
SENG 475 & ECE 569A:

Advanced Programming Techniques for

Robust Efficient Computing (With C++)

Michael Adams

Department of Electrical and Computer Engineering

University of Victoria

Victoria, BC, Canada

E-mail: mdadams@ece.uvic.ca

*
✎

✍

☞

✌
While waiting for the lecture to begin, please complete

the initial course questionnaire.
*

mdadams@ece.uvic.ca


Section 1.1

Course Overview

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 2



Course Overview

� interdisciplinary in nature (e.g., engineering and computer science)

� explores variety of programming topics, which may include:
2 data structures and algorithms
2 computer arithmetic
2 compile-time versus run-time computation
2 generic programming techniques
2 error handling, exceptions, and exception-safe coding
2 resource management, memory management, and smart pointers
2 cache-efficient coding
2 concurrency, parallelism, and vectorization

� considers several application areas, which may include:
2 geometry processing and computational geometry
2 numerical analysis
2 signal processing
2 computer graphics

� uses C++ programming language (C++17)

� employs Linux-based software development environment with GCC and

Clang compiler toolchains

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 3



Prerequisites and Requirements

� should possess reasonably good programming skills

� must be willing to attend lectures regularly

� should have basic familiarity with C++ (e.g., classes, templates, and

standard library)

� ideally, this knowledge of C++ would be acquired prior to start of term

2 through other courses taken (e.g., CSC 116 or ELEC/ECE 486/586); or
2 by watching instructor’s video lectures

� will not rely on knowledge of C++ until second week of classes

� if no prior knowledge of C++ and have strong programming skills, may

attempt crash course on C++ by watching instructor’s video lectures

(about 9 hours in duration) before second week of classes (but will require

considerable amount of time and effort)

� first programming assignment (excluding software tools exercise) (i.e.,

Assignment 1) intended solely as review of basic C++

� students can use Assignment 1 to help judge if they possess sufficient

knowledge of C++ for course

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 4



Course Topics

� nominally, major topics to be covered (in order) are:

1 Algorithms (2 lectures)

2 Data Structures (2.5 lectures)
3 A Few Remarks About Basic C++, Const, Constexpr, and Literal Types

(2.5 lectures)

4 Value Categories, Moving and Copying, Temporary Objects, and Copy

Elision (3.5 lectures)

5 Error Handling, Exceptions, and Exception Safety (3.5 lectures)

6 Smart Pointers (1.5 lectures)
7 Computer Arithmetic, Interval Arithmetic, and Exact Arithmetic (3 lectures)

8 Memory Management and Container Classes (5 lectures)
9 Cache-Efficient Algorithms (5 lectures)

10 Concurrency (5 lectures)

� if time permits, additional topics may be covered, such as:

2 Vectorization
2 Lvalue and Rvalue References, Move Semantics, and Perfect Forwarding
2 Memory Allocators
2 Atomics and Memory Models

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 5



Additional Comments on Course Content

� languages, libraries, and tools considered:

2 C++ programming language in some depth
2 C++ standard library as well as some other industry-standard libraries (e.g.,

Boost)
2 C++ compiler (i.e., GCC and Clang)
2 build tools (i.e., CMake)
2 debugging and testing tools (e.g., ASan, UBSan, and Catch2)
2 version control systems (i.e., Git)

� emphasis on libraries and tools commonly used in industry

� rationale for using C++:

2 general purpose and efficient
2 international standard, vendor neutral, supported on many platforms
2 many jobs require knowledge of C++
2 likely to continue to be dominant language into future (built on top of C

which is still going strong after 40 years)
2 superset of C (so can learn two languages for price of one)
2 easier to migrate from C++ to C, Java, and many other languages than

other way around

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 6



Learning Outcomes

� Upon completion of the course, students should be able to:

1 identify many of the factors that can impact the performance and

robustness of code

2 select data structures and algorithms that are appropriate for solving a

given problem and justify the choices made
3 develop software to meet a detailed set of specifications
4 recognize the importance of thoroughly testing code
5 demonstrate an intermediate-level competency in the C++ programming

language
6 demonstrate a basic competency with the C++ standard library as well as

several other libraries (e.g., Boost and CGAL)

7 make effective use of the tools available in a typical C++ software

development environment

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 7



Course Outline and Various Other Handouts

� DISCUSS THE FOLLOWING DOCUMENTS, ALL OF WHICH ARE AVAILABLE

FROM THE COURSE WEB SITE:

