Faculty of Engineering

COURSE OUTLINE

ELEC 260 — Continuous-Time Signals and Systems
Fall 2017

Instructor:
Dr. Michael Adams
Office: EOW 311
Email: mdadams@ece.uvic.ca
Web: http://www.ece.uvic.ca/~mdadams

Course Web Site:
Home Page: http://www.ece.uvic.ca/~mdadams/courses/elec260
Username: elec260
Password: as announced during the first lecture

Office Hours:
As announced during the lectures and posted on the course web site.

Lectures:
Sections: A01 (CRN 11234), A02 (CRN 11235)
Time/Location: Mondays and Thursdays 11:30–12:50 in DTB A104

Tutorials:
Section: T01 (CRN 11236)
Mondays 13:30–14:20 in ELW B215

Section: T02 (CRN 11237)
Fridays 13:30–14:20 in ELW B215

Section: T03 (CRN 11238)
Mondays 14:30–15:20 in ELW B215

Description and Objectives:
This course provides a basic introduction to continuous-time signals and systems. The course is intended to teach students mathematical techniques for the design and analysis of systems.

Learning Outcomes:
Upon completion of the course, students should be able to:

- define various properties of systems (such as linearity, time invariance, causality, memory, invertibility, and BIBO stability) and determine if a system has each of these properties
- identify basic properties of convolution and compute the convolution of functions
- explain the significance of convolution in the context of LTI systems
- state the basic properties of the Fourier and Laplace transforms and use these properties in problem solving
- compute forward/inverse Fourier and Laplace transforms of functions and find Fourier series representations of periodic functions
- use the Fourier transform and/or Laplace transform to design and analyze simple systems (e.g., filtering/equalization systems, amplitude modulation systems, and feedback control systems)
- use the Laplace transform to solve differential equations
- demonstrate competency in working with both time- and frequency-domain representations of signals and systems
- explain the relationships amongst the various representations of LTI systems (e.g., differential equation, frequency response, transfer function, impulse response)
- identify basic types of frequency-selective filters (i.e., lowpass, highpass, and bandpass)
- explain the fundamentals of sampling and the implications of the sampling theorem
- use MATLAB effectively for problem solving

Topics:
1. Signals and systems (6 hours): basic definitions/concepts, review of complex analysis, signal properties, system properties, basic signal transformations, elementary signals, signal representations using elementary signals.
2. Linear time-invariant (LTI) systems (6 hours): convolution, properties of convolution, representation of signals using impulses, impulse response and convolution representation of LTI systems, properties of LTI systems, response of LTI systems to complex exponential signals.
3. Fourier series (5 hours): Fourier series definition, finding Fourier series representations of signals, convergence of Fourier series, properties of Fourier series, Fourier series and frequency spectra, Fourier series and LTI systems.
4. Fourier transform (8 hours): Fourier transform definition, convergence of Fourier transform, Fourier transform properties, Fourier transform of periodic signals, frequency spectra of signals, frequency response of LTI systems, applications.
5. Laplace transform (8 hours): Laplace transform definition, relationship between Laplace transform and Fourier transform, region of convergence, finding the inverse Laplace transform, properties of the Laplace transform, analysis of systems using the Laplace transform, solving differential equations using the unilateral Laplace transform.

Required Texts/Materials:
The following references are required for the course:
1. Textbook (Espresso book machine, print on demand; available from University Bookstore):
2. Textbook Lecture Slides (Espresso book machine, print on demand; available from University Bookstore):

Optional Texts/Materials:
The following textbook can be considered as a source of additional explanations and extra worked-through example problems:

Other Important Documents Available from the Course Web Site:
1. Course-Materials Bug-Bounty Program Handout (See section titled “Course-Materials Bug-Bounty Program”)
2. Course-Materials Errata Handout (See section titled “Course-Materials Bug-Bounty Program”)
3. Optional Textbook Handout (See section titled “Optional Texts/Materials”)
4. Assignments Handout (See section titled “Assignments”)

Importance of Email:
Important course announcements are often sent to students via email. Therefore, students are responsible for checking their email regularly.

