- Permission is granted to copy and distribute this slide set for educational purposes only, provided that the complete bibliographic citation and following credit line is included: "Hardware Security Slides by F. Gebali.
 ©2024. Gebali".
- Permission is granted to alter and distribute this material provided that the following credit line is included: "Adapted from Hardware Security Slides by F. Gebali. ©2024. Gebali"
- 3 This material may not be copied or distributed for commercial purposes without express written permission of the copyright holder.

Intro

ECE 448/548 Cyber-System Security DRAM PUF

F. Gebali

EOW 433

Office Phone: 250-721-6509

https://ece.engr.uvic.ca/~fayez/

	DRAM	Setup	Model	DRAM PUF	SNR
Outline					

Intro DRAM Setup Model DRAM PUF	SNR
---------------------------------	-----

Introduction

- **1** DRAM is present in many ICs including IoT devices
- 2 Using DRAM as a PUF relies on one of two things:
 1 Retention-based DRAM PUF (cell leakage)
 - 2 Row hammer-based DRAM PUF
- 3 The response of a DRAM PUF is noisy due to static and dynamic noise sources
- 4 DRAM PUF response has low entropy and not suitable for generating cryptographic key by itself
- The DRAM response is very much time-dependent due to leakage

Intro DRAM Setup Model DRA

DRAM Architecture

DRAM	Setup	Model	DRAM PUF	SNR

Basic DRAM Structure

Intro DRAM Setup Model DRAM PUF SNR
Basic DRAM Cell Structure

DRAM Cell Charge Leakage Model

DRAM

Charge Leakage Equivalent Circuit Model

$$\mathbf{v}(t) = \mathbf{V}_{DD} - \frac{\mathbf{I}_{L}}{\mathbf{C}} \times t$$

	DRAM	Setup	Model	DRAM PUF	SNR
Cell Voltag	e Decay				

- 1 Need to determine t₀
- 2 Need to design a timing trigger circuit

Intro DRAM Setup Model DRAM PUF SNR

Setting Up Sampling Strategy

- 1 It is very important to know the correct time t_0 to sample the bit lines of a give word.
- 2 One approach is to design a timing circuit to sample bit lines at time t_0
- 3 Another approach is to select a certain reference bit line to sample the voltage value and trigger when this bit line reached the value $0.5V_{DD}$.
- 4 At any rate, we need to be aware of effects of aging, temperature, supply voltage fluctuations, etc.

Intro DRAM Setup Model DRAM PUF SN

DRAM PUF Statistical Model

There are two random processes at play here: static and dynamic noise sources.

- 1 Random process variations (RPV)
- 2 Random CMOS transistor noise
- These factors give the device unique, albeit noisy, ID or biometric
- 4 RPV is static (slowly-varying) and unique to each bit
- 5 CMOS transistor noise is dynamic and common to all devices

Digital value of a cell after precharge depends on analog effects:

- 1 Choice of t_0 and v_r
- 2 Transistor threshold voltages (V_{th})
- 3 area of nMOS transistor
- 4 Parasitic capacitive capacitance
- 5 Sensitivity of the sense amplifier
- 6 Parasitic capacitances of the bit lines

- 1 Assume *a* is probability that a cell has value 1 after sampling trigger
- 2 Assume b = 1 a is probability that a cell has value 0 after reset
- **3** Ideally the sampling v_r and t_0 are chosen so we have

 $a_i = b_i = 0.5$

Intro DRAM Setup Model DRAM PUF SNR

RPV as a Biased Gaussian Distribution

$$f_{A_p}(a) = rac{1}{\sigma_p \sqrt{2\pi}} e^{-(a_p - a_i)^2/2\sigma_p^2}$$

a is our random variable due to RPV with value

$$a_p = G(a_i, \sigma_p)$$

Intro DRAM Setup Model DRAM PUF SNR

CMOS Noise as a Gaussian Distribution

$$f_N(n) = \frac{1}{\sigma_n \sqrt{2\pi}} e^{-n^2/2\sigma_n^2}$$

n is our random variable due to CMOS noise with value

$$n = G(0, \sigma_n)$$

$$f_A(a) = \frac{1}{\sigma_n \sqrt{2\pi}} e^{-(a-a_p)^2/2\sigma_n^2}$$

a is our random variable due to RPV & CMOS noise with value

$$\boldsymbol{a} = \boldsymbol{G}(\boldsymbol{a}_{\boldsymbol{p}}, \sigma_{\boldsymbol{n}})$$

Intro DRAM Setup Model DRAM PUF

DRAM PUF Response

Under ideal sampling we would have our reference voltage given by:

$$\frac{V_{DD}}{2} = V_{DD} - \frac{I_0}{C_0} \times t_0$$

where I_0 and C_0 are the ideal values without RPV or noise. In other words we can write

$$t_0 = \frac{V_{DD}}{2} \times \frac{C_0}{I_0}$$

We can write actual values of I_L and C as:

$$I_L = I_0(1 + \alpha_p + \alpha_n) \qquad \qquad C = C_0(1 + \beta_p + \beta_n)$$

1 α_p and α_n are the effects on leakage current due to RPV and CMOS noise.

2 Similar definitions for β_p and β_n

	DRAM	Setup	Model	DRAM PUF	SNR
Decay Vol	tage Model				

At ideal sampling time, we can write $v(t_0)$ in the form

$$\begin{aligned} v(t = t_0) &= V_{DD} - \frac{I_L}{C} \times \frac{V_{DD}}{2} \times \frac{C_0}{I_0} \\ &= V_{DD} - \frac{V_{DD}}{2} \times \frac{1 + \alpha_p + \alpha_n}{1 + \beta_p + \beta_n} \end{aligned}$$

In absence of any noise, $v(t_0) = V_{DD}/2$, as expected.

Intro DRAM Setup Model DRAM

SNR

Signal-to-Noise Ratio (SNR) for DRAM PUF

- When a_p = a_i the SRAM cell value has equal probability of being 1 or 0 and this value totally depends on the effects of CMOS noise (⇒ low SNR).
- 2 $a_i < a_p \le 1$ the SRAM cell value is biased to be 1 with little effects from CMOS noise especially when $a_p \rightarrow 1$.
- 3 $0 \le a_p < a_i$ the SRAM cell value is biased to be 0 with little effects from CMOS noise especially when $a_p \rightarrow 0$.

	DRAM	Setup	Model	DRAM PUF	SNR
SNR De	finition				

$$SNR = 10 \log \left[rac{(a_p - a_i)^2 + \sigma_n^2}{\sigma_n^2}
ight]$$

	DRAM	Setup	Model	DRAM PUF	SNR
Minimun	n SNR: <i>a_p =</i>	= 0.5			

$$SNR_{min} = 10 \log \left(\frac{\sigma_n^2}{\sigma_n^2} \right)$$

= 0

	DRAM	Setup	Model	DRAM PUF	SNR
Maximu	m SNR: a _n =	$= 0 \text{ or } a_n = 1$			

$$SNR_{max} = 10 \log \left(\frac{a_i^2 + \sigma_n^2}{\sigma_n^2} \right)$$