
JASPER: A PORTABLE FLEXIBLE OPEN-SOURCE SOFTWARE TOOL KIT FOR IMAGE
CODING/PROCESSING

Michael D. Adams† and Rabab K. Ward‡

†Dept. of Elec. and Comp. Engineering
University of Victoria

Victoria, BC, V8W 3P6, Canada
E-mail: mdadams@ece.uvic.ca

‡Dept. of Elec. and Comp. Engineering
University of British Columbia

Vancouver, BC, V6T 1Z4, Canada
E-mail: rababw@ece.ubc.ca

ABSTRACT

JasPer, a portable flexible open-source software tool kit for han-
dling image data is described. This software provides a means
for representing images, and facilitates the manipulation of image
data as well as its import/export in various formats (such as JPEG
2000). JasPer is proving to be an extremely useful tool in a wide
variety of applications, ranging from image coding/processing re-
search to open-source and proprietary software development.

1. INTRODUCTION

Digital imagery is used in many of today’s computer software ap-
plications. Consequently, software modules that facilitate the han-
dling of such data are often needed. Almost any application pro-
gram that deals with images must address the problem of image
interchange and import/export. That is, a means must exist for
moving image data between an application and its external envi-
ronment. Moreover, many applications must be capable of render-
ing an image for display on a particular output device (such as a
monitor or printer) with reasonably accurate color/tone reproduc-
tion.

Although image import/export and rendering are very basic
functionalities, they are often not easily implemented. Usually, an
image is represented in a coded format (such as JPEG-2000 JP2 [1]
or JPEG [2]). Since coding formats are often quite complex, the
import/export of image data can be a daunting task. Rendering an
image in such a way as to accurately reproduce color/tone requires
a color management scheme of some sort. Unfortunately, develop-
ing an effective color management engine can require considerable
effort.

In addition, the development of efficient coding schemes for
image interchange is a complex and time-consuming process. In
fact, many researchers expend considerable energy developing new
coding schemes. Normally, part of this process requires the imple-
mentation of the proposed coding algorithm. Although the imple-
mentation of the coding algorithm itself can be quite time con-
suming, some framework in which to implement the algorithm
is also needed. This framework typically provides data types for
representing images and other related information, allows for the
import/export of image data using one or more standard formats,
and provides some level of support for image rendering. Unfor-
tunately, the development of this additional framework requires
considerable effort, and detracts from the researcher’s objective of
testing/evaluating the new coding algorithm.

To address the problems/issues described above, we have de-
veloped a software tool kit known as JasPer [3]. In this paper, we
introduce the JasPer software, and describe its functionality and
structure, as well as its development history. We also briefly char-
acterize the current user base for the software, and give examples
of its use. In so doing, we demonstrate that JasPer provides an
attractive solution for handling image data in many diverse appli-
cations.

2. HISTORICAL PERSPECTIVE

Before proceeding further, a short digression concerning the his-
tory of JasPer is appropriate. The JasPer software was initially de-
veloped in order to provide a free reference implementation of the
JPEG-2000 Part-1 codec (as described in [4]). Work on the soft-
ware began in September 1999, and in December 2000, the soft-
ware was first released in source code form to the general public.
The JasPer software has since been published in the JPEG-2000
Part-5 standard [5] as a reference implementation of the JPEG-
2000 Part-1 codec.

Since the time of [4] (circa JasPer version 0.016.0), JasPer has
continued to evolve, and in so doing, the motivations/objectives
behind the development of this software have grown more ambi-
tious. Although originally conceived as simply a JPEG-2000 refer-
ence implementation (i.e., as described in [4]), JasPer has further
evolved into a general-purpose tool kit for handling image data
that is useful in a wide variety of applications. In the remainder of
this paper, we examine JasPer as it exists today, and briefly men-
tion some of the many changes made as JasPer developed from its
earlier versions to the current day version.

3. SOFTWARE OVERVIEW

In simple terms, JasPer is a software tool kit for the handling of
image data. The software provides a means for representing im-
ages, and facilitates the manipulation of image data, as well as the
import/export of such data in numerous formats (e.g., JPEG-2000
JP2 [1], JPEG [2], PNM [6], BMP [7], Sun Rasterfile [8], and
PGX [9]). The import functionality supports the auto-detection
(i.e., automatic determination) of the image format, eliminating
the need to explicitly identify the format of coded input data. A
simple color management engine is also provided in order to allow
the accurate representation of color. Partial support is included
for the ICC color profile file format [10], an industry standard for
specifying color.

