$
x[n]=e^{j \widehat{\omega}_{0} n} u[n] \quad X(z)=\frac{1}{1-e^{i \hat{\omega}_{0} Z^{-1}}}, \quad|z|>1
$$

Transient, Steady State Response of an IIR Filter

Assume

$y[n]=a y[n-1]+b x[n]$

$$
Y(z)=\frac{b}{1-a z^{-1}} \times X(z), \quad|z|>a
$$

Assume

$$
x[n]=e^{j \omega_{0} n} u[n] \quad X(z)=\frac{1}{1-e^{j \omega_{0} z^{-1}}}, \quad|z|>1
$$

We have
$Y(z)=\frac{b}{\left(1-a Z^{-1}\right)\left(1-e^{i \hat{\omega}_{0}} z^{-1}\right)}$

Transient, Steady State Response of an IIR Filter

Assume

$y[n]=a y[n-1]+b x[n]$

$$
Y(z)=\frac{b}{1-a z^{-1}} \times X(z), \quad|z|>a
$$

Assume

$$
x[n]=e^{j \omega_{0} n} u[n] \quad X(z)=\frac{1}{1-e^{j \hat{\omega}_{0} z^{-1}}}, \quad|z|>1
$$

We have
$Y(z)=\frac{b}{\left(1-a z^{-1}\right)\left(1-e^{i \hat{\omega}_{0}} z^{-1}\right)} \quad y[n]=r_{1} a^{n} u[n]+r_{2} e^{j \hat{\omega}_{0} n} u[n]$

