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An improved method for generating triangle-mesh models of images
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Abstract

In earlier work, Yang et al. proposed a highly-effective
technique for generating triangle-mesh models of digi-
tal images, known as the error diffusion (ED) method.
In this paper, we propose a modified version of the ED
method that better exploits triangulation connectivity.
Through experimental results, our proposed method is
shown to generate image approximations of substan-
tially higher quality than those obtained with the ED
scheme, by an average margin of about 3 decibels in
terms of the peak-signal-to-noise ratio. Moreover, this
improvement in quality comes at a relatively modest
computational cost, with the proposed method typically
requiring only a few seconds of computation time.

1 Introduction

In recent years, there has been a growing interest in rep-
resentations of digital images that are based on nonuni-
form (i.e., content-adaptive) sampling. Because most
real-world images are non-stationary, uniform sampling
of images (e.g., using a rectangular grid) is almost guar-
anteed to be highly suboptimal, as it places too few sam-
ple points in regions of rapid change and too many sam-
ple points in regions of slow variation. For this reason, it
is desirable to select the sample points in a nonuniform
manner that is dependent on the image content.

Although many classes of methods for nonuniform
sampling have been considered over the years, a par-
ticularly effective one is the class based on triangle
meshes. In this approach, the (nonuniformly) chosen
sample points are triangulated, partitioning the image
domain into triangular faces, and then an approximat-
ing function is constructed over each face of the triangu-
lation. One key difference between the various triangle-
mesh-based approaches is in how they select the trian-
gulation connectivity (i.e., how vertices are connected
by edges). In this regard, the most common approach
is to choose the connectivity by using a Delaunay tri-
angulation [5, 6]. In such a case, the connectivity is
determined solely by the set of points being triangu-
lated. Another approach is to use a data-dependent tri-
angulation (DDT), which chooses the connectivity using
information in the dataset from which the points being
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triangulated were chosen. Since the connectivity of a
DDT may be chosen in an arbitrary manner, DDTs offer
much greater flexibility than Delaunay triangulations.

In [12], Yang et al. proposed a simple technique for
generating triangle-mesh models of images, known as
the error-diffusion (ED) method, which chooses the con-
nectivity of the sample points using a Delaunay trian-
gulation. Although quite effective, the ED method has
the weakness that it often yields triangulations in which
a significant number of triangulation edges crosscut im-
age edges (i.e., discontinuities in the image), leading
to a degradation in approximation quality. In this pa-
per, we propose a modified version of the ED method
that utilizes DDTs instead of Delaunay triangulations.
Through experimental results, we show that our pro-
posed method yields image approximations of much
higher quality (i.e., lower squared error) than the ED
method, with a relatively modest computational cost.

The remainder of this paper is organized as follows.
To begin, Section 2 provides some background informa-
tion on triangle meshes for image representation and
introduces some key methods related to our work. Our
proposed mesh-generation method is presented in Sec-
tion 3. This is done by starting with a general compu-
tational framework having a free parameter, and then
explaining how this free parameter was chosen in or-
der to arrive at our proposed method. Through exper-
imental results, Section 4 shows our proposed method
to yield image approximations of much higher quality
than the ED method, with a relatively modest compu-
tational cost. Finally, Section 5 concludes with a brief
summary of our key results and some closing remarks.

2 Background

In what follows, the cardinality of a set S is denoted |S|.
Consider an image function φ defined on the domain
I = [0,W −1]× [0,H−1] and sampled on the truncated
two-dimensional integer lattice Λ = {0, 1, . . . ,W − 1}×
{0, 1, . . . ,H − 1} (i.e., a rectangular grid of width W
and height H). A (triangle) mesh model of φ consists
of: 1) a set P = {pi} ⊂ Λ of sample points and their
corresponding function values {zi = φ(pi)}; and 2) a
triangulation T of P . As a matter of terminology, the
size and sampling density of the model are defined as
|P | and |P | / |Λ|, respectively. The mesh model is as-
sociated with a piecewise linear approximating function
φ̂ that interpolates φ at each point in P . More specifi-
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cally, over each face in T , φ̂ corresponds to the unique
linear function that interpolates φ at the three vertices
of the face. In our work, for a given model size (i.e.,
number of sample points), we want to choose the model
to minimize the mean squared error (MSE) ǫ between