The JasPer software consists of a library and several applica-
tion programs. The code is written in the C programming lan-
guage [11]. This language was chosen primarily due to the avail-
ability of C development environments for most of today’s com-
puting platforms. At present, JasPer consists of approximately
40K lines of code. Although written in C, the JasPer library can be
easily integrated into applications written in the C++ programming
language as well.

Portability has been (and continues to be) a major consider-
ation in the development of JasPer. For this reason, the software
makes minimal assumptions about the compile- and run-time en-
vironments. The code should compile and run on any platform
with a C language implementation that is reasonably compliant
with the (most recent) ISO C language standard [11] and has some
limited support for the POSIX C API [12]. For example, JasPer
compiles and runs (without modification) under Microsoft Win-
dows and most mainstream flavors of UNIX (e.g., Red Hat Linux,
Solaris, AIX, HP-UX, and IRIX).



Base Library
(Image Class)

Application Program

Codec Drivers
(JPEG 2000, JPEG, BMP, PNM, etc.)

JasPer Library

Fig. 1. Software structure.

Two different build methods for the software are supported.
The primary build method (for UNIX and UNIX-like systems) is
based on the well-known make, autoconf, libtool, and automake
tools. This build process can generate dynamic or static libraries.
A second build method is provided in order to accommodate the
building of JasPer with Microsoft Visual C (MSVC) under Mi-
crosoft Windows. This build method is based on MSVC workspace
and project description files (which are provided with JasPer).

For maximal portability, JasPer does not rely on any non-standard
proprietary libraries. Only standard libraries and other free soft-
ware are employed. In order to provide JPEG support, JasPer re-
lies on the popular IJG JPEG library [13]. For graphics support,
JasPer makes use of the OpenGL [14] and GLUT [15] libraries.
These particular libraries were chosen due to their availability on
many platforms, including Microsoft Windows and most flavors of
UNIX.

The JasPer software is available for download from the Inter-
net. For further details on obtaining the software, the reader is
referred to Appendix A.

4. JASPER LIBRARY

The heart of the JasPer software is the JasPer library. In fact, most
of the code in JasPer is associated with this library (as opposed
to the JasPer sample application programs). The JasPer library
provides classes for representing images, color profiles (i.e., color
space definitions), and other related entities. Each of these classes
has a well-defined interface through which an application may in-
teract with class objects. The library can be used to manipulate
images, import/export image data in a variety of formats, and per-
form basic color management operations.

Conceptually, the JasPer library is structured as shown in Fig. 1.
The library consists of two distinct types of code: 1) core code, and
2) codec drivers. The core code provides the basic framework upon
which the library is built, while the codec drivers only provide the
means for encoding/decoding image data in various formats. All
application interfaces are through the core code. The codec drivers
are only ever directly called by the core code, never by an applica-
tion.

The codec support in the JasPer library is both modular and
extensible. A well-defined interface exists between the core code
and codec drivers. Moreover, support for a new image format can
be easily added without having to modify the library in any way.
To do so, a codec driver for the new format simply needs to be
provided. Furthermore, an application need only include codec
drivers for the image formats that it will use. In this way, an ap-
plication can avoid the cost of increased memory consumption for
codec drivers that are never to be employed.

4.1. Core Code

The core code provides a number of key classes as described be-
low. (To avoid name space collisions, all of the identifiers used by
the core code are prefixed with either jas_ or JAS_.)

1. Image class (i.e., jas_image_t). This class is used to repre-
sent an image. Methods are provided for such things as: image

creation/destruction, querying general image properties (e.g.,
reference grid width and height, color profile), querying com-
ponent properties (e.g., width, height, grid offset, grid spac-
ing, component type, sample precision/signedness), setting var-
ious image properties, loading and saving an image (i.e., encod-
ing/decoding), copying an image, adding and deleting compo-
nents, and reading and writing component data.

2. Color profile class (i.e., jas_colorprof_t). This class is used
to define a color space. Such a definition is normally made
relative to a reference color space such as CIE XYZ or CIE
Lab [10]. Methods are provided for such things as: profile cre-
ation/destruction, loading and saving profiles, connecting pro-
files (to facilitate color space conversion), and applying a profile
to image data (i.e., performing a color space conversion).

