
SENG 475 & ECE 596C, Summer 2024 2-1

2 Assignment 0 [Assignment ID: cpp_tools]

2.1 Preamble (Please Read Carefully)
Before starting work on this assignment, it is critically important that you carefully read Section 1 (titled “General
Information”) which starts on page 1-1 of this document.

2.2 Topics Covered
This assignment covers material primarily related to the following: software tools, C++ compiler, linker, CMake, Git.

2.3 Exercises
1. In this exercise, you will be creating a “remote” repository and then simulating the effects of two different users

working with this repository by utilizing two (local) cloned versions of the repository. To begin, select an empty
directory for use in this exercise. This directory will be henceforth denoted $TOP_DIR. In this exercise, you need to
perform the tasks listed below (in order). You should assume that the two simulated users involved in this exercise
do not know about the changes that each other is making. This implies that a user must attempt a push operation
(and have it fail) before they can know that their local copy of the repository is out of date with respect to the
remote.

(a) Create an empty bare Git repository in the directory $TOP_DIR/remote_repo.git to be used as a remote in
this exercise. This can be accomplished by typing:

cd $TOP_DIR
git init --bare remote_repo.git

(b) User 1. Clone the repository $TOP_DIR/remote_repo.git to the directory $TOP_DIR/repo_1. In the top-
level directory of the repository $TOP_DIR/repo_1, create a file words.txt with the following three lines of
text:

Delta
Echo
Foxtrot

Propagate the changes to the remote repository $TOP_DIR/remote_repo.git. [Hint: You will need to use
the following commands in order: git clone, git add, git commit, and git push.]

(c) User 2. Clone the repository $TOP_DIR/remote_repo.git to the directory $TOP_DIR/repo_2. In the
repository $TOP_DIR/repo_2, modify the file words.txt by inserting the following three lines prior to the
first line in the file:

Alpha
Bravo
Charlie

Propagate the changes to the remote repository $TOP_DIR/remote_repo.git. [Hint: You will need to use
the following commands in order: git clone, git add, git commit, and git push.]

(d) User 1. In the repository $TOP_DIR/repo_1, perform the following. Append the following lines to the file
words.txt:

Golf
Hotel

Propagate the changes to the remote repository $TOP_DIR/remote_repo.git. [Hint: You will need to use
the following commands (some possibly more than once): git add, git commit, git push, and git pull.
Alternatively, git fetch and git merge can be used in place of git pull.]

(e) User 2. In the repository $TOP_DIR/repo_2, append the following line to the file words.txt:

Zulu

Instructor: Michael D. Adams Version: 2024-03-27

2-2 SENG 475 & ECE 596C, Summer 2024

If any merge conflicts arise, keep only the changes from user 1. Propagate the changes to the remote repos-
itory $TOP_DIR/remote_repo.git. [Hint: You will need to use the following commands (some possi-
bly more than once): git add, git commit, git push, and git pull. Alternatively, git fetch and
git merge can be used in place of git pull.]

(f) Check that the repository $TOP_DIR/remote_repo.git now contains the desired contents. In particular, the
repository should contain the file words.txt with the following contents:

Alpha
Bravo
Charlie
Delta
Echo
Foxtrot
Golf
Hotel

[Hint: You will need to use the command git clone. Simply clone the remote repository and examine the
contents of the cloned version.]

2. The fibonacci project. Write a CMakeLists file that can be used to build the fibonacci project in the directory
cmake/exercises/fibonacci (in the Git repository for the C++ lecture slides, the URL of which can be found in

Section 1.10). The fibonacci project consists of a single program fibonacci, which is comprised of the source-
code files main.cpp, fibonacci.cpp, and fibonacci.hpp. The only library needed for this program is the C++
standard library. After building the project, check to ensure that the fibonacci program can be run successfully.
(Do not assume that all is well simply because the program compiles and links.)

3. The hg2g project. Write a CMakeLists file that can be used to build the hg2g project in the directory
cmake/exercises/hg2g (in the Git repository for the C++ lecture slides, the URL of which can be found in Sec-

tion 1.10). The hg2g project consists of a single program answer, which is comprised of the source-code files
src/answer.cpp, lib/question.cpp, and lib/answer.cpp. The code has a single header file stored under the
directory include (which will need to be specified as an include directory when building the code). The only
library needed for this program is the C++ standard library. After building the project, check to ensure that the
answer program can be run successfully. (Do not assume that all is well simply because the program compiles and
links.) Note that, when run, the answer program will report that an exception has been caught and the program is
terminating.

