SENG 475 & ECE 569A:

Advanced Programming Techniques for
Robust Efficient Computing (With C++)

Michael Adams

Department of Electrical and Computer Engineering
University of Victoria
Victoria, BC, Canada
E-mail: mdadams@ece.uvic.ca

* (" While waiting for the lecture to begin, please complete *
the initial course questionnaire.

mdadams@ece.uvic.ca

Section 1.1

Course Overview

Copyright © 2018 Michael D. Adams SENG 475 & ECE569A [2018-05-03]

Course Overview

B interdisciplinary in nature (e.g., engineering and computer science)
B explores variety of programming topics, which may include:
o data structures and algorithms
o computer arithmetic
compile-time versus run-time computation
generic programming techniques
error handling, exceptions, and exception-safe coding
resource management, memory management, and smart pointers
cache-efficient coding
concurrency, parallelism, and vectorization
B considers several application areas, which may include:
o geometry processing and computational geometry
o numerical analysis
o signal processing
o computer graphics
B uses C++ programming language (C++17)

B employs Linux-based software development environment with GCC and
Clang compiler toolchains

O o o o o

(]

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Prerequisites and Requirements

B should possess reasonably good programming skills
B must be willing to attend lectures regularly
B should have basic familiarity with C++ (e.g., classes, templates, and
standard library)
B ideally, this knowledge of C++ would be acquired prior to start of term
o through other courses taken (e.g., CSC 116 or ELEC/ECE 486/586); or
o by watching instructor’s video lectures
B will not rely on knowledge of C++ until second week of classes
B if no prior knowledge of C++ and have strong programming skills, may
attempt crash course on C++ by watching instructor’s video lectures
(about 9 hours in duration) before second week of classes (but will require
considerable amount of time and effort)
B first programming assignment (excluding software tools exercise) (i.e.,
Assignment 1) intended solely as review of basic C++
B students can use Assignment 1 to help judge if they possess sufficient
knowledge of C++ for course

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

B nominally, major topics to be covered (in order) are:

Algorithms (2 lectures)

Data Structures (2.5 lectures)

A Few Remarks About Basic C++, Const, Constexpr, and Literal Types
(2.5 lectures)
Value Categories, Moving and Copying, Temporary Objects, and Copy
Elision (3.5 lectures)
Error Handling, Exceptions, and Exception Safety (3.5 lectures)
Smart Pointers (1.5 lectures)
Computer Arithmetic, Interval Arithmetic, and Exact Arithmetic (3 lectures)
Memory Management and Container Classes (5 lectures)
Cache-Efficient Algorithms (5 lectures)
B Concurrency (5 lectures)
B if time permits, additional topics may be covered, such as:
Vectorization
o Lvalue and Rvalue References, Move Semantics, and Perfect Forwarding
o Memory Allocators
o Atomics and Memory Models

[~

BEoENEa@

a

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Additional Comments on Course Content

B |anguages, libraries, and tools considered:
o C++ programming language in some depth
o C++ standard library as well as some other industry-standard libraries (e.g.,
Boost)
o C++ compiler (i.e., GCC and Clang)
o build tools (i.e., CMake)
o debugging and testing tools (e.g., ASan, UBSan, and Catch?2)
o version control systems (i.e., Git)
B emphasis on libraries and tools commonly used in industry
B rationale for using C++:
o general purpose and efficient
o international standard, vendor neutral, supported on many platforms
o many jobs require knowledge of C++
o likely to continue to be dominant language into future (built on top of C
which is still going strong after 40 years)
o superset of C (so can learn two languages for price of one)
o easier to migrate from C++ to C, Java, and many other languages than
other way around

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Learning Outcomes

B Upon completion of the course, students should be able to:

identify many of the factors that can impact the performance and
robustness of code

select data structures and algorithms that are appropriate for solving a
given problem and justify the choices made

develop software to meet a detailed set of specifications

recognize the importance of thoroughly testing code

demonstrate an intermediate-level competency in the C++ programming
language

@A demonstrate a basic competency with the C++ standard library as well as
several other libraries (e.g., Boost and CGAL)

make effective use of the tools available in a typical C++ software
development environment

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Course Outline and Various Other Handouts

B DISCUSS THE FOLLOWING DOCUMENTS, ALL OF WHICH ARE AVAILABLE
FROM THE COURSE WEB SITE:

COURSE OUTLINE

OPEN-ACCESS COURSE-MATERIALS SUPPORT HANDOUT
COURSE-MATERIALS BUG-BOUNTY PROGRAM (CMBBP) HANDOUT
VIDEO-LECTURES HANDOUT

ASSIGNMENTS HANDOUT (WHICH IS SPLIT INTO SEVERAL SEPARATE PDF
DOCUMENTS)

NON-PROGRAMMING EXERCISES HANDOUT

PROJECT HANDOUT (FOR GRADUATE-LEVEL VERSION OF COURSE)
LECTURE-SLIDE SUPPLEMENTS

g oEmE

-~ o]

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Course Web Site

B course web site:
0 http://www.ece.uvic.ca/-mdadams/courses/cpp
B vast wealth of course-related information available from web site, including
(but not limited to):
course outline
course-overview slides
course-materials bug-bounty program (CMBBP) handout
assignments handout (which is split into several PDF documents)
non-programming exercises handout
project handout (for graduate-level version of course)
lecture-slide supplements
video-lectures handout

BN oEEE

B students should read all information on course web site
B some information is password protected (usually marked by padlock)

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

http://www.ece.uvic.ca/~mdadams/courses/cpp

Video Lectures

B many programming-related video lectures available via instructor’s
YouTube channel:

https://www.youtube.com/user/iamcanadianl867

B summary of available video lectures (including URLs) can be found on
video-lectures handout
B some course content delivered by video lectures:
o some topics covered only in video lectures
o other topics covered mainly in video lectures with regular (i.e., in-class)
lectures focusing only on more difficult aspects of material
B vast majority of course content covered only in regular (i.e., in-class)
lectures (not in video lectures)

B video lectures expected to be extremely helpful to those who may have
less background in C++

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

https://www.youtube.com/user/iamcanadian1867

Computer-Based Tutorial

B tutorial is not tutorial in usual sense employed by most courses
B run by instructor, not teaching assistant
B scheduled in computer lab for access to C++ software development
environment
B particular uses of tutorial to be determined by needs of course as course
proceeds and may include (amongst other things):
students have opportunity to ask for help (i.e., in-lab office hours)
instructor may give presentations on various topics to fill (unanticipated)
gaps in student knowledge or clarify more difficult topics
instructor may give software demonstrations
instructor or markers may conduct interviews with students regarding code
submitted for programming assignments (in order to guard against
plagiarism)
students can work on programming assignments or exercises
B tutorials start in first week of classes
B tutorials do not necessarily run for full duration of class schedule

B tutorial attendance is mandatory

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Plagiarism and Other Forms of Academic Misconduct

B plagiarism taken very seriously by instructor
B some examples of plagiarism include:
o using code from another source without clearly acknowledging source
o helping another student to commit plagiarism (e.g., by providing code)
o posting assignment solutions to any public forum (e.g., public Git repository)
during or after having taken course

B all plagiarism cases will be reported to the Department Chair

B plagiarism offense will result in aufomatic zero grade for assignment or
project in question

B instructor and teaching assistants may, at any time, question student

regarding any aspect of their submitted work in order to ensure that this
work is student’s own

B instructor and teaching assistants may employ plagiarism-detection tools
in the review and grading of student work

B help classmates by pointing them in direction of solution but never give
them (all or part of) your code

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

How to Succeed in Course

B 8 =2

o I~ |

]

Attend all lectures and tutorials.
Do not fall behind in the course.

Work ahead whenever possible. Start working on all assignments (and
project) as soon as possible.

When encountering difficulties, seek help in a timely manner.

Read the specifications for each assignment very carefully and check that
all requirements are met exactly.

Test the code for an assignment thoroughly at all stages of development.
Ensure that each assignment submission passes the precheck.

Provide detailed commit log messages that can be understood clearly by
others (especially markers).

Provide code comments that can be clearly understood by others
(especially markers).

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Disclaimer

B course is entirely new (i.e., has never been offered before)

B although instructor has made tremendous effort in preparing this course,
many aspects of course are expected to be suboptimal, due to factors
such as:

o uncertainty about demographics of students that will take course (e.g., how
many students from which majors/programs)
o uncertainty about programming abilities of students that will take course
o uncertainty as to whether students are actually taught all of what is
supposed to have been taught in prerequisite courses
B furthermore, some problems are inevitable, due to factors such as:
unanticipated gaps in student knowledge
material taking more or less time to cover than expected
material being more or less difficult than expected for typical student
unanticipated problems with software development environment
unanticipated problems with tools used for assignment grading

(]

o o o g

B students are strongly encouraged to provide feedback to instructor so that
course can be improved (either in current or future offerings)

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Questions?