3. Stream class (i.e., jas_stream_t). This class provides I/O
streams similar to that of standard C library [11], but with addi-
tional functionality required by other code in the JasPer library.
This extra functionality includes: 1) the ability to associate an
object other than a file descriptor with a stream (such as a mem-
ory buffer), and 2) multi-character unget.

4. Fixed-point number class. This templated class (i.e., a set of
macros) provides a fixed-point number class. Support is pro-
vided for basic arithmetic operations, type conversion, and round-
ing.

5. Tag-value parser class (i.e., jas_tvp_t). This class is used to
parse tag-value pairs (i.e., strings of the form “TAG=VALUE”).
Tag-value pairs are used to pass options to codec drivers for
encoding/decoding operations. Methods are provides for such
things as: creation/destruction, finding the next tag-value pair in
a string, and querying the current tag and value.

In addition to the above classes, some other functionality is pro-
vided, including command line parsing routines (similar in spirit
to UNIX getopt).

4.2. Codec Drivers

The core code provides a framework for housing codec drivers. A
codec driver provides the means for encoding/decoding of image
data in a particular format. Each driver provides three methods:
1) an encoding, 2) decoding, and 3) validation method. The en-
coding method emits the coded version of an image (i.e., a jas_
image_t object) to a stream (i.e., a jas_stream_t object). The
decoding method creates an image (i.e., a jas_image_t object)
from the coded data in a stream. The validation method is used
to quickly test if the data in a stream is formatted correctly for the
image format in question. This particular method is used for the
autodetection of image formats.

The codec drivers provided with the JasPer distribution are
written in order to accommodate streamed data. In other words,
image data streams are always processed in a single pass. This
design philosophy eliminates the need for a stream object to be
seekable. As a result, it is possible to write application programs
that receive data from, or send data to, pipelines or other entities
that do not support random access to data.

5. IMAGE MODEL

The set of applications for which JasPer may be a useful tool is
dictated, in part, by the image model that JasPer employs. There-
fore, it is prudent to introduce this model here. The image model
employed by JasPer is quite general and partially inspired by the
one used in the JPEG-2000 standard.

An image is comprised of one or more components. In turn,
each component consists of rectangular array of samples. This



Component 1

Component 2
...

Component 0

Component N−1

(a)

(b)

Fig. 2. Image model. (a) An image with N components. (b) Indi-
vidual component.

structure is depicted in Fig. 2. The sample values for each compo-
nent are integer valued, and can be signed or unsigned with pre-
cision from 1 to (nominally) 16 bits/sample1. The signedness and
precision of the sample data are specified on per-component basis.
All of the components are associated with same spatial extent in
an image, but represent different types of information.

There is considerable flexibility in the interpretation of com-
ponents. A component may represent spectral information (e.g., a
color plane) or auxiliary information (e.g., an opacity plane). For
example, a RGB image would have three components, where one
component is associated with each of the red, green, and blue color
planes. A RGBA (i.e., RGB with transparency) image would have
four components, one associated with each of the red, green, blue,
and alpha planes. The various components need not be sampled
at the same resolution. In other words, different components may
have different sampling periods. For example, when color images
are represented in a luminance-chrominance color space, it is not
uncommon for the luminance information to be more finely sam-
pled than the chrominance information.

Since an image can have a number of components, a means
must exist for specifying how these components are combined to-
gether in order to form a composite image. For this purpose, we
employ an integer lattice known as the reference grid. The refer-
ence grid provides an anchor point for the various components of
an image, and establishes their alignment relative to one another.

Each component is associated with a rectangular sampling grid.
Such a grid is uniquely specified by four parameters: the horizontal
offset (HO), vertical offset (VO), horizontal spacing (HS), and ver-
tical spacing (VS). The samples of a component are then mapped
onto the points where the sampling grid intersects the reference
grid. In this way, sample (i, j) of a component is mapped to the
position (HO+ iHS,VO+ jVS) on the reference grid.

To clarify the above text, we now present an illustrative ex-
ample. Consider an image with three components. For the kth
component, let us denote the horizontal grid offset, vertical grid
offset, horizontal grid spacing, and vertical grid spacing, as HOk,
VOk, HSk, and VSk, respectively. Suppose, for example, that these
parameters have the following values:

k (HOk,VOk) (HSk,VSk)
0 (0, 0) (2, 2)
1 (2, 3) (3, 4)
2 (3, 2) (4, 3)

In this scenario, the component samples would be aligned on the
reference grid as illustrated in Fig. 3. Perhaps, it is worth nothing
that the above set of parameter values was chosen in order to pro-
vide an enlightening example, and is not meant to represent a set

1The maximum allowable precision is platform dependent. Most com-
mon platforms, however, should be able to accommodate at least 16
bits/sample.

