
A Highly-Effective Incremental/Decremental Delaunay Mesh-Generation
Strategy for Image Representation

Michael D. Adams∗

Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada

Abstract

A flexible mesh-generation framework for image representation based on Delaunay triangulations is pro-

posed. By fixing the various degrees of freedom available within this framework, two mesh-generation

methods, known as ID1 and ID2, are derived. These two methods are shown to perform extremely well,

producing meshes of significantly higher quality than state-of-the-art schemes at relatively low compu-

tational cost. Furthermore, the ID1 and ID2 methods each provide a mechanism whereby mesh quality

can be increased (or decreased) in return for a corresponding increase (or decrease) in computational cost.

Lastly, we demonstrate that one component of our proposed methods, called bad-point replacement, can be

used as a postprocessing optimization step that, when added to other previously-proposed mesh-generation

methods, yields meshes of much greater quality.

Keywords: Image representations, triangle meshes, Delaunay triangulations, mesh generation.

1. Introduction

In recent years, there has been a growing interest in image representations that employ adaptive (i.e.,

nonuniform) sampling [1–7] as such representations can, in many applications, have numerous advan-

tages over traditional lattice-based sampling, including greater compactnessand the ability to facilitate

methods that yield higher quality results or have lower overall complexity. Someof the many applica-

tions that can benefit from adaptive sampling include: feature detection [8], pattern recognition [9], com-

puter vision [10], restoration [11], tomographic reconstruction [12], filtering [13], and image/video cod-

ing [7, 14–19]. Although many classes of adaptively-sampled image representations have been proposed

to date [20–23, 1, 24–27], those based on Delaunay triangulations haveproven to be particularly effective

∗Corresponding author. Mailing address: Department of Electrical and Computer Engineering, University of Victo-
ria, PO Box 3055 STN CSC, Victoria, BC, V8W 3P6, Canada; tel.:+1 250 721 6025; fax:+1 250 721 6052; e-mail:
mdadams@ece.uvic.ca.

Preprint submitted to Signal Processing September 6, 2012

[6, 28, 2, 4, 3, 29, 30], and are the focus of our work herein. In order to employ a triangle-mesh represen-

tation of an image, a means is needed to construct such a representation given an arbitrary lattice-sampled

image. That is, we must be able to select a good subset of the original samplepoints of an image from

which to form a mesh model (of the image). This is the so calledmesh-generation problem.

To date, numerous mesh-generation schemes have been proposed for Delaunay-triangulation-based

mesh models of images. Some such methods include the MGH scheme [28] (inspired by the work of

Garland and Heckbert [31]), theerror-di ffusion (ED) scheme of Yang et al. [29], thegreedy-point re-

moval (GPR) scheme of Demaret and Iske [3] (called “adaptive thinning” therein), and theGPRFS-ED

scheme [6]. Of these methods, the GPR and GPRFS-ED schemes are particularly noteworthy as they rep-

resent state-of-the-art mesh-generation techniques. For example, in the recent paper [1, Figures 4 and 5],

the GPR scheme (called “adaptive thinning” therein) was shown to yield meshes of vastly superior quality

in comparison to all of the other methods considered. The main disadvantage of the GPR scheme is its

extremely high computational and memory requirements. More recently, the GPRFS-ED scheme [6] was

shown to produce, in many cases, meshes of only slightly lower quality than theGPR scheme, but at a very

substantially reduced computational and memory cost.

In this manuscript, we propose a flexible new framework for mesh generation. By fixing the various

degrees of freedom available within this framework, we derive two mesh-generation methods, known as

ID1 and ID2 (where the “ID” in each name stands for incremental/decremental). As we shall see later,

these two mesh-generation methods perform extremely well, producing meshes of higher quality than the

state-of-the-art GPR and GPRFS-ED schemes at relatively low computational cost. Furthermore, our ID1

and ID2 methods each provide a mechanism whereby mesh quality can be increased (or decreased) in

return for a corresponding increase (or decrease) in computational complexity. Moreover, we show that one

component of our proposed mesh-generation methods, called bad-pointreplacement (BPR), can be used as a

postprocessing step to improve upon the quality of meshes produced by other previously-proposed schemes

such as the ED method. In passing, we note that the work described hereinhas been partially presented in

the author’s conference paper [32]. The ID1 and ID2 methods proposed herein, however, produce much

higher quality meshes than the so-calledIDDT method from this earlier conference paper, as demonstrated

later by experimental results.

The remainder of this manuscript is organized as follows. First, Section 2 introduces the mesh model for

image representation employed in our work. Then, Section 3 presents our proposed computational frame-

work for mesh generation, with Section 4 proceeding to offer some guidance as to how this framework can

be efficiently implemented. Our ID1 and ID2 mesh-generation methods (derived from the proposed frame-

2

work) are presented in Section 5, along with some details as to how they were obtained. In Section 6, our

methods are evaluated and shown, through experimental results, to produce meshes of higher quality than

state-of-the-art methods at relatively low computational cost. Finally, Section 7 concludes the manuscript

with a summary of our key results.

Before proceeding further, a brief digression is in order regarding the test images used in our work. For

the purposes of evaluation herein, we consider a set of 40 (grayscale) images, consisting of photographic,

medical, and computer-generated imagery. For the most part, the images are taken from well-known image

collections, with 24 taken from the Kodak test set [33], 11 taken from the JPEG-2000 test set [34], and 3

taken from the USC image database [35]. With the exception of statistical results taken over our entire test

set, the experimental results presented herein focus on the small representative subset of images listed in

Table 1, which were deliberately chosen to include photographic, medical, and computer-generated imagery.

[Table 1 about here.]

Lastly, a brief comment is appropriate regarding some of the notation employedin this manuscript. The

cardinality of a setS is denoted|S |. Also, when presenting algorithms, the symbol “:=” is used to denote

variable assignment.

2. Mesh Model for Image Representation

In the context of this work, a mesh model of an imageφ defined onΛ = {0,1, . . . ,W−1}×{0,1, . . . ,H−1}

(i.e., a rectangular grid of widthW and heightH) is completely characterized by: 1) a setP = {pi}|P|i=1 of

sample points; and 2) the setZ = {zi}|P|i=1 of the corresponding sample values (i.e.,zi = φ(pi)). The setP

is always chosen to include the extreme convex hull points ofΛ (i.e., the four corner points of the image

bounding box) so that the triangulation ofP covers the entire image domainΛ. From P andZ, a unique

interpolantφ̂P is constructed as follows. First, we form the Delaunay triangulation ofP, which is ensured

to be uniquely determined (fromP alone) by employing the preferred-directions scheme [37]. Then, for

each facef of the triangulation, we construct the unique linear function that interpolatesφ at the three

vertices of f . By combining the interpolants from each of the faces, we obtain the continuous piecewise-

planar interpolant̃φP. As a practical matter, since the sample values of the final image approximation

must be integer, the final (integer-valued) interpolantφ̂P at the pointp is given byφ̂P(p) = round(̃φP(p)),

where round denotes rounding to the nearest integer. Since the verticesof the triangulation are nothing

more than sample points, often the terms “sample point” and “vertex” are used interchangeably herein.

As a matter of terminology, thesampling densityof the mesh model is defined as|P| / |Λ|. In passing,

3

we note that our interest in Delaunay triangulations arises from their good properties for approximation.

The Delaunay triangulation maximizes the minimum interior angle of all triangles in the triangulation, thus

avoiding sliver triangles to whatever extent is possible. This leads to the Delaunay triangulation being

optimal for controlling error bounds in approximation applications [38] suchas the one considered herein.

Having defined the above mesh model, the mesh-generation problem that we address herein can be

succinctly stated as follows: For a given target numberN of sample points (whereN ∈ [4, |Λ|]), choose

P ⊂ Λ such that|P| = N and the mesh approximation errorǫ(P) is as small as possible—ideally, a

global minimum. In our work, the mean squared error (MSE) is used as the error metric, so thatǫ(P) =

|Λ|−1∑
p∈Λ(φ̂P(p) − φ(p))2. Herein, the MSE is typically expressed in terms of the peak-signal-to-noise

ratio (PSNR), which is defined asPSNR = 20 log10(M/
√

MSE), whereM = 2ρ − 1, andρ is the sample

precision in bits/sample. Finding goodcomputationally-efficient methods for solving the above problem is

quite challenging, since problems like this are known to be NP hard [39].

3. Proposed Mesh-Generation Framework

Having introduced the particular mesh model for image representation assumed in our work, we are

ready to present our proposed computational framework for mesh generation. Letφ denote an image sam-

pled at the pointsΛ (which form a rectangular grid). Our framework is iterative in nature andworks by

making repeated updates to a mesh approximation ofφ by alternating between two distinct processing

phases: one that adds sample points to the mesh and one that deletes sample points from the mesh. As

input, our framework takes the following information, in addition toφ: 1) a subsetΓ of the sample points

Λ from which to form an initial mesh approximation ofφ; 2) the target numberN of sample points that

should be present in the mesh to be generated (whereN ∈ [4, |Λ|]); and 3) a sequence{ηi}Li=0 (whereL ≥ 1)

with η0 = |Γ|, andηL = N, known as agrowth setpoint sequence, which specifies agrowth schedule

for the approximating mesh (i.e., how the size of the mesh should evolve by growing and shrinking as the

framework is applied). As will be seen later, the growth setpoint sequenceessentially specifies the mesh

size at the end of each sample-point addition/deletion phase (mentioned above). Note that this sequence

does not have to be (and normally is not) monotonically increasing (or monotonically decreasing). In order

to either force or prevent certain points inΛ from appearing in the final mesh, the notion of mutability of

a point is introduced. A pointp ∈ Λ is said to bemutable if it is permitted to be added to or deleted from

the mesh as our framework is applied. A point that is not mutable (i.e., a point in the mesh that cannot be

deleted from the mesh or a point not in the mesh that cannot be added to the mesh) is said to beimmutable.

4

Before we can proceed further, it is necessary to introduce some additional definitions and notation.

