Introduction		Atacks	Types	Lifecycle	Conflict
Permission to	o Use Cond	ditions			

- Permission is granted to copy and distribute this slide set for educational purposes only, provided that the complete bibliographic citation and following credit line is included: "Hardware Security Slides by F. Gebali. ©2024. Gebali".
- Permission is granted to alter and distribute this material provided that the following credit line is included: "Adapted from Hardware Security Slides by F. Gebali. ©2024. Gebali"
- 3 This material may not be copied or distributed for commercial purposes without express written permission of the copyright holder.

Introduction	Security	Atacks	Types	Lifecycle	Conflic
	ECE 448/5	48 Cyber	-System	Security	
		Introdu	ction		

F. Gebali

EOW 433

Office Phone: 250-721-6509

https://ece.engr.uvic.ca/~fayez/

©Fayez Gebali, 2024

Introduction	Atacks	Types	Lifecycle	Conflict
Outline				

1 Introduction

2 Security

3 Atacks

5 Lifecycle

Introduction		Atacks	Types	Lifecycle	Conflict
--------------	--	--------	-------	-----------	----------

Introduction

Building Automation

Manufacturing

Government

Transportation

Entertainment

Education

Agriculture

Finance

Healthcare

©Fayez Gebali, 2024

 Introduction
 Security
 Atacks
 Types
 Lifecycle
 Conflict

 Case of 5G/6G & Wi-Fi: IoV, V2V, V2I, V2X, etc.
 V2X, etc.
 Conflict
 Conflict

|--|--|

Security

The Different Facets of Hardware Security

- Privacy (Data Hiding): Encryption & Decryption
- 2 Digital signature (non repudiation)
- 3 Authentication: Data, Humans, Hardware
- 4 Key management: generation, exchange, storage
- 5 Random number generation: PRNG, TRNG

Introduction	Security	Atacks	Types	Lifecycle	Conflict			
Herdurere		hedded Cur						
Hardware Security: Embedded Systems								

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Motivation	to Study Ha	rdware Secu	urity		

- **1** Embedded systems are in virtually all products.
- 2 Hardware was/is assumed a root of trust in a system.
- 3 Entropy source in random number generators
- 4 ICs are found in cybersystems:
 - health care
 - 2 transportation
 - 3 industrial control (water treatment plants)
 - 4 power management
 - 5 military
 - 6 financial institutions
 - 7 Communications

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Different M	leanings of H	Hardware Se	curity		

- Dedicated system that monitors network traffic (e.g. firewall)
- 2 Hardware security module (cryptoprocessor) in charge of doing: encryption; decryption; hashing; key managment
- 3 Critical infrastructure security (military, health, commerce, power)
- IoT devices that must be protected

 Introduction
 Security
 Atacks
 Types
 Lifecycle
 Conflict

 Prevalence of IoT Infrastructure:
 Biden-Harris Announcement

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Traditional	/l egacy Indi	istrial Secu	rity Measure	25	

- 1 Providing physical security such as access cards
- 2 Access control password protection for secured device
- 3 Install firewalls around secured device
- 4 Equipment security

Introduction	Security	Atacks	Types	Lifecycle	Conflict
IoT Attack	Surface				

- 2 Communication channels
- 3 Applications and software

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Computer	Security				

- Network security: Attacks, availability, reliability
- Software security: Attacks, reliability
- Data security: authentication, availability, confidentiality, integrity, non-repudiation, utility
- Hardware security: Attacks, protection, trust

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Why Encry	/pt Data?				