Dying to ask a question?
Here’s your chance.

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Section 1.2

Software Development Environment and Assignments

Copyright (©) 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03] 16

Software Development Environment (SDE)

B course uses custom software development environment (SDE)

B course SDE includes (amongst other things) most recent versions of GCC

and Clang

critically important to use course SDE for all assignments

assignments are graded using course SDE

to access course SDE, use sde_shell or sde_make_setup command
sde_shell: starts new subshell configured to use course SDE

sde_make_setup: prints shell commands needed to configure shell to
use course SDE so that user may invoke them

use of sde_shell is recommended over sde_make_setup, since easier
to use

more information about course SDE can be found at:

0 https://www.ece.uvic.ca/-mdadams/courses/cpp/#sde
o https://github.com/mdadams/sde

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

https://www.ece.uvic.ca/~mdadams/courses/cpp/#sde
https://github.com/mdadams/sde

B two types of assignment problems: programming and non-programming

B programming problems require development of code to meet prescribed
specifications

B non-programming problems typically require written (i.e., English) answers
which may include short code fragments

B programming problems in assignments specified in great detail and
typically include requirements related to:
o organization of code in files and directories (e.g., file and directory names,
directory structure, file contents)
o application programming interfaces (APIs)
user-interface (Ul) behavior, such as command-line interface (CLI)
data formats for program input and output
o program exit-status conventions

(]

a

B critically important that all specifications for programming problem met
exactly

B if requirements not met exactly, code may fail to build successfully with
instructor’s test code

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

GitHub and GitHub Classroom

B GitHub is web-based hosting service for Git repositories (i.e., hosts Git
repositories for commercial, open-source, and other software projects)

B GitHub web site: https://github.com

B GitHub web site provides mechanism for creating and managing Git
repositories for programming assignments called GitHub Classroom

course uses GitHub Classroom for assignment submission
each student needs GitHub account
to create GitHub account, visit: https://github.com/join

student sent email invitation to undertake assignment

accepting invitation will cause private Git repository to be created for
storing assignment submission

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

https://github.com
https://github.com/join

Assignment Submission

B assignment submission performed using Git repository in conjunction with
GitHub Classroom

B files in Git repository must be organized in very specific manner
B submissions are self-identifying via IDENTIFICATION.txt file

B required to provide detailed history of code development (i.e., detailed
commit log messages)

B code must be well commented

B assignment submissions must pass validation phase of precheck
otherwise automatic grade of zero

B to perform assignment precheck, use command assignment_precheck
B |ate assignment submissions not accepted

B incomplete assignment submissions will be accepted, provided that they
pass validation phase of precheck

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Assignment Evaluation

B code correctness is very important, as marking scheme for programming
problems weights code correctness quite heavily

B code will be built and run through many test cases
B testing uses instructor test code (not student test code)

B critical that code builds (i.e., compiles and links) successfully; otherwise
no testing can be performed

any test that cannot be performed is assumed to fail
code visually inspected (code itself and comments)

commit history log messages examined

code comments and commit log messages must be clearly
understandable to others

B as part of evaluation process, each student may be questioned about their
submitted code by instructor or teaching assistant (in order to ensure code
is student’s own work)

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Assignment Solutions

B solutions for non-programming problems usually posted
B solutions for programming problems not posted

B solutions to programming problems not posted for two main reasons:
to avoid bias implicit in advocating one particular correct solution over all
others
to eliminate possibility of students in future offerings of course plagiarizing
from instructor’s solutions
B students welcome to meet with instructor in order to view his solutions to
programming problems

B students will not be permitted to make copies of these solutions, however

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Advice for Success on Assignments

Start working on each assignment as soon as possible.

m =

Ensure that each assignment submission passes the validation stage of
the assignment precheck as early as possible before the submission
deadline.

a

Test code thoroughly at all stages of development.

[~

Enable and take notice of compiler warnings.

a

Use code sanitizers.

Always double-check that all requirements for the software being
developed are met.

=

Ensure that your Git repository contains the correct contents at the
submission deadline.

B Be particularly careful about the const correctness of code.

B Commit code changes to your Git repository often and with detailed
commit log messages.

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

Software Demonstration

GIVE A DEMONSTRATION OF THE SDE AND
VARIOUS SOFTWARE TOOLS.

Copyright © 2018 Michael D. Adams SENG 475 & ECE 569A [2018-05-03]

	Course Overview
	Software Development Environment and Assignments