For a setS of points inΛ, mutable(S) denotes the set of all mutable points inS . Let φ̂S be the interpolant

corresponding to the mesh with sample pointsS . Let rS (p) denote the approximation error at the point

p for the mesh with sample pointsS (i.e., rS (p) = φ̂S (p) − φ(p)). In what follows, letP denote the

sample points in the current mesh approximation ofφ. Each pointp ∈ Λ is assigned toexactly one face

in the Delaunay triangulation ofP, which is denoted face(p). If p is strictly inside a facef , we define

face(p) = f ; otherwise (for points on edges or vertices), the method of [40] is used touniquely assignp

to exactly one face. The set of all pointsp satisfying face(p) = f (i.e., all points belonging to the face

f) is denoted points(f). The squared error computed over all points in the facef is denoted as faceErr(f)

(i.e., faceErr(f) =
∑

p∈Λ∩points(f) r2
P(p)). For a given facef , the set of all mutable points in the face that

are not currently in the mesh are calledcandidate points (of the face f) and is denoted cands(f) (i.e.,

cands(f) = mutable((Λ \ P) ∩ points(f))).

With the above definitions in place, our computational framework then consistsof the following steps:

1. Initialize mesh. Let i := 0. Let P := Γ. Mark all extreme convex hull points ofΛ as immutable (so that

they cannot be later deleted from the mesh) and mark all other points inΛ as mutable.

2. Top of main loop. If i = L (i.e., no more setpoints are available), outputP as the sample points of the

final mesh, and stop. If|P| < ηi+1, go to step 3 (i.e., increase mesh size); if|P| > ηi+1, go to step 4 (i.e.,

decrease mesh size); otherwise, go to step 5 (i.e., bottom of main loop).

3. Increase mesh size. While |P| < ηi+1, add a point to the mesh by performing anoptimal add (optAdd)

operation, which consists of the following steps:

(a) Select a facef ∗ in which to insert a new point as given by

f ∗ = arg max
f∈℧

faceErr(f),

where℧ is the set of all faces containing at least one candidate point. That is, of all faces in which a

point could be inserted,f ∗ is the one with the greatest squared error. Next, select a (mutable) pointp∗

in f ∗ to add to the mesh as given by

p∗ = selCand(f ∗),

where selCand is a function that embodies the candidate-selection processand is a free parameter of our

framework. As for how selCand might be chosen, we defer this discussion until later in Section 5.1.

(b) Let P := P ∪ {p∗} (i.e., addp∗ to the mesh).

Go to step 5 (i.e., bottom of main loop).

5

4. Decrease mesh size. While |P| > ηi+1, delete a point from the mesh by performing anoptimal delete

(optDel) operation, which consists of the following steps:

(a) Let thesignificance(with respect to deletion) of a (mutable) pointp ∈ P, denoted sigDel(p), be

defined as

sigDel(p) =
∑

q∈R∩Λ

(

r2
P\{p}(q) − r2

P(q)
)

, (1)

whereR is the region in the triangulation affected by the deletion ofp. That is, sigDel(p) is the amount

by which the squared error increases ifp were deleted from the mesh. Then, select the pointp∗ to delete

from the mesh as

p∗ = arg min
p∈mutable(P)

sigDel(p). (2)

That is, we choose to delete the mutable point having the least significance (i.e., the point that, when

deleted, results in the least increase in squared error).

(b) Let P := P \ {p∗} (i.e., deletep∗ from the mesh).

5. Bottom of main loop. Let i := i + 1. Go to step 2 (i.e., top of main loop).

Our framework, as specified above, provides a number of degrees offreedom by leaving open the choice

of each of the following: 1) the initial meshΓ, 2) the growth schedule{ηi}Li=0, and 3) the candidate-selection

policy selCand. Of course, in order to produce a concrete (i.e., fully-specified) mesh-generation method,

each of the above choices needs to be fixed. As for what specific choices might be effective, we defer this

discussion until later in Section 5.

Computational Considerations. In passing, we would like to note that there is a fundamental asymmetry

in the manner in which the optAdd and optDel operations are defined in our framework. In particular, a

higher degree of symmetry could have been obtained by simply choosing the point p∗ to insert as

p∗ = arg max
p∈mutable(Λ\P)

sigAdd(p), (3)

where sigAdd(p) is the amount by which the squared error decreases when the pointp is added to the mesh.

Such a choice, however, would be problematic from a computational standpoint. Because the evaluation of

the sigAdd function in (3) requires a significant amount of computation and the formula in (3) requires the

repeated evaluation of sigAdd for all points in the set mutable(Λ\P) which is typically very large in practice

(on the order of the number of samples in the original image), the amount of computation associated with

the choice ofp∗ given by (3) would be much too large to lead to a practical method. So, in short, the

asymmetry in the optAdd and optDel operations has been arrived at very deliberately for computational

reasons.

6

Additional Remarks. It is important to note that our proposed framework is fundamentally greedyin

nature. That is, the choice of which point to add/delete in a given step is made without regard to how

this choice affectslater steps. Consequently, this framework does not guarantee a globally optimalsolution.

Practically speaking, however, nocomputationally-tractable algorithm likely exists for producing a globally

optimal solution, since mesh-generation problems like the one addressed in thismanuscript are NP hard.

Next, it is important to understand that the (probably suboptimal) result produced from this framework

is very heavily dependent on the choice of initial mesh, growth schedule, and candidate-selection policy.

Furthermore, computational complexity is also strongly influenced by the preceding choices.

For a fixed initial mesh and candidate-selection policy, a practically limitless number of growth sched-

ules is possible. Different choices of growth schedule lead to different mesh quality and computational

complexity tradeoffs, however. For example, suppose that we are given an initial mesh having sample

pointsΓ, where|Γ| = 4, and we wish to produce a mesh withN = 104 sample points. Two possible growth

schedules that could be used to accomplish this correspond to the following:1) perform two optAdd opera-

tions followed by one optDel operation, repeated 100 times; or 2) perform200 optAdd operations followed

by 100 optDel operations, only once. Although both scenarios have the same total number of optAdd and

optDel operations, the quality of the resulting mesh in each case could be radically different. Also, for

reasons that will become clearer later in Section 4, it is more computationally efficient to group optAdd/opt-

Del operations of the same type together. Therefore, scenario 2 from above would most likely require less

computation.

In passing, we note that the family of methods generated by our proposed framework includes as very-

trivial special cases the GPR and GPRFS-ED schemes mentioned earlier. The GPR method is obtained by

choosingΓ = Λ and the growth setpoint sequence as{|Γ| ,N} (whereN < |Γ|). The GPRFS-ED method is

obtained by choosingΓwith the ED scheme such that|Γ| = min{4N, |Λ|} and the growth setpoint sequence as

{|Γ| ,N} (whereN < |Γ|). The preceding special cases are very trivial in the sense that they only involve point

deletion, since in both casesN < |Γ|. The major benefit of our proposed framework and the contribution of

the work presented herein, however, come from allowing both point addition and deletion.

4. Implementation of Proposed Mesh-Generation Framework

Although our proposed mesh-generation framework is conceptually simple,implementing it in a com-

putationally efficient manner is tricky and requires careful software design. A naive implementation could

easily require several orders of magnitude more computation than is strictly necessary. Below, we offer

7

some guidance as to how our mesh-generation framework can be efficiently implemented, by describing the

particular implementation strategy that we employed.

The mesh-generator state consists primarily of the following: 1) the Delaunay-triangulation data struc-

ture, which maintains the mesh geometry and connectivity information; 2) thevertex priority queue, a

heap-based priority queue with an entry for each mutable point currently inthe mesh, where the entry for

the pointp has priority− sigDel(p); 3) theface priority queue, a heap-based priority queue with an entry

for each facef in the mesh satisfying faceErr(f) > 0 (i.e., faces with a strictly positive error), where the

entry for facef has priority faceErr(f); 4) thevertex scan list, a doubly-linked list with an entry for each

vertex whose priority requires updating due to changes in the mesh. In what follows, we now describe how

the optAdd and optDel operations can be implemented.

To perform an optAdd operation, we proceed as follows: 1) Remove the face with the highest priority

from the face priority queue, lettingf denote the face removed. The pointp to be added to the mesh is then

selCand(f). 2) Insertp in the triangulation, lettingR denote the region in the triangulation affected by the

insertion ofp. 3) For each facef in R, recompute faceErr(f) and update accordingly the priority off on

the face priority queue. 4) For each mutable vertexp in R, addp to the vertex scan list for (possible) later

updating of its priority.

To perform an optDel operation, we proceed as follows: 1) For each vertex p on the vertex scan list,

removep from the list, recompute sigDel(p), and update accordingly the priority of the vertexp on the

vertex priority queue. 2) Remove the vertex with the highest priority from thevertex priority queue, letting

p denote the vertex removed. The vertex to be deleted is thenp. 3) Deletep from the triangulation, letting

R denote the region affected by the deletion ofp (namely, the faces incident onp). 4) For each facef in

R, recompute faceErr(f) and update accordingly the priority off on the face priority queue. 5) For each

mutable vertexp in R, addp to the vertex scan list for (possible) later updating of its priority. To recompute

sigDel(p) for a given mutable vertexp, we temporarily deletep from the triangulation, and compute the

resulting change in the mesh approximation error over the region affected by point deletion (namely, the

faces incident onp).

As the description above implies, the computation associated with updating the vertex priority queue

(e.g., re-evaluating sigDel values for vertices) is deferred until the result is absolutely needed (namely, when

an optDel operation is about to be performed). In situations where multiple optAdd operations are per-

formed without an intervening optDel operation, this deferred processing can save a considerable amount

of computation. This savings results from avoiding vertex-priority updatesthat would later be rendered

unnecessary by other optAdd operations. Lastly, in order to further reduce computational complexity, we

8

employ two additional optimizations: 1) the face priority queue is not initialized untilthe first optAdd

operation; and 2) the vertex priority queue is not initialized until the first optDel operation. These optimiza-

tions save considerable time when the mesh-generation process begins with 1) a large number of optAdd

operations without an intervening optDel operation; or 2) a large number of optDel operations without an

intervening optAdd operation.

5. Proposed Mesh-Generation Methods and Their Development

As seen earlier, our proposed computational framework for mesh generation provides several degrees of

freedom by leaving open the choices of initial mesh, growth schedule, andcandidate-selection policy. Thus,

in order to arrive at a concrete mesh-generation method, we need to fix these degrees of freedom by making

specific choices for each of the preceding items. Rather than simply stating thefinal choices that were

made in the case of the concrete mesh-generation methods proposed in this manuscript (which have yet to

be introduced), we will instead describe several of the choices that were considered in the development of

these methods, along with the rationale of how we selected from amongst them. In so doing, we hope to

provide the reader with additional insight into both our proposed mesh-generation framework (introduced

earlier) as well as our concrete mesh-generation methods (yet to be introduced).