φ̂ and φ, where

ǫ = |Λ|−1
∑

p∈Λ

(

φ̂(p) − φ(p)
)2

. (1)

For convenience, we will express the MSE in terms of
the peak-signal-to-noise ratio (PSNR), which is defined
as PSNR = 20 log10[(2

ρ − 1)/
√

ǫ], where ρ is the num-
ber of bits per sample used by the image φ. The PSNR
expresses the MSE relative to a signal’s dynamic range
using a decibel (dB) scale, with higher PSNR corre-
sponding to lower MSE.

ED Method. As mentioned earlier, one highly ef-
fective method for generating mesh models of images
is the ED method [12]. Since our work builds on the
ED method, it is worthwhile to make a few brief com-
ments about this method here. In general terms, the
ED method consists of two steps:

1. Sample-point selection. Use Floyd-Steinberg er-
ror diffusion [8] in order to select the set P of
sample points (for the model) such that they are
distributed with a density approximately propor-
tional to the maximum-magnitude second-order di-
rectional derivative of the image.

2. Triangulation. Triangulate the sample points using
a Delaunay triangulation.

In step 1, the set P is always chosen to include all of
the extreme convex hull points of the image domain.
This ensures that the triangulation generated in step 2
covers the entire image domain. Since several variants
of the ED scheme are presented in [12], it is worth not-
ing, for the sake of completeness, that we consider the
variant with the following characteristics herein: 1) a
third-order binomial filter is used for smoothing; 2) non-
leaky error diffusion is used with a serpentine scan or-
der; 3) the sensitivity parameter γ is chosen as 1; and
4) the error diffusion algorithm is performed iteratively
in order to achieve exactly the desired number of sample
points.

LOP. Next, we present some details about triangu-
lations with the goal of introducing a key method of
interest in our work which relates to DDTs. An edge
e of a triangulation is said to be flippable if e has two
incident faces (i.e., is not on the triangulation bound-
ary) and the union of these two faces is a strictly convex
quadrilateral q. For a flippable edge e, an edge flip is
an operation that replaces the edge e in the triangu-
lation by the other diagonal of q. The fact that every
triangulation of a set of points is reachable from every
other triangulation (of the same set of points) via a fi-
nite sequence of edge flips motivated Lawson to propose

the so called local optimization procedure (LOP) [10].
The LOP is a technique for selecting the connectivity
of a triangulation so as to be optimal with respect to
some prescribed criterion. As a matter of terminology,
a triangulation is said to be optimal if every flippable
edge in the triangulation is optimal with respect to the
prescribed optimality criterion. The LOP simply ap-
plies edge flips to flippable edges that are not optimal
until the triangulation is optimal. Many different op-
timality criteria have been proposed in the literature,
numerous of which can be found in [7, 11]. One partic-
ularly important criterion in the context of our work is
the squared error (SE) optimality criterion. The SE cri-
terion deems an edge e to be optimal if applying an edge
flip to e would not lead to a strict decrease in the MSE
as given by (1). For most choices of optimality criterion
(including SE), the optimal solution produced by the
LOP is not uniquely determined. The nonuniqueness of
the solution is important because it implies that some
optimal solutions may be (and, in practice, are) much
better than others. The LOP is frequently employed to
choose triangulation connectivity in the case of DDTs.

3 Proposed Method and Its Development

Having introduced the necessary background, we now
turn our attention to introducing the mesh-generation
method proposed in this paper. As mentioned previ-
ously, our method is essentially a modified version of
the ED scheme. The ED method, as explained earlier,
chooses triangulation connectivity using a Delaunay tri-
angulation. Experimentally, however, we have observed
that selecting the connectivity in this way results in a
mesh in which triangulation edges often crosscut image
edges (i.e., discontinuities in the image), leading to a
degradation in approximation quality. This motivated
us to consider choosing triangulation connectivity in a
more flexible manner, using a DDT instead of a Delau-
nay triangulation.