1 COURSE OUTLINE

2 OPEN-ACCESS COURSE-MATERIALS SUPPORT HANDOUT

3 COURSE-MATERIALS BUG-BOUNTY PROGRAM (CMBBP) HANDOUT

4 VIDEO-LECTURES HANDOUT

5 ASSIGNMENTS HANDOUT (WHICH IS SPLIT INTO SEVERAL SEPARATE PDF

DOCUMENTS)
6 NON-PROGRAMMING EXERCISES HANDOUT

7 PROJECT HANDOUT (FOR GRADUATE-LEVEL VERSION OF COURSE)

8 LECTURE-SLIDE SUPPLEMENTS

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 8



Course Web Site

� course web site:

2 http://www.ece.uvic.ca/˜mdadams/courses/cpp

� vast wealth of course-related information available from web site, including

(but not limited to):

1 course outline

2 course-overview slides

3 course-materials bug-bounty program (CMBBP) handout
4 assignments handout (which is split into several PDF documents)

5 non-programming exercises handout
6 project handout (for graduate-level version of course)

7 lecture-slide supplements

8 video-lectures handout

� students should read all information on course web site

� some information is password protected (usually marked by padlock)

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 9

http://www.ece.uvic.ca/~mdadams/courses/cpp


Video Lectures

� many programming-related video lectures available via instructor’s

YouTube channel:

https://www.youtube.com/user/iamcanadian1867

� summary of available video lectures (including URLs) can be found on

video-lectures handout

� some course content delivered by video lectures:

2 some topics covered only in video lectures
2 other topics covered mainly in video lectures with regular (i.e., in-class)

lectures focusing only on more difficult aspects of material

� vast majority of course content covered only in regular (i.e., in-class)

lectures (not in video lectures)

� video lectures expected to be extremely helpful to those who may have

less background in C++

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 10

https://www.youtube.com/user/iamcanadian1867


Computer-Based Tutorial

� tutorial is not tutorial in usual sense employed by most courses

� run by instructor, not teaching assistant

� scheduled in computer lab for access to C++ software development

environment

� particular uses of tutorial to be determined by needs of course as course

proceeds and may include (amongst other things):

1 students have opportunity to ask for help (i.e., in-lab office hours)
2 instructor may give presentations on various topics to fill (unanticipated)

gaps in student knowledge or clarify more difficult topics
3 instructor may give software demonstrations

4 instructor or markers may conduct interviews with students regarding code

submitted for programming assignments (in order to guard against

plagiarism)

5 students can work on programming assignments or exercises

� tutorials start in first week of classes

� tutorials do not necessarily run for full duration of class schedule

� tutorial attendance is mandatory

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 11



Plagiarism and Other Forms of Academic Misconduct

� plagiarism taken very seriously by instructor

� some examples of plagiarism include:

2 using code from another source without clearly acknowledging source
2 helping another student to commit plagiarism (e.g., by providing code)
2 posting assignment solutions to any public forum (e.g., public Git repository)

during or after having taken course

� all plagiarism cases will be reported to the Department Chair

� plagiarism offense will result in automatic zero grade for assignment or

project in question

� instructor and teaching assistants may, at any time, question student

regarding any aspect of their submitted work in order to ensure that this

work is student’s own

� instructor and teaching assistants may employ plagiarism-detection tools

in the review and grading of student work

� help classmates by pointing them in direction of solution but never give

them (all or part of) your code

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 12



How to Succeed in Course

1 Attend all lectures and tutorials.

2 Do not fall behind in the course.

3 Work ahead whenever possible. Start working on all assignments (and

project) as soon as possible.

4 When encountering difficulties, seek help in a timely manner.

5 Read the specifications for each assignment very carefully and check that

all requirements are met exactly.

6 Test the code for an assignment thoroughly at all stages of development.

7 Ensure that each assignment submission passes the precheck.

8 Provide detailed commit log messages that can be understood clearly by

others (especially markers).

9 Provide code comments that can be clearly understood by others

(especially markers).

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 13



Disclaimer

� course is entirely new (i.e., has never been offered before)

� although instructor has made tremendous effort in preparing this course,

many aspects of course are expected to be suboptimal, due to factors

such as:

2 uncertainty about demographics of students that will take course (e.g., how

many students from which majors/programs)
2 uncertainty about programming abilities of students that will take course
2 uncertainty as to whether students are actually taught all of what is

supposed to have been taught in prerequisite courses

� furthermore, some problems are inevitable, due to factors such as:

2 unanticipated gaps in student knowledge
2 material taking more or less time to cover than expected
2 material being more or less difficult than expected for typical student
2 unanticipated problems with software development environment
2 unanticipated problems with tools used for assignment grading

� students are strongly encouraged to provide feedback to instructor so that

course can be improved (either in current or future offerings)

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 14



Questions?