The remainder of Section 5 is structured as follows. To begin, Section 5.1 presents several choices of

growth schedules and candidate-selection policies considered in our work. Next, Section 5.2 introduces an

algorithm that can be employed as a postprocessing step to mesh generation inorder to further improve

mesh quality. In Section 5.3, we proceed to study the relative merits of the various choices/ideas introduced

in Sections 5.1 and 5.2. This leads us to recommend particular combinations of choices that correspond to

our two proposed concrete mesh-generation methods, which are formally introduced in Section 5.4.

5.1. Initial Mesh, Growth Schedules, and Candidate-Selection Policies

With regard to the choice of initial mesh, we limit our attention herein to schemes thatstart from a mesh

consisting of the (four) extreme convex hull points ofΛ. We have found many such schemes to be highly

effective with relatively low computational cost.

Growth Schedules. Of the many growth schedules studied in our work, we consider only four herein.

Of these four schedules, the most basic is theincremental (I) growth schedule, which has a setpoint

sequence{ηi}1i=0 given by

η0 = |Γ| and η1 = N.

9

This schedule simply results inN − |Γ| optAdd operations (and no optDel operations) being performed. The

remaining growth schedules are somewhat more complicated, involving both optAdd and optDel operations.

Thebelow (B) growth schedulehas the setpoint sequence{ηi}Li=0 given by

ηi =

N −
⌊

αi/2(N − |Γ|)
⌋

i even

N i odd,

whereα ∈ (0,1) andL = 1 + 2
⌊

− logα(N − |Γ|)
⌋

. In the case of this schedule, the mesh size oscillates

betweenN and values belowN, with the amplitude of oscillation decaying exponentially at a rate given by

the damping parameterα. Theabout/circa (C) growth schedulehas a setpoint sequence{ηi}Li=0 given by

ηi = N + (−1)i+1
⌊

α⌊i/2⌋(N − |Γ|)
⌋

,

whereα ∈ (0,1) andL = 2+ 2
⌊

− logα(N − |Γ|)
⌋

. In the case of this schedule, the mesh size oscillates about

N (i.e., both above and belowN), with the amplitude of oscillation decaying exponentially at a rate given

by the damping parameterα. Lastly, theabove (A) growth schedulehas a setpoint sequence{ηi}Li=0 given

by

ηi =

|Γ| i = 0

N i even,i , 0

N +
⌊

α(i−1)/2(N − |Γ|)
⌋

i odd,

(4)

whereα ∈ (0,1) andL = 2 + 2
⌊

− logα(N − |Γ|)
⌋

. In the case of this schedule, the mesh size oscillates

betweenN and values aboveN, with the amplitude of oscillation decaying exponentially at a rate given

by the damping parameterα. For comparison purposes, the number of optAdd operations, the numberof

optDel operations, and the total operation count are given in Table 2 foreach of the growth schedules. The

information in this table will be used later in order to guide the selection of the damping parameterα.

[Table 2 about here.]

Candidate Selection Policies. Of the many candidate-selection policies studied in our work, we present

only four herein, chosen on the basis of their simplicity and/or effectiveness. The first (and simplest) of

these four policies is thepeak-absolute-error (PAE) policy, which chooses the selCand function as

selCand(f) = arg max
p∈cands(f)

∣

∣

∣φ̂P(p) − φ(p)
∣

∣

∣ . (5)

That is, of all candidate points in the face, this policy selects the point at which the absolute error is great-

est. The second policy, known as thepeak-weighted-absolute-error (PWAE) policychooses the selCand

function as

selCand(f) = arg max
p∈cands(f)

d(p)
∣

∣

∣φ̂P(p) − φ(p)
∣

∣

∣ , (6)

10

whered(p) denotes themaximum magnitude second-order directional derivative (MMSODD) of φ at

p. In other words, of all candidate points in the face, this policy selects the point at which the MMSODD-

weighted absolute error is greatest. As a practical matter, in (6),d is computed as given by [29]

d
[

(x, y)
]

= max{|α(x, y) + β(x, y)| , |α(x, y) − β(x, y)|}, (7)

whereα(x, y) = 1
2[∂

2

∂x2φ(x, y) + ∂2

∂y2φ(x, y)] andβ(x, y) =
√

1
4[∂

2

∂x2φ(x, y) − ∂2

∂y2φ(x, y)]2 + [∂
2

∂x∂yφ(x, y)]2. The

partial-derivative operators in the preceding equation are formed fromthe tensor product of one-dimensional

derivative operators, where the discrete-time approximations of the one-dimensional first- and second-order

derivative operators are computed using the filters with transfer functions 1
2z− 1

2z−1 andz− 2+ z−1, respec-

tively. Furthermore, the partial-derivative operators are applied to a smoothed version ofφ (rather thanφ

directly), where the smoothing operator employed is the tensor product of two one-dimensional filters with

transfer functionz4(1
2 +

1
2z−1)8 (i.e., a ninth-order binomial lowpass filter with zero-phase and unity DC

gain). During convolution, domain boundaries are handled by zero extension (i.e., the signal is padded with

zeros).

In the PWAE policy, the weighting of the absolute error byd (i.e., the MMSODD) is motivated by the

fact that the MMSODD is typically large in locations where the placement of a sample point would be

desirable. For example, the MMSODD has a double response to image edges, attaining maxima just to each

side of an image edge. This behavior is illustrated by the simple example in Figure 1. From the figure, it is

evident that the locations where the MMSODD is large are likely to be good places to select a sample point.

Due to this behavior, there is reason to believe that the MMSODD-weighted absolute error in (6) could be

an effective means for candidate selection. As we will see later, this suspicion, in fact, turns out to be well

founded.

[Figure 1 about here.]

The third candidate-selection policy, known as theapproximate local squared-error minimizer (ALSEM)

policy, chooses the selCand function as

selCand(f) = arg max
p∈S

∑

q∈points(f)

(

r2
P(q) − r2

P∪{p}(q)
)

(8)

whereS is a subset of cands(f), chosen as follows. If|cands(f)| > 18, S is chosen as the 9 pointsp ∈

cands(f) for which d(p)
∣

∣

∣φ̂P(p) − φ(p)
∣

∣

∣ is greatest (whered(p) is as defined in (6)) in addition to 9 other

randomly-chosen (distinct) points from cands(f); otherwise,S = cands(f). (The values of 18 and 9 were

chosen based on considerable experimentation involving a variety of imagesand sampling densities.) In (8),

the summation corresponds to the reduction in the squared error ifp were added to the mesh, computed only

locally over the points inΛ that belong to the facef .

11

The PAE and PWAE candidate-selection policies have very low computationaloverhead. This follows

from the simplicity of the expression being maximized in each of (5) and (6). Relative to the PAE and

PWAE policies, the ALSEM policy has a much higher computational cost. This computational disparity

motivates the last candidate-selection policy, known as thehybrid policy . The hybrid policy simply em-

ploys the PWAE policy until the first growth-schedule setpointη1 is reached, with the ALSEM policy being

used thereafter. By using the less-computationally costly PWAE policy initially, computational cost can be

significantly reduced (relative to the ALSEM policy).

5.2. Bad-Point Replacement (BPR)

In the preceding section, several options for growth schedules and candidate-selection policies were

presented. Before proceeding further, we need to introduce a basic algorithm that is beneficial in the con-

text of our proposed mesh-generation framework. As a matter of terminology, a (mutable) pointp in the

mesh is said to bebad, if sigDel(p) ≤ 0 (i.e., the deletion ofp would not cause an increase in the mesh

approximation error). Clearly, bad points are undesirable since their inclusion in the mesh either increases

the mesh approximation error (if sigDel(p) < 0) or leaves the mesh approximation error unchanged (if

sigDel(p) = 0). As it turns out, with our framework, when the target number of points is finally achieved

and the mesh-generation process would normally terminate, there is the possibility that some bad points will

be present in the mesh. Depending on the choice of initial mesh, growth schedule, and candidate-selection

policy, the number of bad points could, in fact, be quite large. At first, it mightseem counterintuitive that

deleting points from the mesh could actuallydecrease the approximation error. The mesh approximation

error, however, depends not only on the sample points, but also the topology of the triangulation associated

with these points. Therefore, removing a point could, for example, causea triangulation edge that crosscuts

an image edge to be eliminated, thus having the potential to reduce approximation error.

To combat the degradation in mesh quality caused by the presence of bad points, we have devised

a technique for eliminating such points called thebad-point-replacement (BPR)method. This method

works by deleting bad points and substituting other new points in their place. This is done in such a way as

to not result in any net change in the number of points in the mesh (i.e., the number of optAdd operations

and number of optDel operations employed are equal). This method is intended to be performed as a final

postprocessing step in the mesh-generation process, after a mesh with the target number of points has been

obtained. In more detail, the BPR method consists of the following steps: 1) Letnold := ∞ and letc := 0.

2) Let n := 0; while the pointp that would be deleted from the mesh by the next optDel operation satisfies

sigDel(p) ≤ 0, perform an optDel operation (to deletep), mark p as immutable, and letn := n + 1. 3) If

12

n > 0, performn optAdd operations. 4) Ifn ≥ nold, let c := c + 1. 5) Letnold := n; if n = 0 or c ≥ 3,

stop; otherwise, go to step 2. In step 2,p is marked as immutable in order to preventp from being added

back to the mesh in subsequent iterations, which could cause the algorithm to become trapped in an infinite

loop, repeatedly cycling through the same sequence of optAdd and optDeloperations. The counterc is used

to allow the algorithm to terminate early in the case that convergence is abnormallyslow, which has been

observed to occur occasionally for some very simple synthetic images.

Although the BPR scheme was initially developed as a tool for potential use in themesh-generation

methods proposed later in this manuscript, it is important to note that our BPR method can be used as

a postprocessing step added to other arbitrary (i.e., not necessarily derived from our framework) mesh-

generation methods in order to improve the resulting mesh quality. That is, we can take a meshM produced

by another arbitrary method, useM as the initial mesh for our framework, and then simply invoke our BPR

scheme to produce the new meshM′. Provided thatM had some bad points (which is the case for many

methods), we can expect the new meshM′ to be of higher quality than the original meshM. As we will see

later, some previously proposed schemes, although quite effective, often produce meshes with a significant

number of bad points.