In what follows, we will first introduce the general
computational framework associated with our method,
where this framework has one free parameter. In order
to arrive at the specific method proposed in this pa-
per, we advocate a particular choice for this parameter.
Since it is likely helpful for the reader to see how we
arrived at this choice, we provide a few details in this
regard, including some experimental results.

The general computational framework associated
with our proposed method consists of the following
steps:

1. Sample-point selection. Select the set P of sample
points for a mesh model of the desired size, using
the same sample-point selection strategy in step 1
of the ED method (as introduced earlier in Sec-
tion 2).
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2. Initial mesh construction. Construct the triangu-
lation T by inserting the points in P in a trian-
gulation. More specifically, for each point p ∈ P ,
starting with the extreme convex hull points of P
(i.e., the four corners of the image bounding box)
and followed by the remaining points in randomized
order:
(a) Insert p in the triangulation T . This is accom-

plished by deleting any faces containing p and
retriangulating the resulting hole.

(b) Adjust the connectivity of T by applying the
LOP (described in Section 2) with the triangu-
lation optimality criterion chosen as oc, where
oc is a free parameter of our framework.

3. Final connectivity adjustment. Adjust the connec-
tivity of T by applying the LOP with the triangula-
tion optimality criterion chosen as SE (i.e., squared
error).

In step 2b of the above framework, the choice of the
optimality criterion oc is critical, as different choices of
oc will typically lead to vastly differing meshes. One
of the optimality criteria considered in our work is the
SE criterion introduced in Section 2. We also consid-
ered numerous other criteria, which we will introduce
shortly. Before proceeding further, however, there is a
very important comment that we must make regarding
our above computational framework. Since our objec-
tive is to produce a mesh that minimizes the MSE (as
given by (1)), this suggests the “obvious” solution of
choosing the optimality criterion oc as SE and simply
skipping final connectivity adjustment (i.e., step 3) al-
together (since final connectivity adjustment would not
change anything if oc were chosen as SE). In other
words, the obvious solution would be to simply opti-
mize for squared error using the LOP after the insertion
of each point in step 2. As it turns out, this obvious
solution performs extremely poorly. This poor perfor-
mance is due to an interplay between point insertion
and the SE criterion in step 2b, which leads to triangu-
lations with many poorly-chosen sliver (i.e., long thin)
triangles, severely degrading approximation quality. In
effect, this interplay causes the mesh-generation opti-
mization process to become trapped at a very poor lo-
cal optimum. To combat the above problem, our frame-
work allows the parameter oc to be chosen differently
from SE, and then adds a final connectivity-adjustment
step employing the SE criterion in order to reduce the
squared error for the final mesh.

Test data. Shortly, we will have the need to present
some experimental results obtained with various test
images. So, before proceeding further, a brief digression
is in order to introduce the test images used herein. In
our work, we have employed 40 images, taken mostly
from standard test sets such as [1], [3], and [2]. For
the most part, the results that we present herein focus

Table 1: Test images
Image Size, Bits/Sample Description
animal 1238 × 1195, 8 cartoon character

(computer generated)
cr 1744 × 2048, 10 x-ray [1]
lena 512 × 512, 8 woman [3]
peppers 512 × 512, 8 collection of pep-

pers [3]

on the representative subset of these images listed in
Table 1. This particular subset was chosen to contain a
variety of image types (i.e., photographic, medical, and
computer-generated imagery).

Choice of oc parameter. As we saw above, our com-
putational framework has the free parameter oc, which
corresponds to the choice of optimality criterion used
for the LOP (in step 2b). We will now briefly introduce
the possibilities that we considered for oc and describe
the experiments that led to our recommended choice for
oc, which will be presented shortly.