Lecture Attendance:
Students are required to attend all lectures in the course. If a student is unable to attend a lecture due to illness or some other reason, the student is solely responsible for any information missed (including any course-related announcements). Any student who does not attend lectures regularly places themselves at a very serious disadvantage in the course.
Assessment:

10% Assignments† (equally weighted)
40% Midterm Exams‡ (two of equal weight, scheduled for Monday Oct. 16 and Thursday Nov. 16)
50% Final Exam‡

Course-Materials Bug-Bounty Program Bonus*: 1% (of course mark)

*Note: See the handout titled “Course-Materials Bug-Bounty Program” for more details.

†Note: The submission deadlines for assignments will be posted on the course web site. Assignments constitute an essential component of this course. Failure to complete at least half of the assignments each with a mark of at least 50% will result in the student being refused entry to the final examination and an N grade being awarded for the course. Late assignments will not be accepted and will receive a mark of zero.

‡Note: All exams are closed book. Calculators are not permitted in exams.

Maintenance of Marks:

Course marks are maintained (securely) on a server external to the University. Typically, a service like Google Docs/Sheets is used. Only the instructor and markers for the course have access to this information. If any student has concerns about this practice, they should contact the instructor as soon as possible during the first week of the term.

Percentage to Letter-Grade Conversion:

The final grade obtained from the above marking scheme for the purpose of GPA calculation will be based on the percentage-to-grade point conversion table as listed in the current Undergraduate Calendar. See http://web.uvic.ca/calendar2017-09/undergrad/info/regulations/grading.html.

Supplemental Exams:

There will be no supplemental examination for this course.

Note to Students (Regarding Handling Concerns About Course):

Students who have issues with the conduct of the course should discuss them with the instructor first. If these discussions do not resolve the issue, then students should feel free to contact the Chair of the Department by email or the Chair’s Secretary to set up an appointment.

Accommodation of Religious Observance:

See http://web.uvic.ca/calendar2017-09/general/policies.html.

Policy on Inclusivity and Diversity:

See http://web.uvic.ca/calendar2017-09/general/policies.html.

Standards of Professional Behaviour:

You are advised to read the Faculty of Engineering document Standards for Professional Behaviour, which contains important information regarding conduct in courses, labs, and in the general use of facilities. See http://www.uvic.ca/engineering/assets/docs/professional-behaviour.pdf.

Cheating, plagiarism and other forms of academic fraud are taken very seriously by both the University and the Department. You should consult entry in current Undergraduate Calendar for the UVic policy on academic integrity. See http://web.uvic.ca/calendar2017-09/undergrad/info/regulations/academic-integrity.html.

Equality:

This course aims to provide equal opportunities and access for all students to enjoy the benefits and privileges of the class and its curriculum and to meet the syllabus requirements. Reasonable and appropriate accommodation will be made available to students with documented disabilities (physical, mental, learning) in order to give them the opportunity to successfully meet the essential requirements of the course. The accommodation will not alter academic standards or learning outcomes, although the student may be allowed to demonstrate knowledge and skills in a different way. It is not necessary for you to reveal your disability and/or confidential medical information to the course instructor. If you believe that you may require accommodation, the course instructor can provide you with information about confidential resources on campus that can assist you in arranging for appropriate accommodation. Alternatively, you may want to contact the Resource Centre for
Students with a Disability located in the Campus Services Building. The University of Victoria is committed to promoting, providing, and protecting a positive, and supportive and safe learning and working environment for all its members.

Course Lecture Notes:
Unless otherwise noted, all course materials supplied to students in this course have been prepared by the instructor and are intended for use in this course only. These materials are not to be re-circulated digitally, whether by email or by uploading or copying to websites, or to others not enrolled in this course. Violation of this policy may in some cases constitute a breach of academic integrity as defined in the UVic Calendar.

Plagiarism Detection Tools:
Plagiarism detection software may be used to aid the instructor and/or teaching assistants in the review and grading of some or all student work.