5.3. Analysis of the Available Options

Having introduced numerous options (i.e., growth schedules, candidate-selection policies, and BPR)

that could be used to construct a concrete mesh-generation method, we willnow study each of these options

more carefully. Through this analysis, a better understanding of the issues surrounding these options can be

obtained, which will ultimately allow for the formulation of more effective mesh-generation methods.

Comparison of Growth Schedules. To begin, let us examine the impact of the choice of growth schedule

on mesh quality. To do this, we fix the candidate-selection policy to be PWAE, disable the use of BPR, and

then select from amongst the various growth schedules under consideration (namely, the I, B, C, and A

growth schedules). In order to place the B, C, and A growth schedules on approximately equal footing, the

damping parameterα is chosen in each case, through the use of Table 2 (for larged), such that the three

growth schedules yield (approximately) the same total number of optAdd/optDel operations. In particular,

we have chosen the damping parameterα as 0.625, 0.25, and 0.4 for the B, C, and A growth schedules,

respectively.

For all 40 images in our test set and 6 sampling densities, we generated a meshusing each of the various

growth schedules and measured the resulting mesh approximation error in terms of PSNR. Individual results

for three specific images (namely, those listed in Table 1) are given in Table 3(a). Also, for each of the

13

240 test cases (i.e., 40 images with 6 sampling densities per image), the PSNR performance of the four

approaches was ranked from 1 (best) to 4 (worst), and the average and standard deviation of the ranks were

computed for each sampling density as well as overall, with the results shown inTable 3(b). (The standard

deviations are the numbers shown in parentheses in the table.) To assist in visualizing trends, in each row of

the tables, the best and second-best results are shown inbold andgray italic, respectively. Examining the

statistical results of Table 3(b), we can see that the standard deviations are all very small and in many cases

zero, meaning that the rankings are very consistent across test cases. Clearly, from the table, the A growth

schedule ranks best, followed (in order) by the C, B, and I growth schedules. The results for individual test

cases shown in Table 3(a) can be seen to be consistent with the statistical results, with the A growth schedule

faring best, outperforming the C, B, and I growth schedules by margins ofup to 0.21 dB, 0.31 to 0.69 dB,

and 1.91 to 4.61 dB, respectively. It is worth noting that the I growth schedule performs especially poorly,

producing results that are very substantially worse (i.e., by more than 1 dB)than even its closest competitor

(namely, the B growth schedule). Although we have elected to present results for one particular choice of

candidate-selection policy (namely, PWAE), we have observed similar trends with other candidate-selection

policies. Based on the above results, we recommend the use of the A growth schedule.

As we saw above, the I growth schedule performs quite poorly relative to the other growth schedules.

There is, however, a good reason for this behavior, as we shall now explain. The I growth schedule starts

with a nearly empty mesh (of only four sample points) and achieves the target mesh sizeonly by adding

points (i.e., points arenever deleted). Because the underlying framework is greedy in nature, the preceding

approach has a fundamental weakness. Since the framework is greedy, it will unavoidably make some

bad decisions regarding points to add/delete, and such bad choices lead to a degradation in mesh quality.

Therefore, in order to achieve the highest possible mesh quality, a mechanism is needed for allowing bad

decisions to be reversed. In the case of the I growth schedule, no suchmechanism exists. If the decision

to add a particular point turns out later to have been a bad one, there is no way for the point to be deleted.

For similar reasons, a growth schedule based solely on point deletion (without ever adding points) is also

fundamentally weak. In contrast, the B, C, and A growth schedules alternate between the addition and

deletion of points. Thus, if a bad choice is made in adding a point, the choice can effectively be undone

by later deleting the same point. Similarly, if a bad choice is made in deleting a point, thechoice can be

effectively undone by later adding the same point. Consequently, growth schedules that alternate between

the addition and deletion of points are fundamentally more robust to the bad choices inherent in a greedy

framework. In fact, it was precisely the preceding observation that motivated our proposal of a mesh-

generation framework that is based onboth the addition and deletion of points.

14

To better illustrate the shortcomings of a growth schedule that only involves theaddition of points,

we consider an example. For a simple color-wheel image, a mesh with a sampling density of 0.09% was

generated using each of the I and B growth schedules. The reconstructed images and corresponding image-

domain triangulations are shown in Figure 2. The I growth schedule, startingfrom a nearly empty mesh

(having only four sample points), simply adds points until the target number ofsample points is achieved.

From the resulting triangulation, shown in Figure 2(b), we can see that this process leads to an undesirable

clustering of points. Although the B growth schedule also starts in an identicalfashion to the I growth

schedule, initially obtaining exactly the same triangulation as in Figure 2(b), instead of stopping as in

the case of the I growth schedule, the B growth schedule continues to deleteand add points, leading to

the final triangulation shown in Figure 2(d). Observe that the poor decisions initially made, which led to

an undesirable clustering of points, have been undone, resulting in a vastly superior triangulation. This

example clearly demonstrates the importance of having a mechanism whereby earlier bad decisions to

add/delete points can be reversed.

The above explains the poor performance of the I growth schedule. Therelative performance of the

remaining three growth schedules (namely, B, C, and A) is strongly influenced by the average mesh size

associated with each growth schedule. In particular, in the case of the B, C, and A growth schedules, the

average mesh size is below, approximately equal to, and above the target numberN of points, respectively.

Having a larger average mesh size is advantageous, as it offers more possibilities for the points that are

eventually chosen for the final mesh. The A growth schedule, which has the highest average mesh size

performs best, while the B growth schedule, which has the lowest averagemesh size, performs worst.

[Table 3 about here.]

[Figure 2 about here.]

Recall that each of the B, C, and A growth schedules are associated with adamping parameterα.

Therefore, one might reasonably wonder what effect this parameter has on mesh quality. In the case of all

three growth schedules, the clear trend is for mesh quality to improve asα is increased. To more concretely

demonstrate this behavior, we provide some experimental results in Table 4. This table shows the mesh

quality obtained for the A growth schedule with three different choices of damping parameterα. The

tendency for mesh quality to increase withα is clearly evident in these results. The above behavior can

be easily explained. Asα increases, the oscillations in mesh size decay more slowly, resulting in more

alternations between adding and deleting points. This provides more opportunity for bad choices to be

15

undone, yielding higher mesh quality. Of course, the higher mesh quality comes at the cost of increased

computational complexity. As a consequence of the above behavior, by making different choices forα, we

can tradeoff mesh quality against computational complexity.

[Table 4 about here.]

Comparison of Candidate-Selection Policies. Next, we examine the impact of the choice of candidate-

selection policy on mesh quality. To do this, we fix the growth schedule to be A withthe damping parameter

α = 0.4, disable the use of BPR, and then select from amongst the various candidate-selection policies under

consideration (namely, the PAE, PWAE, ALSEM, and hybrid policies). Forall 40 images in our test set and

6 sampling densities, we generated a mesh using each of the various candidate-selection policies and then

measured the resulting mesh approximation error in terms of PSNR. Individualresults for three specific

images (namely, those listed in Table 1) are given in Table 5(a). Also, for each of the 240 test cases (i.e.,

40 images with 6 sampling densities per image), the PSNR performance of the four candidate-selection

policies was ranked from 1 (best) to 4 (worst), and the average and standard deviation of the ranks were

computed for each sampling density as well as overall, with the results shown inTable 5(b). (The standard

deviations are the numbers shown in parentheses in the table.) Again, the best and second-best results in

each case are shown inbold andgray italic, respectively.

Examining the statistical results averaged across all images as shown in Table5(b), we can see that

the ALSEM policy clearly performs best, followed by (in order) the hybrid,PWAE, and PAE policies. A

more detailed analysis shows that the PAE policy is worst in 233/240 (97%) of the test cases (with one rare

exception being the case of thebull image at a sampling density of 1.0% as shown in Table 5(a)). Also,

the hybrid policy was observed to perform better than the PAE and PWAE policies in 238/240 (99%) of

the test cases. Looking at the results for individual test cases shown inTable 5(a), we can see that the best

result is consistently produced by either the ALSEM or hybrid policy. In particular, the ALSEM policy

beats the PAE and PWAE policies by margins of 0.20 to 1.07 dB and up to 1.10 dB,respectively, while

the hybrid policy beats the PAE and PWAE policies by margins of 0.47 to 0.95 dB and 0.08 to 0.77 dB,

respectively. Although best on average (as shown by the results of Table 5(b)), the ALSEM policy is not

always best in every individual case. In particular, for some images and sampling densities, the hybrid policy

can sometimes perform better than the ALSEM policy. Typically, this tends to happen in instances where

the PWAE policy also beats the ALSEM policy (e.g., the cases of thect andbull images in Table 5(a)).

Although the above results are specifically for the A growth schedule, we should note that similar trends

were observed for the other growth schedules as well. As we will see later, the ALSEM policy typically

16

requires about 25% to 50% more computation than the hybrid policy. For the above reasons, we recommend

the use of both the ALSEM and hybrid policies. The ALSEM policy is best when (average) mesh quality

is the only consideration, while the hybrid policy is best when computational complexity also needs to be

taken into account. Unlike the PAE and PWAE policies, the ALSEM and hybrid policies directly consider

the change in approximation error (i.e., squared error) that results fromadding a new point to the mesh.

By directly taking this error into account, the ALSEM and hybrid policies are able to make more effective

choices (at candidate selection), leading to higher-quality meshes.

[Table 5 about here.]

Utility of Bad-Point Replacement (BPR). Now, we consider the effectiveness of the BPR scheme intro-

duced earlier. To accomplish this, we fix the growth schedule to be I and the candidate-selection policy to be

PWAE, and then allow BPR to be either used or not used. For all images in ourtest set and several sampling

densities, we generated a mesh both with and without using BPR and measuredthe resulting approximation

error in terms of PSNR. A representative subset of the results is shown inTable 6. From these results, it

is clear that BPR has the potential to offer a significant improvement in mesh quality, relative to not using

BPR. In particular, for the results given, BPR beats no BPR by a margin ofabout 0.81 to 2.90 dB. Although

the results shown here are specifically for the I growth schedule and PWAE candidate-selection policy, BPR

was also found to be beneficial for other combinations of growth scheduleand candidate-selection policy

as well. Essentially, BPR has the potential to improve mesh quality any time that bad points are present.