In our work, we considered ten possibilities for oc:

1. SE (as introduced earlier);
2. Delaunay [6, 10];
3. angle between normals (ABN) [7];
4. jump in normal derivatives (JND) [7];
5. deviations from linear polynomials (DLP) [7];
6. distances from planes (DP) [7];
7. edge-length-weighted ABN (ELABN) [4, Sec-

tion 2.2] (called absolute mean curvature in [4]);
8. Garland-Heckbert hybrid (GHH) [9, 11];
9. shape-quality-weighted SE (SQSE) [11]; and

10. JND-weighted SE (JNDSE) [11].

In the above list, we have provided references in which
the formal mathematical definition of each of these op-
timality criteria can be found. In the interest of brevity,
however, we have not included these definitions herein.
Note that, if oc is chosen as SE, final connectivity ad-
justment (i.e., step 3) effectively does nothing, as the
triangulation that is input to final connectivity adjust-
ment is already optimal with respect to the SE criterion.

To determine which optimality criterion is best, we
performed the following experiment. For each of the 40
images in our test set and five sampling densities per
image, we generated a mesh with each of the ten possi-
ble choices for the optimality criterion oc and measured
the resulting approximation error in terms of PSNR. A
representative subset of the results (namely, the results
for the images listed in Table 1) is given in Table 2, with
the best result in each case shown in italic font. From
Table 2, it is clear that the JNDSE criterion performs
best, followed by the SQSE and GHH criteria. In partic-
ular, the JNDSE criterion yields the best result in 17/20
of the test cases. From Table 2, it is also evident that
the SE criterion performs very poorly (as we claimed
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to be the case earlier). In terms of the overall results
taken over all 40 · 5 = 200 test cases (i.e., 40 images
with five sampling densities per image), the JNDSE cri-
terion performs best and second best in 164/200 (82%)
and 26/200 (13%) of the test cases, respectively. Based
on these results, the best choice for the oc parameter is
clearly JNDSE.

As the above experimental results show, choosing oc

as SE leads to very poor performance. Earlier, we ex-
plained that this behavior was due to an interplay be-
tween point insertion and the SE criterion, which leads
to triangulations with many poorly-chosen sliver trian-
gles. At this point, we provide an example to illus-
trate this phenomenon. For one of our test cases (from
above), part of the triangulation and corresponding im-
age approximation is shown in Figure 1 for the cases
of SE (which performs poorly) and JNDSE (which per-
forms well). From Figures 1(a) and (b), it is clear that
the result obtained with the SE criterion has a large
number of poorly-chosen sliver triangles, which leads to
large error in the image approximation. In contrast, the
result obtained from the JNDSE criterion does not ex-
hibit such a problem, as can be seen from Figures 1(c)
and (d).

Although the interplay between point insertion and
the LOP optimality criterion is complex, we can suggest
one possible reason why the SE criterion has a propen-
sity to produce triangulations with many poorly-chosen
sliver triangles. When a point is inserted in the triangu-
lation, one or more sliver triangles can sometimes result.
In some circumstances, when the SE optimality criterion
is used, the LOP is less likely to eliminate such sliver tri-
angles. This could, for example, be due to the squared
error cost associated with an edge and its flipped version
both being zero (e.g., when no points from the sampling
grid Λ fall inside the associated quadrilateral), in which
case no edge-flip is performed. In contrast, the JNDSE
criterion does not suffer from this type of problem as
it depends on a geometric criterion (namely, JND) in
addition to squared error.

Proposed method. The preceding experimental re-
sults show the best choice for the optimality-criterion
parameter oc to be JNDSE. Therefore, we recommend
that oc be chosen as JNDSE in our framework, and
the specific mesh-generation method that we propose in
this paper is the one that uses our framework with this
particular choice for oc.

4 Results

Having introduced our proposed method, we now eval-
uate its performance by comparing it in terms of mesh
quality to the ED method. For test data, we again em-
ploy the same 40 images described earlier in Section 3
(under the “Test data” heading).