(0,0)

Component 0

Component 1

Component 2

Fig. 3. Alignment of components on the reference grid.

of values that is likely to be used with great frequency by applica-
tions.

From above, we can see that the image model used by JasPer
is quite general. The main constraint imposed by this model is that
rectangular sampling must be employed. The vast majority of ap-
plications, however, use such sampling. Also, with JasPer, one can
easily accommodate grayscale, color, and other multi-band data
(with or without opacity information).

6. APPLICATION PROGRAMS

In order to demonstrate how the JasPer library can be used, sev-
eral sample application programs are provided in the JasPer soft-
ware distribution. These programs include: jasper, jiv, imgcmp,
and imginfo. The jasper program is an image transcoder (i.e.,
it converts image data from one format to another). It can han-
dle image data in any format supported by the JasPer library (e.g.,
JPEG 2000, JPEG, PNM, BMP). The jiv program is a simple im-
age viewer (based on OpenGL). It provides basic pan and zoom
functionality as well as a slideshow capability. The components of
an image may be viewed individually, or, in the case of color im-
ages, together as a single composite image. The imgcmp program
is an image comparison utility. It measures the difference between
two images using one of numerous distortion metrics (such as peak
signal-to-noise ratio, mean squared error, root mean squared error,
peak absolute error, and mean absolute error). The imginfo pro-
gram provides basic information about an image, such as its geom-
etry (i.e., number of components, width and height of components,
and so on). Although the above-mentioned programs are intended
mainly for demonstration purposes, they have also proven quite
useful in their own right, especially the jasper and jiv programs.

7. EVOLUTION OF JASPER

Extensive changes have been made to JasPer since its early days
(i.e., circa version 0.016.0 [4]). In what follows, we highlight some
of these changes. First, the build process for the software has been
completely reworked. As a result, the software builds reliably (and
without modification) on a much wider range of systems. The doc-
umentation for the software has been very substantially improved,
and now includes a manual [3] and detailed technical tutorial on
JPEG 2000 [16]. The library interface has changed considerably
over time. This was necessary in order to accommodate arbitrary
image formats. Support for a number of new image formats has
been added (e.g., JPEG and PGX), and support for previously ex-
isting formats has been enhanced. The JPEG-2000 codec driver
is now complete, whereas in earlier versions some functionality
was missing (e.g., region-of-interest decoding, precincts, and the
JP2 file format). Some new applications have been included in the
JasPer distribution (e.g., the jiv image viewer) and more func-
tionality has been added to some of the previously existing appli-



cations. Some small test images are also included in the distribu-
tion for testing purposes. A testing framework for the software has
also been developed. This framework, although available only to
those developing JasPer, helps to ensure the stability of the soft-
ware from release to release.

8. JASPER USER COMMUNITY

Since the time of its first public release, the JasPer software has
acquired a relatively large user base, and this user base continues
to grow steadily over time. At the time of this writing, the server
hosting the JasPer Project web pages averages about 3,500 down-
loads of the software per month.

The JasPer library is potentially useful for many image pro-
cessing applications (such as image coding, enhancement, restora-
tion, and analysis). For this reason, the JasPer user community is
quite diverse, consisting of academics, researchers, software de-
velopers, and others. Many users are undoubtedly interested in
the JPEG-2000 codec implementation provided by JasPer. Some
are employing JasPer for research relating to JPEG 2000 (e.g.,
[17]). Many software projects are known to be using JasPer, in-
cluding: 1) the K Desktop Environment (KDE) [18], a powerful
open-source graphical desktop environment for UNIX worksta-
tions, 2) the Netpbm utilities [6], 3) the Checkmark software [19],
and 4) the Geospatial Data Abstraction Library (GDAL) [20], a
translator library for raster geospatial data formats.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have described JasPer, a software tool kit for han-
dling image data. The functionality and structure of the software
were examined. In particular, the library and application programs
associated with JasPer were introduced. We also briefly character-
ized some of the uses of JasPer. Judging by the size of the JasPer
user community, one can convincingly argue that this software is
proving itself to be a useful tool for many.