For other choices of growth schedule and candidate-selection policy, thenumber of bad points is sometimes

smaller, and the benefit of BPR is less pronounced. This said, however,there is no harm in always including

BPR, as it incurs essentially no extra computational cost in the case that no bad points are present in mesh.

For this reason, we recommend that BPR always be employed.

[Table 6 about here.]

5.4. Proposed Mesh-Generation Methods

Equipped with a good understanding of the effectiveness of the various growth schedules, candidate-

selection policies, and BPR, we are now in a position to introduce the two concrete mesh-generation meth-

ods proposed herein. Earlier, we found the A growth schedule, the ALSEM and hybrid candidate-selection

policies, and BPR to be most effective. So, not surprisingly, our methods utilize the preceding choices.

The first of our proposed mesh-generation methods, known as ID1, employs the A growth schedule, hybrid

candidate-selection policy, and BPR. The second method, known as ID2,is identical to the ID1 method,

17

except that the ALSEM candidate-selection policy is employed instead of the hybrid policy. Since the ID1

and ID2 methods both employ the A growth schedule, a choice must be made forthe damping parameter

α associated with this growth schedule. For both the ID1 and ID2 methods, we nominally chooseα = 0.4,

as experimentation has shown this value (ofα) to provide good performance at a reasonable computational

cost. The ID1 and ID2 methods are intended to offer somewhat different tradeoffs between mesh quality

and computational complexity, as will be seen later.

Having introduced our proposed ID1 and ID2 mesh-generation methods,we now comment on the dif-

ferences between these methods and the GPR, GPRFS-ED, and IDDT schemes introduced earlier. As we

have seen, the ID1 and ID2 methods are not based exclusively on mesh refinement or exclusively on mesh

simplification. With these two methods, as part of the mesh-generation process, points areboth added to

and deleted from the mesh. In particular, the ID1 and ID2 schemes start witha trivial mesh consisting of the

(four) extreme convex-hull points of the image domain, and then add and delete points according to a growth

schedule that is carefully designed to yield high-quality meshes. Unlike the ID1 and ID2 schemes, the GPR

and GPRFS-ED methods are basedexclusively on mesh simplification. The GPR and GPRFS-ED methods

start with very large meshes, and thenonly delete points until the desired sampling density is achieved.

Points arenever added to the mesh with these schemes. In the case of the GPR scheme, the initial mesh is

chosen to consist of all sample points of the original image, while in the case ofthe GPRFS-ED scheme, the

initial mesh is chosen as a subset of the sample points of the original image, using an error diffusion process

(without any need for geometric algorithms). Since the GPR and GPRFS-ED methods only exclusively

delete points, no mechanism exists for undoing bad decisions (of points deleted). As experimental results

later confirm, this inability to reverse bad decisions limits the performance of these methods. In contrast,

the ID1 and ID2 methods do not suffer from this shortcoming. Lastly, the IDDT method from our earlier

conference paper [32] is obtained from the mesh-generation framework proposed herein by choosing the

candidate-selection policy as PWAE, the growth schedule as B withα = 1
2, and the use of BPR. As one

might suspect (and is later confirmed by experimental results), the IDDT method performs quite poorly

relative to the ID1 and ID2 schemes, due to its choice of a poorer performing candidate-selection policy and

growth schedule.

6. Evaluation of the Proposed Methods

Having introduced our ID1 and ID2 mesh-generation methods, we now compare their performance to

that of the state-of-the-art GPRFS-ED and GPR schemes (mentioned earlier) in terms of both mesh quality

and computational/memory complexity. For convenience, in what follows, we denote our ID1 and ID2

18

schemes with the damping parameterα as ID1(α) and ID2(α), respectively. In our evaluation, we consider

the performance of our ID1(0.4) and ID2(0.4) schemes (i.e., the ID1 andID2 methods with the damping

parameter chosen as the nominal value 0.4). Since, as was demonstrated earlier, higher mesh quality can

be obtained by increasing the damping parameterα used in the ID1 and ID2 methods, we also consider

the ID1(0.9) scheme in our evaluation in order to show what range of mesh-quality performance is possible

if one is willing to incur greater computational cost. The implementations of the GPRFS-ED and GPR

methods used in this evaluation are taken from [6] (and are written in C++). The software implementing our

ID1 and ID2 methods was developed by the author and is also written in C++. As an aside, we recall that,

for the mesh-generation problem being addressed herein, the mesh approximation of an image is required

to interpolate the original image at each of the mesh sample points. Consequently, the GPR method does

not employ a scheme like the least squares approximation technique described in [3]. In passing, we note

that although the GPR scheme is known for producing very high quality meshes and is used for comparison

purposes herein, if one is willing to incur additional complexity, another state-of-the-art method proposed

in [41], called AT∗, can produce even much higher quality meshes than the original GPR schemeand

possibly other methods considered herein.

Mesh Quality. For all 40 images in our test set and 7 sampling densities, we used each of thevarious

methods under consideration to generate a mesh, and then measured the resulting approximation error in

terms of PSNR. Individual results for three specific images (namely, thoselisted in Table 1) are given

in Table 7(a). For each of the 280 test cases (i.e., 40 images with 7 sampling densities per image), the

PSNR performance of the six methods was ranked from 1 (best) to 6 (worst), and the average and standard

deviation of the ranks were computed for each sampling density as well as overall, with the results shown in

Table 7(b). (The standard deviations are the numbers shown in parentheses in the table.) In the tables, the

best and second best results in each row are indicated bybold andgray italic, respectively. To demonstrate

that the ID1 and ID2 methods proposed herein make a very substantial contribution beyond the IDDT

method from the author’s earlier conference paper [32] (mentioned in Section 1), results for the IDDT

method are also included in these tables for comparison purposes.

To begin, we compare the ID1 and ID2 methods to the IDDT scheme. From the statistical results given

in Table 7(b), we can see that the ID1 and ID2 methods outperform the IDDT scheme by a wide margin,

with the IDDT scheme having a much poorer average ranking (with relativelylow standard deviation). In

fact, a more detailed analysis of the results shows that the ID1(0.9), ID2(0.4), and ID1(0.4) methods beat

the IDDT scheme in 280/280 (100%), 279/280 (99%), and 280/280 (100%) of the test cases. Examining

the results for the individual test cases in Table 7(a), we observe that the ID1 and ID2 methods beat the

19

IDDT scheme by a margin of 0.20 to 2.12 dB. Thus, the ID1 and ID2 methods represent a very substantial

contribution beyond the author’s conference paper which proposed the IDDT scheme. Since the ID1 and

ID2 methods are clearly superior to the IDDT scheme, we will not consider the IDDT scheme further in our

evaluation.

Now, we compare the ID1 and ID2 methods to the GPRFS-ED and GPR schemes. First, let us consider

the statistical results taken across all 40 test images as given in Table 7(b).The small standard deviations in

the table are indicative that the rankings are fairly consistent across testcases. Examining this table, we see

that: 1) the ID1(0.9) method ranks best overall (with rank 1.04) and bestat each sampling density; 2) the

ID2(0.4) method ranks second best overall (with rank 2.16) and second best at each sampling density;

and 3) the ID1(0.4) method ranks third best overall (with rank 3.46), thirdbest at 4/7 of the sampling

densities, and third best at all sampling densities above 0.5%. The fact thatthe ID1(0.9) and ID2(0.4)

methods quite consistently rank in first and second place, respectively, issuggested by their corresponding

low standard deviations (nearly all of which are below 0.5). Furthermore,a more detailed analysis shows

that: 1) the ID1(0.9) method beats the GPRFS-ED and GPR schemes in 280/280 (100%) and 277/280 (99%)

of the test cases, respectively; 2) the ID2(0.4) method beats the GPRFS-ED and GPR schemes in 277/280

(99%) and 269/280 (96%) of the test cases, respectively; 3) the ID1(0.4) method beatsthe GPRFS-ED

and GPR schemes in 210/280 (75%) and 184/280 (66%) of the test cases, respectively. As the results of

Table 7(b) suggest, the relative performance of the ID1(0.4) method relative to the GPR scheme improves

as the sampling density increases. In fact, for sampling densities above 0.5%, the ID1(0.4) method beats

the GPR scheme in 146/160 (91%) of the test cases. As we shall see later, at sampling densities below

0.5%, the GPR scheme requires over 23 times more computation time and over 100 times more memory

relative to the ID1(0.4) method. So, in any cases where these lower samplingdensities might be of practical

interest, the extreme savings in (computational and memory) complexity offered by the ID1(0.4) method

(relative to the GPR scheme) more than compensates for the performance difference between the ID1(0.4)

and GPR methods. Thus, in terms of average behavior, our ID1(0.4), ID1(0.9) and ID2(0.4) methods are

clearly superior to the state-of-the-art GPRFS-ED and GPR schemes. Moreover, in our ID1(α) method,

asα is varied from 0.4 to 0.9, we obtain a very substantial improvement in mesh quality, at the cost of

increased computational complexity. Thus, we can effectively tradeoff mesh quality against computation

time by varyingα.

Next, let us consider results for the individual test cases as given in Table 7(a). From these results, we

can see that: 1) the ID1(0.9) method is the clear winner, performing best in 20/21 test cases, being beaten by

only 0.02 dB in one instance (namely, thect image at a sampling density of 4%); 2) the ID2(0.4) method

20

is second best overall, ranking second and third in 13/21 and 8/21 of the cases, respectively; 3) the ID1(0.4)

method is third best overall, ranking first/second and third place in 8/21 and 11/21 of the cases, respectively.

These observations are consistent with the statistical results above from Table 7(b). A close examination of

the numbers reveals that: 1) the ID1(0.9) method beats the GPRFS-ED and GPR schemes by margins of

0.26 to 6.17 dB and 0.30 to 1.92 dB, respectively; 2) the ID2(0.4) method beats the GPRFS-ED and GPR

schemes by margins of 0.11 to 5.49 dB and 0.16 to 1.24 dB, respectively; 3) the ID1(0.4) method beats

the GPRFS-ED and GPR schemes by margins of 0.04 to 5.73 dB and up to 1.48 dB, respectively. So, in

terms of the individual test cases, our ID1(0.4), ID1(0.9), and ID2(0.4) methods are also clearly superior to

the GPRFS-ED and GPR schemes (sometimes by margins of a few dB). The excellent performance of our

ID1(0.4) and ID2(0.4) methods relative to the GPR scheme is particularly impressive given that, as we will

see later, they require very substantially less (often by more than an orderof magnitude) computation and

memory.