4. The buggy project. Write a CMakeLists file that can be used to build the buggy project in the directory
cmake/exercises/buggy (in the Git repository for the C++ lecture slides, the URL of which can be found in Sec-

tion 1.10). The buggy project consists of a single program buggy, which is comprised of the single source-code
file buggy.cpp. The only library needed for this program is the C++ standard library.

The CMakeLists file must provide two options:

(a) ENABLE_ASAN. This option has a boolean value, which defaults to false, indicating if the Address Sanitizer
(ASan) should be enabled.

(b) ENABLE_UBSAN. This option has a boolean value, which defaults to false, indicating if the Undefined Be-
havior Sanitizer (UBSan) should be enabled.

The recommended approach to this exercise is to modify the CMAKE_CXX_FLAGS and CMAKE_EXE_LINKER_FLAGS
variables as appropriate, depending on the values of ENABLE_ASAN and ENABLE_UBSAN. This modification should
be performed by appending to the current values of these variables, since completely discarding the existing values
would lose potentially important settings. (A code-profiling example given in the CMake section of the C++ lecture
slides may be helpful for illustrating how to modify the above variables.) For the purposes of this exercise, you
may assume the following:

• ASan requires the use of the “-fsanitize=address” flag for both the compiler and linker.
• UBSan requires the use of the “-fsanitize=undefined” flag for both the compiler and linker.

Version: 2024-03-27 Instructor: Michael D. Adams

http://github.com/mdadams/cppbook_companion/tree/master/cmake/exercises/fibonacci
http://github.com/mdadams/cppbook_companion/tree/master/cmake/exercises/hg2g
http://github.com/mdadams/cppbook_companion/tree/master/cmake/exercises/buggy

SENG 475 & ECE 596C, Summer 2024 2-3

The above assumptions are valid for the GCC and Clang compilers. It is strongly recommended that the options
be defined in a separate file called Sanitizers.cmake and then included in the CMakeLists.txt file with an
include command. The file Sanitizers.cmake will then be easily reusable in later assignments.

After building the project with ASan and UBSan enabled, run the buggy program. This program should fail due to
a problem detected by the code sanitizers.

5. The boost_timer project. Write a CMakeLists file that can be used to build the boost_timer project in the
directory cmake/exercises/boost timer (in the Git repository for the C++ lecture slides). This project consists
of a single program timer. The timer program consists of the source-code files timer.cpp, fibonacci.hpp,
and fibonacci.cpp. This program needs to use the timer component of the Boost library in addition to
the C++ standard library. The find module for Boost sets numerous variables, of which the following will
need to be utilized: Boost_INCLUDE_DIRS and Boost_LIBRARIES. (The find module for Boost also de-
fines an imported target Boost::timer. This imported target can be employed as an alternative to using the
Boost_INCLUDE_DIRS and Boost_LIBRARIES variables.) You can disable multithreading support in Boost by set-
ting Boost_USE_MULTITHREADED to false before locating the Boost package with find_package. After building
the project, check to ensure that the timer program can be run successfully. (Do not assume that all is well simply
because the program compiles and links.)

6. The cgal_in_circle project. Write a CMakeLists file that can be used to build the cgal_in_circle project
in the directory cmake/exercises/cgal in circle (in the Git repository for the C++ lecture slides). This project
consists of two programs: in_circle and in_sphere. The in_circle program is comprised of the source-code
files in_circle.cpp, utility.cpp, and utility.hpp. The in_sphere program is comprised of the source-code
files in_sphere.cpp, utility.cpp, and utility.hpp. In addition to the C++ standard library, these programs
require the CGAL library. The find module for CGAL initializes several variables, of which the following will
need to be utilized: CGAL_INCLUDE_DIRS, CGAL_LIBRARY, and GMP_LIBRARIES. On some systems using the GCC
compiler, it is necessary to compile the programs in this project with the -frounding-math option. If this option
is not used when it is needed, the likely result is that the programs will terminate with a failed assertion when run.
After building the project, check to ensure that the in_circle and in_sphere programs can be run successfully.
(Do not assume that all is well simply because the programs compile and link.)