Dying to ask a question?

Here’s your chance.

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 15



Section 1.2

Software Development Environment and Assignments

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 16



Software Development Environment (SDE)

� course uses custom software development environment (SDE)

� course SDE includes (amongst other things) most recent versions of GCC

and Clang

� critically important to use course SDE for all assignments

� assignments are graded using course SDE

� to access course SDE, use sde_shell or sde_make_setup command

� sde_shell: starts new subshell configured to use course SDE

� sde_make_setup: prints shell commands needed to configure shell to

use course SDE so that user may invoke them

� use of sde_shell is recommended over sde_make_setup, since easier

to use

� more information about course SDE can be found at:

2 https://www.ece.uvic.ca/˜mdadams/courses/cpp/#sde
2 https://github.com/mdadams/sde

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 17

https://www.ece.uvic.ca/~mdadams/courses/cpp/#sde
https://github.com/mdadams/sde


Assignments

� two types of assignment problems: programming and non-programming

� programming problems require development of code to meet prescribed

specifications

� non-programming problems typically require written (i.e., English) answers

which may include short code fragments

� programming problems in assignments specified in great detail and

typically include requirements related to:

2 organization of code in files and directories (e.g., file and directory names,

directory structure, file contents)
2 application programming interfaces (APIs)
2 user-interface (UI) behavior, such as command-line interface (CLI)
2 data formats for program input and output
2 program exit-status conventions

� critically important that all specifications for programming problem met

exactly

� if requirements not met exactly, code may fail to build successfully with

instructor’s test code

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 18



GitHub and GitHub Classroom

� GitHub is web-based hosting service for Git repositories (i.e., hosts Git

repositories for commercial, open-source, and other software projects)

� GitHub web site: https://github.com

� GitHub web site provides mechanism for creating and managing Git

repositories for programming assignments called GitHub Classroom

� course uses GitHub Classroom for assignment submission

� each student needs GitHub account

� to create GitHub account, visit: https://github.com/join

� student sent email invitation to undertake assignment

� accepting invitation will cause private Git repository to be created for

storing assignment submission

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 19

https://github.com
https://github.com/join


Assignment Submission

� assignment submission performed using Git repository in conjunction with

GitHub Classroom

� files in Git repository must be organized in very specific manner

� submissions are self-identifying via IDENTIFICATION.txt file

� required to provide detailed history of code development (i.e., detailed

commit log messages)

� code must be well commented

� assignment submissions must pass validation phase of precheck

otherwise automatic grade of zero

� to perform assignment precheck, use command assignment_precheck

� late assignment submissions not accepted

� incomplete assignment submissions will be accepted, provided that they

pass validation phase of precheck

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 20



Assignment Evaluation

� code correctness is very important, as marking scheme for programming

problems weights code correctness quite heavily

� code will be built and run through many test cases

� testing uses instructor test code (not student test code)

� critical that code builds (i.e., compiles and links) successfully; otherwise

no testing can be performed

� any test that cannot be performed is assumed to fail

� code visually inspected (code itself and comments)

� commit history log messages examined

� code comments and commit log messages must be clearly

understandable to others

� as part of evaluation process, each student may be questioned about their

submitted code by instructor or teaching assistant (in order to ensure code

is student’s own work)

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 21



Assignment Solutions

� solutions for non-programming problems usually posted

� solutions for programming problems not posted

� solutions to programming problems not posted for two main reasons:

1 to avoid bias implicit in advocating one particular correct solution over all

others

2 to eliminate possibility of students in future offerings of course plagiarizing

from instructor’s solutions

� students welcome to meet with instructor in order to view his solutions to

programming problems

� students will not be permitted to make copies of these solutions, however

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 22



Advice for Success on Assignments

1 Start working on each assignment as soon as possible.

2 Ensure that each assignment submission passes the validation stage of

the assignment precheck as early as possible before the submission

deadline.

3 Test code thoroughly at all stages of development.

4 Enable and take notice of compiler warnings.

5 Use code sanitizers.

6 Always double-check that all requirements for the software being

developed are met.

7 Ensure that your Git repository contains the correct contents at the

submission deadline.

8 Be particularly careful about the const correctness of code.

9 Commit code changes to your Git repository often and with detailed

commit log messages.

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 23



Software Demonstration

GIVE A DEMONSTRATION OF THE SDE AND

VARIOUS SOFTWARE TOOLS.

Copyright c© 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 24


	Course Overview
	Software Development Environment and Assignments