In the above evaluation, PSNR was found to correlate reasonably well withsubjective quality. For

the benefit of the reader, however, we provide an example illustrating the subjective quality achieved by

the various methods. In particular, for one of the test cases involving thebull image from Table 7(a), a

small part of each image reconstruction is shown under magnification in Figure 3. Examining this figure

closely, we can see that the reconstructions produced by the ID1(0.4),ID2(0.4), and ID1(0.9) methods in

Figures 3(a) to (c) are better than those obtained from the GPRFS-ED andGPR schemes in Figures 3(d)

and (e). In particular, the reconstructions from the GPRFS-ED and GPRschemes (especially the former)

tend to have more disturbing triangle-tooth artifacts along image edges than the reconstructions produced

by our proposed methods.

[Table 7 about here.]

[Figure 3 about here.]

Computational Complexity. Next, we consider the computational complexity of the various mesh-

generation methods under consideration. For the purposes of this evaluation, computational complexity is

measured in terms of execution time. Before proceeding to present any experimental results, we need to

make one very important comment regarding the various software implementations used in our evaluation.

In particular, the implementations of the GPRFS-ED and GPR methods from [6] (used in our evaluation)

are much more highly optimized for execution speed than the software that implements our ID1 and ID2

methods. Although our software was carefully designed to be reasonablyefficient, little effort was made to

21

optimize the code beyond this basic level of efficiency. Even more importantly, our software was designed

to be general enough to handle any concrete mesh-generation method based on our framework (from Sec-

tion 3). Because our code had to handle this very general case, the extent to which specific cases (such as

the ID1 and ID2 methods) could be optimized was severely limited. So, for the above reasons, the imple-

mentation of the GPRFS-ED and GPR methods has a very unfair advantage in terms of execution time. This

very important fact must be taken into consideration when interpreting the experimental results presented

in what follows.

For the several test cases from Table 7(a) involving thelena image, the time required for mesh gener-

ation was measured, yielding the results shown in Table 8. (These measurements were made on relatively

mediocre hardware, namely a seven-year old notebook computer with a 3.4 GHz Intel Pentium 4 and 1 GB

of RAM.) As mentioned earlier, the GPRFS-ED and GPR methods can be viewedas very-trivial special

cases of our framework. In fact, our software implementation of our computational framework also sup-

ports both of these methods. So, for the GPRFS-ED and GPR methods, we provide two sets of numbers.

The first set was obtained with the implementation from [6], while the second set, given in parentheses, is

obtained by using our implementation (i.e., as a special case of our very general code).

To begin, let us focus only on the first set of numbers for the GPRFS-EDand GPR methods. The main

observations that we want to make are as follows. First, in spite of the ID1(0.4) and ID2(0.4) methods

producing better quality meshes than the GPR scheme (as seen earlier), these better results are obtained

with much less computation time. (Again, keep in mind that the GPR scheme has an unfair advantage,

being more highly optimized.) In particular, the ID1(0.4) and ID2(0.4) methodshave execution times about

0.04 to 0.56 times and 0.06 to 0.68 times those of the GPR scheme, respectively. Second, in spite of the

ID1(0.4) and ID2(0.4) methods producing significantly better quality meshesthan the GPRFS-ED scheme

(as seen earlier), this better quality does not come at the cost of an orderof magnitude (i.e., ten times)

more computation. The computational cost is, in fact, quite reasonable. Thatis, our ID1(0.4) and ID2(0.4)

methods have execution times about 1.27 to 2.02 times and 1.77 to 2.45 times those of the GPRFS-ED

scheme, respectively. (Again, keep in mind that the GPRFS-ED scheme hasan unfair advantage, being

more highly optimized.) Third, we observe that for the ID1(α) method, asα increases (from 0.4 to 0.9),

so too does computation time. A similar behavior is also exhibited in the case of the ID2(α) method.

Thus, in our ID1 and ID2 methods, by varyingα, we can tradeoff between mesh quality and computational

complexity.

Now, let us also consider the second set of numbers (in parentheses) for the GPRFS-ED and GPR

methods. Observe that the execution times for the GPRFS-ED and GPR schemes are significantly higher

22

in the case of our implementation (i.e., the numbers in parentheses) than in the case of the implementation

from [6] (i.e., the numbers not in parentheses). This difference in execution times shows that the two

implementations are not equally optimized, as we indicated above. Following this lineof reasoning, we

argue that if our ID1 and ID2 methods were implemented with a level of optimizationequal to the GPRFS-

ED and GPR schemes, it is quite likely that our ID1(0.4) method would be fasterthan the GPRFS-ED

scheme, and our ID2(0.4) method would likely be only marginally slower than, or even comparable in

speed to, the GPRFS-ED scheme. In this sense, our ID1(0.4) and ID2(0.4) schemes compare very favorably

to the GPRFS-ED scheme in terms of computational complexity.

Memory Complexity. Lastly, it is worthwhile to briefly comment on the memory complexity of the

various mesh-generation methods. The amount of memory required by eachof these methods is largely

determined by the peak mesh size (i.e., the maximum number of sample points in the mesh). For an image

of width W and heightH, and a sampling densityD (where typicallyD < 8
100 = 8%), the peak mesh size

for each of the GPRFS-ED and GPR schemes is 4DWH andWH, respectively. In the case of our ID1

and ID2 methods, the peak mesh size is 2DWH. So, all of our proposed methods have a peak mesh size

that is smaller than in the cases of the GPRFS-ED and GPR schemes by factorsof 2 times (independent of

sampling density) and 6.25 to 400 times (for sampling densities from 8% to 0.125%), respectively.

[Table 8 about here.]

BPR and Other Mesh-Generation Methods. Earlier, we mentioned that our BPR scheme can be added

as a postprocessing step to other previously-proposed mesh-generation methods in order to produce meshes

of higher quality. Now, we provide an example to substantiate this claim. In particular, we consider the ED

method (mentioned earlier). As it turns out, the ED method typically produces meshes where about 50%

of the sample points are bad. (Note that, in this context, we mean “bad” in the specific sense introduced

previously in Section 5.2.) Thus, the ED method can potentially benefit from theuse of our BPR scheme.

With this in mind, we propose a modified version of the ED method, calledoptimized ED (OED), which

includes our BPR scheme as a postprocessing step. That is, the OED methodfirst employs the ED scheme

to produce a mesh with the desired number of sample points, and then our BPR scheme is applied to the

resulting mesh. For all 40 images in our test set and 7 sampling densities (280 test cases in total), each of

the ED and OED methods was used to generate a mesh and the resulting mesh approximation error was

measured in terms of PSNR. Individual results for three images are givenin Table 9, with the best result in

each case indicated inbold. Examining the results of the table, we find the OED method outperforms the

ED scheme in each case, by margins of about 2.95 to 16.48 dB. Furthermore, a more detailed examination

23

of the results for all 280 test cases (i.e., 40 images with 7 sampling densities perimage) shows that the OED

method outperforms the ED scheme in 280/280 (100%) of the test cases, by margins varying from about 2

to 17 dB. Clearly, the addition of the BPR scheme to the ED method (resulting in ourOED method) has

led to a very marked improvement in mesh quality. From these results, it is clear that our BPR method has

potential value in further optimizing meshes produced by other (previously-proposed) methods. In passing,

we note that the BPR postprocessing step added (to the ED scheme) in the OEDmethod only adds a few

seconds of extra computation time for an image such aslena. So, the increase in mesh quality does not

come at an exorbitant computational cost.

[Table 9 about here.]

7. Conclusions

In this manuscript, we have proposed a flexible new mesh-generation framework for image represen-

tation, along with two concrete methods derived from this framework, knownby the names ID1 and ID2.

Through experimental results, the ID1 and ID2 methods were shown to perform extremely well, producing

meshes of significantly higher quality than the state-of-the-art GPRFS-ED and GPR methods at a reasonably

modest computational cost. Furthermore, the ID1 and ID2 methods each provide a means whereby mesh

quality can be increased (or decreased) in return for a corresponding increase (or decrease) in computational

cost (i.e., by varying the damping parameterα). This computational scalability makes our methods suitable

for a wide range of applications with differing computational constraints. One component of our proposed

methods, called BPR, was shown to be highly effective as a postprocessing step to improve upon the results

produced by other mesh-generation methods. In particular, this postprocessing strategy was shown to yield

much higher quality meshes when applied to the previously-proposed ED scheme. In short, the methods

that we have proposed can benefit the numerous applications where adaptively-sampled image representa-

tions are needed. Moreover, by further exploring the many other algorithmic possibilities that our proposed

framework affords, we are optimistic that it will be possible to derive even more effective mesh-generation

schemes.

References

[1] M. Sarkis, K. Diepold, Content adaptive mesh representation of images using binary space partitions, IEEE Trans. on Image

Processing 18 (5) (2009) 1069–1079.

[2] L. Demaret, A. Iske, Adaptive image approximation by linear splinesover locally optimal Delaunay triangulations, IEEE

Signal Processing Letters 13 (5) (2006) 281–284.

24

[3] L. Demaret, A. Iske, Advances in digital image compression by adaptive thinning, in: Annals of the Marie-Curie Fellowship

Association, Vol. 3, Marie Curie Fellowship Association, 2004, pp. 105–109.

[4] L. Demaret, A. Iske, Scattered data coding in digital image compression, in: Curve and Surface Fitting: Saint-Malo 2002,

Nashboro Press, Brentwood, TN, USA, 2003, pp. 107–117.

[5] N. Dyn, M. S. Floater, A. Iske, Adaptive thinning for bivariate scattered data, Journal of Computational and Applied Mathe-

matics 145 (2002) 505–517.

[6] M. D. Adams, A flexible content-adaptive mesh-generation strategyfor image representation, IEEE Trans. on Image Process-

ing 20 (9) (2011) 2414–2427.

[7] M. D. Adams, Progressive lossy-to-lossless coding of arbitrarily-sampled image data using the modified scattered data coding

method, in: Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, 2009, pp. 1017–1020.