7. The coverage project. Write a CMakeLists file that can be used to build the coverage project in the directory
cmake/exercises/coverage (in the Git repository for the C++ lecture slides). This project consists of a single

program called random. The random program is comprised of the single source-code file random.cpp. The
only library needed for this program is the C++ standard library. The project also includes a Bash script called
run_tests that runs the random program several times, allowing code-coverage information to be collected. The
run_tests script must be invoked with a single argument that corresponds to the CMake binary directory (i.e., the
directory that will contain the executable program file random after the code is built).

The CMakeLists file must provide an option named ENABLE_COVERAGE. This option has a boolean value, which
defaults to false, indicating if code-coverage analysis using Lcov should be enabled. If this option is en-
abled, a target called coverage should be provided that runs the random program several times using the script
run_tests and then generates code-coverage information for those runs using Lcov. The provided CMake module
CodeCoverage.cmake should be used (without modification) in order to simplify this exercise. In particular, the
setup_target_for_coverage_lcov and append_coverage_compiler_flags commands defined in this mod-
ule will be needed. (For more details, see the example of using Lcov with CMake in the Lcov section of the C++
lecture slides.) Building the target coverage should result in HTML output (from genhtml) being placed in the
directory coverage in the CMake binary directory.

After building the coverage target, use your web browser to view the HTML file index.html in the coverage
directory (under the CMake binary directory). By examining this HTML document, determine which lines of code
in random.cpp were not executed when the random program was run by the run_tests script.

8. Prepare the Git repository for the submission of this assignment. This repository is to contain the work completed
in Exercises 2, 3, 4, 5, 6, and 7, organized in the manner described below. (The work for Exercise 1 is not to

Instructor: Michael D. Adams Version: 2024-03-27

http://github.com/mdadams/cppbook_companion/tree/master/cmake/exercises/boost_timer
http://github.com/mdadams/cppbook_companion/tree/master/cmake/exercises/cgal_in_circle
http://github.com/mdadams/cppbook_companion/tree/master/cmake/exercises/coverage

2-4 SENG 475 & ECE 596C, Summer 2024

be submitted.) The preparation of this repository is most easily accomplished by cloning your empty assignment
repository from GitHub, adding content to the resulting local repository, and then pushing the changes from the
local repository to the repository on GitHub. The top-level directory of the repository should contain the following:

(a) a file IDENTIFICATION.txt, which provides student and assignment information (as described in Sec-
tion 1.3).

(b) a directory fibonacci, which contains the CMakeLists and source-code files for the fibonacci project
developed above (in Exercise 2).

(c) a directory hg2g, which contains the CMakeLists and source-code files for the hg2g project developed above
(in Exercise 3).

(d) a directory buggy, which contains the CMakeLists and source-code files for the buggy project developed
above (in Exercise 4).

(e) a directory boost_timer, which contains the CMakeLists and source-code files for the boost_timer project
developed above (in Exercise 5).

(f) a directory cgal_in_circle, which contains the CMakeLists and source-code files for the cgal_in_circle
project developed above (in Exercise 6).

(g) a directory coverage, which contains the various files for the coverage project developed above (in Exer-
cise 7) (i.e., CMake build files, source-code files, and test scripts).

After having prepared the repository, run the assignment_precheck program on the repository to confirm that
the precheck passes.

9. In the local repository created in the previous exercise (i.e., Exercise 8), create a new branch called experimental
and then checkout this branch. In this new branch, introduce various combinations of errors into the files (e.g., by
adding or deleting random characters). Push the resulting buggy version of the files to the experimental branch of
the remote repository. Then, run the assignment_precheck program on the experimental branch of the remote
repository (using the -b option to specify the branch to check). Observe the errors that are obtained. Repeat this
process, each time corrupting different files and observing what type of errors result. This exercise is intended
to help you better understand what various types of errors mean so that you can more effectively troubleshoot
problems in later programming assignments. When doing this exercise, be careful not to accidentally push any of
the buggy files to the master branch.

Version: 2024-03-27 Instructor: Michael D. Adams