- 1 Cryptography is essential for security
- 2 Protection against hacking
- 3 Regulations demand it for government, health care, commerce

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Challenges	of IoT Key	Management	1		

1 Generating many strong secret keys

2 Keeping those secret keys secret!

3 Sharing those keys with communicating entities

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Ideal Solut	ion to Key N	lanagement			

 Device has a set of strong root keys that are protected within the security boundary and not permanently stored

2 Device can generate many derived secret keys with different contexts (length, user, etc.)

3 Protect all keys

4 All of the above point to using PUFs

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Three Type	es of Securit	y Algorithms	S		

1 Symmetric (secret key cryptography): AES, DES

- Encrypt and decrypt using same key
- 2 Used in privacy and confidentiality
- 2 Asymmetric (public key cryptography): RSA, ECC
 - 1 Two related keys: one public, other secret
 - 2 Used for signatures, authentication, non-repudiation & key exchange

3 Hashing: SHA-1, SHA-3

- Compute a "cryptographic checksum" or "message digest" of messages or files
- 2 Used for integrity & authentication

 Introduction
 Security
 Atacks
 Types
 Lifecycle
 Conflict

 Symmetric Encryption:
 Same key for Encoding and Decoding
 Conflict
 Conflict

Introduction Security Atacks Types Lifecycle Conflict
Asymmetric Encryption: K_s & K_p

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Security Th	nreats				

1 Storage and communication of confidential information

2 Management and control of important equipment

3 Critical security applications and systems

Introduction	Security	Atacks	Types	Lifecycle	Conflict
CIA Triad [1]					

1 Confidentiality (privacy)

2 Integrity

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Security E	lements (mo	stly data and	d actors)		

- **1** Authentication: Ensure entity is the one that it claims to be
- 2 Availability: Data can be accessed by authorized users
- 3 Confidentiality/Access control: allow only authorized users
- 4 Integrity: received data is exactly sent data
- 5 Non-repudiation: prevent denial by a user
- 6 Utility: Data is protected and can be recovered when needed

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Hardware F	Role in Secu	uring Softwar	re Stack		

- Hardware design, validation & implementation must ensure secure operation of S/W stack
- Protect sensitive assets stored in hardware from malicious S/W & network activities
- 3 Separation between multiple user applications
- Isolate secure and insecure data & code with respect to:
 Confidentiality: ability to observe data
 - 2 Integrity: ability to change it
 - 3 Availability: ability to access data/code by rightful owner

	Introduction	Security	Atacks	Types	Lifecycle	Confli
--	--------------	----------	--------	-------	-----------	--------

Hardware Attacks

Introduction		Atacks	Types	Lifecycle	Conflict
Scope of F	lardware Sec	curity & Trus	t		

1 Hardware security removes H/W vulnerability to attacks

2 Hardware security also supports S/W & system security

 Hardware trust is about removing untrusted entities during H/W lifecycle

Introduction		Atacks	Types	Lifecycle	Conflict
Scope of H	lardware Att	acks			

Hardware attack types

2 Hardware attack avoidance

3 Hardware attack detection

4 Hardware attack countermeasures

Introduction	Atacks	Types	Lifecycle	Confl

Hardware Attack Types

Introduction		Atacks	Types	Lifecycle	Conflict
Hardware A	Attack Types				

1 Piracy: cloning, counterfeiting, overproduction & recycling

- 2 Fault injection (FIA) [2] (e.g. Fuzzing or zero-day attacks)
- 3 Hardware Trojans (HW)
- 4 Reverse engineering (IP theft)
- 5 Attacks utilizing design for test (DFT) features
- 6 Side-channel attack (power, timing, radiation, etc.)

7 Tampering

Introduction	Atacks	Types	Lifecycle	Coi

Hardware IC Lifecycle/Supply Chain

Introduction	Security	Atacks	Types	Lifecycle	Conflict
IC Fabricati	on Steps				

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Another Vi	ew of IC Fab	rication Ste	ns		

Introduction		Atacks	Types	Lifecycle	Conflict
ICs Supply	v Chain & Po	tential Attac	ks [3]		

Introduction	Security	Atacks	Types	Lifecycle	Conflict
IC Masking	i Sten: Nano	meter resolu	ution		

Introduction Security Atacks Types Lifecycle Conflict
Advanced CMOS IC Layers

©Fayez Gebali, 2024

Introduction	Atacks	Types	Lifecycle	Conflict
Advanced				

Advanced CMOS IC Layers: Dual Well Technology

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Hardware	ifecycle: He	ardwara Atta	ck Opportu	nities	