[8] S. A. Coleman, B. W. Scotney, M. G. Herron, Image feature detection on content-based meshes, in: Proc. of IEEE Interna-

tional Conference on Image Processing, Vol. 1, 2002, pp. 844–847.

[9] M. Petrou, R. Piroddi, A. Talebpour, Texture recognition from sparsely and irregularly sampled data, Computer Vision and

Image Understanding 102 (2006) 95–104.

[10] M. Sarkis, K. Diepold, A fast solution to the approximation of 3-D scattered point data from stereo images using triangular

meshes, in: Proc. of IEEE-RAS International Conference on Humanoid Robots, 2007, pp. 235–241.

[11] J. G. Brankov, Y. Yang, N. P. Galatsanos, Image restoration using content-adaptive mesh modeling, in: Proc. of IEEE Inter-

national Conference on Image Processing, Vol. 2, 2003, pp. 997–1000.

[12] J. G. Brankov, Y. Yang, M. N. Wernick, Tomographic image reconstruction based on a content-adaptive mesh model, IEEE

Trans. on Medical Imaging 23 (2) (2004) 202–212.

[13] M. A. Garcia, B. X. Vintimilla, Acceleration of filtering and enhancement operations through geometric processing of gray-

level images, in: Proc. of IEEE International Conference on Image Processing, Vol. 1, 2000, pp. 97–100.

[14] G. Ramponi, S. Carrato, An adaptive irregular sampling algorithm and its application to image coding, Image and Vision

Computing 19 (2001) 451–460.

[15] P. Lechat, H. Sanson, L. Labelle, Image approximation by minimization of a geometric distance applied to a 3D finite

elements based model, in: Proc. of IEEE International Conference onImage Processing, Vol. 2, 1997, pp. 724–727.

[16] Y. Wang, O. Lee, A. Vetro, Use of two-dimensional deformable mesh structures for video coding, part II–the analysis prob-

lem and a region-based coder employing an active mesh representation, IEEE Trans. on Circuits and Systems for Video

Technology 6 (6) (1996) 647–659.

[17] F. Davoine, M. Antonini, J.-M. Chassery, M. Barlaud, Fractal image compression based on Delaunay triangulation and vector

quantization, IEEE Trans. on Image Processing 5 (2) (1996) 338–346.

[18] K.-L. Hung, C.-C. Chang, New irregular sampling coding methodfor transmitting images progressively, IEE Proceedings

Vision, Image and Signal Processing 150 (1) (2003) 44–50.

[19] M. D. Adams, An efficient progressive coding method for arbitrarily-sampled image data, IEEE Signal Processing Letters 15

(2008) 629–632.

[20] X. Yu, B. S. Morse, T. W. Sederberg, Image reconstruction using data-dependent triangulation, IEEE Computer Graphics and

Applications 21 (3) (2001) 62–68.

[21] N. Dyn, D. Levin, S. Rippa, Data dependent triangulations for piecewise linear interpolant, IMA Journal of Numerical

Analysis 10 (1990) 137–154.

25

[22] L. Darsa, B. Costa, Multiresolution representation and reconstruction of adaptively sampled images, in: Proc. of SIBGRAPI,

1996, pp. 321–328.

[23] G. Wolberg, Nonuniform image reconstruction using multilevel surface interpolation, in: Proc. of IEEE International Con-

ference on Image Processing, Vol. 1, 1997, pp. 909–912.

[24] Y. Eldar, M. Lindenbaum, M. Porat, Y. Y. Zeevi, The farthest point strategy for progressive image sampling, IEEE Trans. on

Image Processing 6 (9) (1997) 1305–1315.

[25] M. Kashimura, Y. Sato, S. Ozawa, Image description for coding using triangular patch structure, in: Proc. of IEEE Interna-

tional Conference on Communications Systems, 1992, pp. 330–334.

[26] M. Grundland, C. Gibbs, N. A. Dogson, Stylized multiresolution imagerepresentation, Journal of Electronic Imaging 17 (1)

(2008) 013009.1–17.

[27] D. Terzopoulos, M. Vasilescu, Sampling and reconstruction with adaptive meshes, in: Proc. of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 1991, pp. 70–75.

[28] M. D. Adams, An evaluation of several mesh-generation methodsusing a simple mesh-based image coder, in: Proc. of IEEE

International Conference on Image Processing, 2008, pp. 1041–1044.

[29] Y. Yang, M. N. Wernick, J. G. Brankov, A fast approach for accurate content-adaptive mesh generation, IEEE Trans. on

Image Processing 12 (8) (2003) 866–881.

[30] L. Rila, Image coding using irregular subsampling and Delaunay triangulation, in: Proc. of SIBGRAPI, 1998, pp. 167–173.

[31] M. Garland, P. S. Heckbert, Fast polygonal approximation of terrains and height fields, Tech. Rep. CMU-CS-95-181, School

of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA (Sep. 1995).

[32] M. D. Adams, An incremental/decremental Delaunay mesh-generation framework for image representation, in: Proc. of

IEEE International Conference on Image Processing, 2011, pp. 193–196.

[33] Kodak lossless true color image suite,http://r0k.us/graphics/kodak (2011).

[34] JPEG-2000 test images, ISO/IEC JTC 1/SC 29/WG 1 N 545 (Jul. 1997).

[35] USC-SIPI image database,http://sipi.usc.edu/database (2011).

[36] Michael Adams’ research datasets,http://www.ece.uvic.ca/~mdadams/datasets (2011).

[37] C. Dyken, M. S. Floater, Preferred directions for resolving the non-uniqueness of Delaunay triangulations, Computational

Geometry—Theory and Applications 34 (2006) 96–101.

[38] J. R. Shewchuk, What is a good linear finite element? interpolation, conditioning, anisotropy, and quality measures, Tech.

rep., Department of Computer Science, University of California at Berkeley, Berkeley, CA, USA (Dec. 2002).

[39] P. K. Agarwal, S. Suri, Surface approximation and geometric partitions, in: Proc. of ACM-SIAM Symposium on Discrete

Algorithms, 1994, pp. 24–33.

[40] K. Fleischer, D. Salesin, Accurate polygon scan conversion using half-open intervals, in: Graphics Gems III, 1995, pp.

362–365.

[41] L. Demaret, N. Dyn, A. Iske, Image compression by linear splines over adaptive triangulations, Signal Processing 86 (2006)

1604–1616.

26

List of Figures

1 MMSODD example. (a) Full image, showing a rectangular region of interest. (b) Region
of interest under magnification and the (c) corresponding MMSODD. 28

2 The reconstructed images obtained for thewheel image at a sampling density of 0.09%
using the (a) I (21.49 dB) and (c) B (31.87 dB) growth schedules and (b) and (d) their
corresponding triangulations. 29

3 Comparison of the subjective mesh-quality for the various methods. Part of the recon-
structed image obtained for thebull image at a sampling density of 0.125% using each of
the (a) ID1(0.4) (34.60 dB), (b) ID2(0.4) (34.36 dB), (c) ID1(0.9) (35.04 dB), (d) GPRFS-
ED (28.87 dB), and (e) GPR (33.12 dB) methods. 30

27

(a) (b) (c)

Figure 1: MMSODD example. (a) Full image, showing a rectangular region of interest. (b) Region of interest under magnification
and the (c) corresponding MMSODD.

28

(a)
X X

XX

XXXX

X
XXX

XX
XX

XX
XXX

XX
X
X
X

X

XXXXXXXX
XXX

XXX
X

X

X XXX X

X

XX

X

XX XX

X

XX

XXXXXX

XX
X

X

X

XX X

X

X
X

X

XXXXXXX

XX
XX

X XX
X XX
X

X

X

XXXXXXXXX

XXX

X

XX
X

X
X

XX

X

XX XXXX XXXX X XX
X

X XX XXXXXXXXXXXX X

X
X
XXXX XXXXXXXXXXX X X

XXX

X

X

XX

X

X

XX
X

X
XXX

X

X
XXXXXXXXX XXX X

XX XX X

X

XXX
XX

XXXX XXX XXX
XXX

X

XXXXXX
XXX XXX

(b) (c)
X X

XX

XXX
X

X
X

X

X

X
X

X

X

X X
X

X
X

XX

X

X

X X XXX XX

X

XX

X
X

X

X

X
X

X X
X

X

X XXXXX

X

X

X

X
X

X

X
X X

X
X

X

X

X

X

XX XXX

X

X

XX XX
X

XXX

X

XXX

X

X

XX

X

XX XX

XX XX X
XXX X

XX XX XX
X

XXX XXXXXX XXX X XX X XX X XX XX X X X XX X XX XX XX
X
X

XX

X

X

X

X
X
XX

X
XX XX X

X

X

X
XXX X

X XX XX XX
X

X
XX X

XX
X

X
X

X

XX

X

X

X
X

X
X

X
X X

X
X

XX

XX

XX
XX

X

X

XXX
XX

XX
X XX

X
X

X

X
X

X XX XX
XX XX X

(d)

Figure 2: The reconstructed images obtained for thewheel image at a sampling density of 0.09% using the (a) I (21.49 dB) and
(c) B (31.87 dB) growth schedules and (b) and (d) their corresponding triangulations.

29

(a) (b) (c)

(d) (e)

Figure 3: Comparison of the subjective mesh-quality for the various methods. Part of the reconstructed image obtained for the
bull image at a sampling density of 0.125% using each of the (a) ID1(0.4) (34.60 dB), (b) ID2(0.4) (34.36 dB), (c) ID1(0.9)
(35.04 dB), (d) GPRFS-ED (28.87 dB), and (e) GPR (33.12 dB) methods.

30

List of Tables

1 Test images .32
2 Operation counts for the various growth schedules, whered = N − |Γ|, ℓ =

⌊

log1/α d
⌋

, and

β = 1−αℓ+1

1−α . 33
3 Comparison of the mesh quality obtained with the various growth schedules. (a) PSNRs for

three specific images. (b) Rankings averaged across 40 images. 34
4 Effect of varying the damping parameterα in the A growth schedule 35
5 Comparison of the mesh quality obtained with the various candidate-selection policies.

