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Introduction
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Intro
DRAM PUFs

El DRAM is present in many ICs including loT devices

H Using DRAM as a PUF relies on one of two things:
El Retention-based DRAM PUF (cell leakage)

B Row hammer-based DRAM PUF

E The response of a DRAM PUF is noisy due to static and
dynamic noise sources

B DRAM PUF response has low entropy and not suitable for
generating cryptographic key by itself

H The DRAM response is very much time-dependent due to
leakage
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DRAM

DRAM Architecture
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DRAM
Basic DRAM Structure
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DRAM
Basic DRAM Cell Structure
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DRAM
DRAM Cell Charge Leakage Model
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DRAM
Charge Leakage Equivalent Circuit Model
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DRAM
Cell Voltage Decay
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El Need to determine f
H Need to design a timing trigger circuit
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Setting Up Sampling Strategy
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SET)
Setting Up Sampling Strategy

Kl It is very important to know the correct time #, to sample
the bit lines of a give word.

K One approach is to design a timing circuit to sample bit
lines at time f

E Another approach is to select a certain reference bit line to
sample the voltage value and trigger when this bit line
reached the value 0.5Vpp.

A At any rate, we need to be aware of effects of aging,
temperature, supply voltage fluctuations, etc.
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DRAM PUF Statistical Model
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Model
DRAM PUF Statistical Model

There are two random processes at play here: static and
dynamic noise sources.

El Random process variations (RPV)
H Random CMOS transistor noise

E These factors give the device unique, albeit noisy, ID or
biometric

B RPV is static (slowly-varying) and unique to each bit

H CMOS transistor noise is dynamic and common to all
devices
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Model
Effect of Random Variations

Digital value of a cell after precharge depends on analog
effects:

El Choice of t and v,

H Transistor threshold voltages (Vi)
H area of nMOS transistor

B Parasitic capacitive capacitance
B Sensitivity of the sense amplifier

@ Parasitic capacitances of the bit lines
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Model
Cell Value Probabilities

El Assume ais probability that a cell has value 1 after
sampling trigger

H Assume b = 1 — aiis probability that a cell has value 0 after
reset

HE Ideally the sampling v, and t, are chosen so we have

a,-:b,- =0.5
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Model

RPV as a Biased Gaussian Distribution

1

opV2m

iay(a) = — —e~(e-a)27

ais our random variable due to RPV with value

ap = G(ah Up)
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Model
CMOS Noise as a Gaussian Distribution

() = ——e~/2F
n is our random variable due to CMOS noise with value

n= G(O, O'n)
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Model
Combining RPV & CMOS Noise

fA(a) — e—(a—ap)2/2a;°-,

onVen

ais our random variable due to RPV & CMOS noise with value

a= G(ap,on)
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DRAM PUF

DRAM PUF Response
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DRAM PUF
Ideal Sampling

Under ideal sampling we would have our reference voltage
given by:

Vbp lo

PP Vep — —

5 oo~ & x o
where Iy and Cy are the ideal values without RPV or noise.
In other words we can write
Voo _ Co

tOZTXK
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DRAM PUF
Decay Model in Presence of Noise

We can write actual values of /;, and C as:

It = (1 +ap+ an) C = Co(1+ fBp+ fn)

E o, and o, are the effects on leakage current due to RPV
and CMOS noise.

H Similar definitions for 5, and 3,
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DRAM PUF
Decay Voltage Model

At ideal sampling time, we can write v(fy) in the form

/ V
V(tzto) = VD —éngX?OO
VDDX1+ap+an
2 14 PBp+6n

= Vbp—

In absence of any noise, v(fy) = Vpp/2, as expected.
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Signal-to-Noise Ratio (SNR)
for DRAM PUF
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Signal-to-Noise Ratio (SNR) for DRAM PUF

El When g, = a; the SRAM cell value has equal probability of
being 1 or 0 and this value totally depends on the effects of
CMOS noise (= low SNR).

H a; < ap < 1 the SRAM cell value is biased to be 1 with little
effects from CMOS noise especially when g, — 1.

H 0 < ap < a; the SRAM cell value is biased to be 0 with little
effects from CMOS noise especially when a, — 0.
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SNR Definition

o

a2 2
SNR:10Iog[(ap 2) ””}
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Minimum SNR: a, = 0.5
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Maximum SNR: a, = 0 or a, = 1

2 2
ai +O'n

o

SNRmaX — 1 0 |0g
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