Although JasPer already embodies a very substantial amount
of work, further development of the software will undoubtedly
continue in the future. Such development might include: 1) im-
proving the performance of the JPEG-2000 codec implementation,
2) adding support for additional formats such as JPEG LS, PNG,
TIFF, and PAM (a new addition to the PNM family of formats),
3) improving the software documentation, 4) adding support for
multi-threaded execution, and 5) extending the functionality pro-
vided by the color management engine.

As JasPer development continues, we hope that this software
will become an even more useful tool for the academic/research
community, commercial organizations, and others. To assist in
achieving this goal, we both welcome and encourage feedback
from the user community. Through such feedback, we can further
improve the utility of the software to the benefit of all.

A. OBTAINING THE SOFTWARE

The JasPer software is available online from the JasPer Project
home page (i.e., http://www.ece.uvic.ca/˜mdadams/jasper)
and the JPEG software home page (i.e., http://www.jpeg.org/
software). At the time of this writing, the most recent version of
the software is 1.700.5.

ACKNOWLEDGMENT

The authors would like to thank Image Power, Inc. for their past
support of JasPer software development. In addition, the authors
would like to thank the many devoted users of JasPer for their

feedback which has helped to greatly improve the quality of the
software.

REFERENCES

[1] International Organization for Standardization and Inter-
national Electrotechnical Commission, ISO/IEC 15444-
1:2000, Information technology—JPEG 2000 image coding
system—Part 1: Core coding system.

[2] International Organization for Standardization and Inter-
national Electrotechnical Commission, ISO/IEC 10918-
1:1994, Information technology—Digital compression and
coding of continuous-tone still images: Requirements and
guidelines.

[3] M. D. Adams, “JasPer software reference manual,” ISO/IEC
JTC 1/SC 29/WG 1 N 2415, Dec. 2002.

[4] M. D. Adams and F. Kossentini, “JasPer: A software-based
JPEG-2000 codec implementation,” in Proc. of IEEE Inter-
national Conference on Image Processing, Vancouver, BC,
Canada, Oct. 2000, vol. 2, pp. 53–56.

[5] International Organization for Standardization and Interna-
tional Electrotechnical Commission, ISO/IEC 15444-5:2002
Information technology—JPEG 2000 image coding system—
Part 5: Reference software.

[6] “Netpbm home page,” http://netpbm.sourceforge.net,
2003.

[7] M. Luse, “The BMP file format,” Dr. Dobb’s Journal, vol.
9, no. 10, pp. 18–22, Sept. 1994.

[8] Sun Microsystems, Inc., OpenWindows Reference Manual
(Version 3.4), 1994.

[9] International Organization for Standardization and Inter-
national Electrotechnical Commission, ISO/IEC 15444-
4:2002, Information technology—JPEG 2000 image coding
system—Part 4: Compliance testing.

[10] International Color Consortium, ICC.1:2001-12, File Format
for Color Profiles (Version 4.0.0), Available from http://
www.color.org.

[11] International Organization for Standardization and Interna-
tional Electrotechnical Commission, ISO/IEC 9899:1999,
Programming languages—C.

[12] International Organization for Standardization and Interna-
tional Electrotechnical Commission, ISO/IEC 9945-1:1990,
Information technology—Portable operating system inter-
face (POSIX)—Part 1: System application program interface
(API) [C language].

[13] Independent JPEG Group, “JPEG library (version 6b),”
Available online from http://www.ijg.org, 2000.

[14] M. Segal and K. Akeley, The OpenGL Graphics System:
A Specification (Version 1.3), Silicon Graphics, Inc., 2001,
Available online from http://www.opengl.org.

[15] M. J. Kilgard, The OpenGL Utility Toolkit (GLUT) Program-
ming Interface, API Version 3, Silicon Graphics, Inc., 1996,
Available online from http://www.opengl.org.

[16] M. D. Adams, “The JPEG-2000 still image compres-
sion standard,” ISO/IEC JTC 1/SC 29/WG 1 N 2412, Dec.
2002, Available online from http://www.ece.uvic.ca/
˜mdadams.

[17] S. Chatterjee and C. D. Brooks, “Cache-efficient wavelet lift-
ing in JPEG 2000,” in Proc. of IEEE International Confer-
ence on Multimedia and Expo, Lausanne, Switzerland, Aug.
2002, vol. 1, pp. 797–800.

[18] “K desktop environment home,” http://www.kde.org,
2003.

[19] “Checkmark benchmarking,” http://watermarking.
unige.ch/Checkmark, 2003.

[20] “GDAL — geospatial data abstraction library,” http://
www.remotesensing.org/gdal, 2003.