(a) PSNRs for three specific images. (b) Rankings averaged across 40 images. 36
6 Effect of using BPR on mesh quality . 37
7 Comparison of the mesh quality for the various methods. (a) PSNRs for three specific

images. (b) Rankings averaged across 40 images. 38
8 Comparison of the computation time for the various methods in the case of thelena image 39
9 Comparison of the mesh quality for the ED and OED methods (for three specific images). . 40

31

Table 1: Test images
Name Size, Bits/Sample Description
bull 1024× 768, 8 computer-generated, cartoon bull [36]
ct 512× 512, 12 tomography [34]
lena 512× 512, 8 woman [35]

32

Table 2: Operation counts for the various growth schedules, whered = N − |Γ|, ℓ =
⌊

log1/α d
⌋

, andβ = 1−αℓ+1

1−α .

Growth optAdd optDel Total Total Count,
Schedule Count Count Count Larged
I = d = 0 = d = d
B ≈ βd ≈ (β − 1)d ≈ (2β − 1)d ≈

(

1+α
1−α

)

d

C ≈ 2βd ≈ (α + 1)βd ≈ (α + 3)βd ≈
(

3+α
1−α

)

d

A ≈ (β + 1)d ≈ βd ≈ (2β + 1)d ≈
(

3−α
1−α

)

d

33

Table 3: Comparison of the mesh quality obtained with the various growth schedules. (a) PSNRs for three specific images.
(b) Rankings averaged across 40 images.

(a)
Samp.
Density PSNR (dB)

Image(%) I B C A
bull 0.125 29.82 34.07 34.37 34.43

0.250 34.74 37.75 38.29 38.38
0.500 38.07 40.59 41.04 41.25
1.000 40.65 42.51 42.99 43.14

ct 0.250 29.91 32.70 32.97 33.01
0.500 35.37 37.54 38.12 38.16
1.000 39.49 41.59 41.85 41.91
2.000 43.40 45.37 45.77 45.75

lena 0.500 23.99 25.89 26.37 26.51
1.000 27.19 28.46 29.02 29.10
2.000 29.81 31.12 31.60 31.78
3.000 31.23 32.51 33.06 33.20

(b)
Samp.
Density Mean Rank†
(%) I B C A
0.125 4.00 (0.00)3.00 (0.00)1.98 (0.16) 1.02(0.16)
0.250 4.00 (0.00)3.00 (0.00)2.00 (0.00) 1.00(0.00)
0.500 4.00 (0.00)3.00 (0.00)1.98 (0.16) 1.02(0.16)
1.000 4.00 (0.00)3.00 (0.00)1.98 (0.16) 1.02(0.16)
2.000 4.00 (0.00)3.00 (0.00)1.98 (0.16) 1.02(0.16)
3.000 4.00 (0.00)3.00 (0.00)1.95 (0.22) 1.05(0.22)
Overall 4.00 (0.00)3.00 (0.00)1.98 (0.16) 1.02(0.16)

†The standard deviation is given in parentheses.

34

Table 4: Effect of varying the damping parameterα in the A growth schedule
Samp. PSNR (dB)
Density α

Image (%) 0.4 0.6 0.9
bull 0.125 34.43 34.54 34.54

0.250 38.38 38.48 38.86
0.500 41.25 41.36 41.45
1.000 43.14 43.18 43.32

ct 0.250 33.01 33.02 33.25
0.500 38.16 38.18 38.24
1.000 41.91 41.96 42.01
2.000 45.75 45.79 45.85

lena 0.500 26.51 26.52 26.63
1.000 29.10 29.20 29.26
2.000 31.78 31.83 31.90
3.000 33.20 33.29 33.37

35

Table 5: Comparison of the mesh quality obtained with the various candidate-selection policies. (a) PSNRs for three specific
images. (b) Rankings averaged across 40 images.

(a)
Samp.
Density PSNR (dB)

Image (%) PAE PWAE ALSEM Hybrid
bull 0.125 33.65 34.43 34.36 34.60

0.250 38.23 38.38 38.97 38.89
0.500 41.22 41.25 42.25 41.95
1.000 43.17 43.14 44.24 43.91

ct 0.250 32.79 33.01 32.99 33.26
0.500 37.58 38.16 37.97 38.24
1.000 41.30 41.91 41.80 42.05
2.000 45.33 45.75 45.59 45.85

lena 0.500 26.30 26.51 27.05 26.99
1.000 28.83 29.10 29.56 29.51
2.000 31.49 31.78 32.12 32.15
3.000 32.98 33.20 33.65 33.63

(b)
Samp.
Density Mean Rank†
(%) PAE PWAE ALSEM Hybrid
0.125 3.88 (0.40) 3.08 (0.35) 1.05(0.32) 2.00 (0.23)
0.250 3.97 (0.16) 3.00 (0.23) 1.05(0.32) 1.98 (0.16)
0.500 4.00 (0.00) 2.97 (0.16) 1.12(0.40) 1.90 (0.30)
1.000 3.97 (0.16) 2.97 (0.28) 1.20(0.52) 1.85 (0.36)
2.000 3.95 (0.32) 2.92 (0.35) 1.27(0.64) 1.85 (0.43)
3.000 4.00 (0.00) 2.92 (0.27) 1.30(0.61) 1.77 (0.42)
Overall 3.96 (0.23) 2.98 (0.28) 1.17(0.49) 1.89 (0.34)

†The standard deviation is given in parentheses.

36

Table 6: Effect of using BPR on mesh quality
Samp.
Density PSNR (dB)

Image (%) No BPR BPR
bull 0.125 29.82 32.72

0.250 34.74 36.78
0.500 38.07 39.92
1.000 40.65 42.09

ct 0.250 29.91 31.11
0.500 35.37 36.60
1.000 39.49 40.76
2.000 43.40 44.56

lena 0.500 23.99 25.34
1.000 27.19 28.07
2.000 29.81 30.62
3.000 31.23 32.14

37

Table 7: Comparison of the mesh quality for the various methods. (a) PSNRs for three specific images. (b) Rankings averaged
across 40 images.

(a)
Samp. PSNR (dB)
Density GPRFS-

Image (%) ID1(0.4) ID2(0.4) ID1(0.9) ED GPR IDDT
bull 0.125 34.60 34.36 35.04 28.87 33.12 33.86

0.250 38.89 38.97 39.43 35.88 38.23 37.53
0.500 41.95 42.25 42.40 39.78 41.87 40.48
1.000 43.91 44.24 44.37 43.50 43.99 42.43
2.000 45.80 46.09 46.23 45.65 45.81 44.39
4.000 48.29 48.42 48.55 47.98 48.24 47.04
8.000 52.03 52.04 52.24 51.48 51.88 51.14

ct 0.125 28.51 28.73 29.15 23.94 28.17 27.54
0.250 33.26 32.99 33.42 30.38 32.15 32.25
0.500 38.24 37.97 38.39 36.86 37.22 37.59
1.000 42.05 41.80 42.12 40.73 41.35 41.42
2.000 45.85 45.59 45.93 44.63 45.33 45.39
4.000 50.24 50.05 50.22 49.62 49.79 49.72
8.000 55.18 55.08 55.19 54.81 54.89 54.63

lena 0.125 22.26 22.45 22.92 19.70 21.90 20.80
0.250 24.55 24.67 25.30 23.05 24.42 23.25
0.500 26.99 27.05 27.51 26.21 26.66 25.81
1.000 29.51 29.56 29.90 29.05 29.12 28.54
2.000 32.15 32.12 32.41 31.95 31.82 31.09
4.000 34.68 34.69 34.95 34.56 34.39 33.56
8.000 37.23 37.30 37.45 37.19 36.99 36.06

(b)
Samp. Mean Rank†
Density GPRFS-
(%) ID1(0.4) ID2(0.4) ID1(0.9) ED GPR IDDT
0.125 3.88 (0.56) 1.98 (0.42) 1.15(0.36) 5.47 (0.64) 3.10 (0.67) 5.43 (0.55)
0.250 3.72 (0.64) 2.05 (0.32) 1.05(0.22) 5.20 (0.56) 3.28 (0.68) 5.70 (0.52)
0.500 3.62 (0.90) 2.12 (0.40) 1.02(0.16) 4.93 (0.62) 3.45 (0.64) 5.85 (0.43)
1.000 3.50 (0.96) 2.20 (0.46) 1.00(0.00) 4.10 (1.01) 4.30 (0.76) 5.90 (0.38)
2.000 3.38 (0.81) 2.22 (0.48) 1.00(0.00) 3.83 (0.93) 4.70 (0.72) 5.88 (0.46)
4.000 3.17 (0.87) 2.25 (0.49) 1.02(0.16) 3.92 (0.83) 4.68 (0.66) 5.95 (0.22)
8.000 2.92 (0.69) 2.30 (0.52) 1.02(0.16) 4.12 (0.88) 4.72 (0.45) 5.90 (0.50)
Overall 3.46 (0.84) 2.16 (0.46) 1.04(0.19) 4.51 (1.01) 4.03 (0.94) 5.80 (0.47)

†The standard deviation is given in parentheses.

38

Table 8: Comparison of the computation time for the various methods in the case of thelena image
Samp. Time (s)

Density GPRFS-
(%) ID1(0.4) ID2(0.4) ID1(0.9) ED GPR

0.500 1.847 2.769 9.050 1.205 (1.852) 42.996 (212.343)
1.000 2.576 3.734 14.623 1.862 (2.550) 42.670 (211.359)
2.000 4.143 5.660 26.201 3.196 (4.409) 42.126 (211.094)
4.000 7.377 10.576 56.260 5.766 (9.335) 41.049 (209.105)
8.000 22.097 26.891 240.891 10.935 (26.124) 39.305 (206.994)

39

Table 9: Comparison of the mesh quality for the ED and OED methods (for three specific images).
Samp.

Density PSNR (dB)
Image (%) ED OED
bull 0.125 15.54 32.02

0.250 20.59 36.44
0.500 25.89 40.15
1.000 33.34 42.20
2.000 37.56 44.06
4.000 41.51 46.23
8.000 44.85 49.76

ct 0.125 16.61 26.72
0.250 17.81 30.70
0.500 21.61 35.82
1.000 29.45 40.44
2.000 35.62 44.02
4.000 41.53 48.13
8.000 46.74 51.89

lena 0.125 13.78 20.37
0.250 14.49 23.10
0.500 17.17 25.37
1.000 21.13 27.92
2.000 25.83 30.61
4.000 29.59 33.08
8.000 32.52 35.47

40