- 1 Hardware design specification & 3rd party IP (3PIP)
- 2 Validation
- 3 Physical layout & mask fabrication
- 4 IC fabrication at silicon foundry (fab house)
- 5 IC test
- 6 IC packaging
- 7 System assembly
- 8 Operation in field
- 9 Firmware updates

Introduction		Atacks	Types	Lifecycle	Conflict
Hardware A	Attack Enabl	ers			

- 1 PCB outsourcing & contain ICs from many suppliers
- 2 IC fabrication outsourcing (overproduction)
- 3 IC designed using 3-rd party IPs (3PIP)
- IC packaged by another company
- **5** IC distribution (recycle)

bductio

Conflict of Hardware Testing and Hardware Attacks

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Conflict of	Hardware Te	esting and H	lardware At	tacks	

 Design for test (DFT) is based on controllability and observability

2 Scan chain

- Boundary scan (JTAG)
- 4 Built-in self test (BIST)

 Introduction
 Security
 Atacks
 Types
 Lifecycle
 Conflict

 Joint Test Action Group (JTAG) Details

Introduction		Atacks	Types	Lifecycle	Conflict
Hardware 8	& Trust				

- Many occasions for attack during lifecycle (design, fabrication, test, etc.)
- Hardware is vulnerable to side-channel, Trojan, tampering & piracy
- 3 Firmware updates

Introduction		Atacks	Types	Lifecycle	Conflict
Security A	ttacks				

- 1 Passive attacks: traffic analysis, side-channel attack
- Active attacks: tampering, counterfeit, reverse engineering, Trojans

Introduction		Atacks	Types	Lifecycle	Conflict
Motivation	for Studying	g Hardware A	Attacks		

- Hardware Trojans are malicious alterations to the circuit during design or fabrication.
- 2 Trojan can destroy system or leak information.
- Globalization of semiconductor design and fabrication introduces vulnerabilities.
- 4 Threats to military, transportation, financial, and civilian systems.

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Past Incider	nts				

- 1 European μ p is being used in military systems and maker built backdoor to disable the system.
- Processor test usually confined to test its functionality only. Extra non-interfering circuitry won't show up.
- 3 Attacks originate from countries that supplied the chip.
- 4 JTAG port contains undocumented commands
- 5 How can you test for "unspecified functions"?

Introduction		Atacks	Types	Lifecycle	Conflict
What Can a	a Trojan Do?				

2 Backdoor

- 3 The action could be triggered by:
 - Issuing a command
 - 2 Rare combination of signals
 - 3 After a time period

4 At random

Introduction		Atacks	Types	Lifecycle	Conflict
Characteri	stics of a Kil	I Switch			

- **1** Extra area or logic is added to the design.
- 2 Extra chip delay
- 3 Extra power consumption
- 4 The VHDL source code is modified.
- 5 Modify IC layout, doping, or gate oxide thickness

Hardwara Atta	ok Vootore:	Attook Appr	oachac		
Introduction	Security	Atacks	Types	Lifecycle	Conflict

1 Side-channel

- 2 Trojans
- 3 IP piracy
- 4 Processor tampering

Introduction	Security	Atacks	Types	Lifecycle	Conflict
Hardware	Attack Surfac	ce: Attack T	vpes		

- 1 Chip-level attacks: reverse engineering, cloning, Trojans, side-channel attacks, counterfeit
- 2 PCB-level attacks: tampering, piracy, JTAG ports, Trojans

- [1] W. Chai, "What is the CIA triad (confidentiality, integrity and availability)?" https://www.techtarget.com/whatis/definition/ Confidentiality-integrity-and-availability-CIA, 2023.
- [2] B. Stevens, "Fault injection attacks: A growing plague," https://www.eeweb.com/profile/bstevens/articles/ fault-injection-attacks-a-growing-plague, Mar. 2019.
- [3] M. Tehranipoor, H. Salmani, and X. Zhang, *Integrated Circuit Authentication: Hardware Trojans and Counterfeit Detection*. Springer, 2014.