(a) (b)

(c) (d)

Figure 1: Part of the image approximation obtained
for the lena image at a sampling density of 2% with the
(a) SE (20.72 dB) and (c) JNDSE (29.99 dB) optimality
criteria and (b) and (d) their corresponding triangula-
tions.

To evaluate mesh-quality performance, we proceeded
as follows. For all 40 images in our test set and five
sampling densities per image, we used each of the pro-
posed and ED methods to generate a mesh, and then
measured the resulting approximation error in terms of
PSNR. A representative subset of the results obtained
(namely, the results for the four images listed in Ta-
ble 1) is shown in Table 3. From Table 3, we can see
that our proposed method outperforms the ED method
in all 20 cases by a significant margin, namely, a mar-
gin of at least 1.88 dB. In terms of the overall results
taken over all 40 · 5 = 200 test cases (i.e., 40 images
with five sampling densities per image), our proposed
method beats the ED scheme in all 200 test cases by a
margin of 1.5 to 6.7 dB, with the average margin being
approximately 3 dB. From the preceding results, it is
clear that our proposed method yields meshes of much
higher quality, in terms of PSNR, than the ED scheme.

In the above evaluation, PSNR was found to correlate
reasonably well with subjective quality as perceived by
the human visual system. For the benefit of the reader,
however, we provide an example illustrating visual qual-
ity. For one of the test cases from Table 3, Figure 2
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Table 2: Comparison of the mesh quality obtained with various choices of the oc parameter
Sampling
Density PSNR (dB)

Image (%) SE Delaunay ABN JND DLP DP ELABN GHH SQSE JNDSE
animal 0.50 28.45 37.32 30.44 37.09 33.34 28.92 36.40 37.73 37.71 37.70

1.00 28.95 40.58 35.74 40.60 38.02 30.24 40.45 40.36 40.67 40.61
2.00 34.60 42.93 36.66 42.76 40.27 29.23 42.74 42.86 43.26 43.26

3.00 32.99 44.24 39.35 43.85 41.70 34.65 43.22 44.23 44.46 44.49

4.00 36.52 45.23 39.91 44.79 41.58 35.89 44.32 45.27 45.46 45.50

cr 0.50 31.19 34.40 30.38 34.45 32.42 30.23 34.22 34.30 34.81 34.84

1.00 32.41 36.33 33.01 36.35 34.42 31.16 36.37 36.48 37.13 37.16

2.00 33.33 38.68 34.34 38.36 36.33 32.52 38.24 38.75 38.95 39.01

3.00 34.12 39.57 34.95 39.32 36.96 33.78 39.17 39.62 39.76 39.82

4.00 35.63 40.10 36.29 39.89 37.56 33.54 39.70 40.19 40.31 40.36

lena 0.50 17.61 21.17 19.22 20.55 19.61 18.07 20.51 21.20 21.75 21.82

1.00 21.50 25.21 20.69 24.91 21.86 19.91 24.58 25.30 25.89 25.92

2.00 20.72 29.48 24.36 29.09 26.25 21.04 27.67 29.26 29.91 29.99

3.00 23.43 31.26 24.62 30.99 27.22 22.34 30.15 31.21 31.58 31.62

4.00 23.67 32.39 26.30 32.17 29.13 24.06 31.45 32.47 32.78 32.84

peppers 0.50 17.78 19.38 17.81 19.18 18.26 16.38 19.25 19.61 20.52 20.54

1.00 19.84 24.97 21.53 24.57 21.99 18.95 24.43 25.07 25.39 25.64

2.00 22.66 29.39 22.55 29.06 26.40 20.64 28.74 29.22 29.67 29.74

3.00 23.15 31.27 24.18 30.87 26.67 21.41 30.73 30.75 31.52 31.50
4.00 22.68 32.08 26.63 31.88 28.65 23.01 31.55 32.00 32.32 32.37

Table 3: Comparison of the mesh quality obtained with
the proposed and ED methods

Sampling
Density PSNR (dB)

Image (%) Proposed ED
animal 0.50 37.70 33.86

1.00 40.61 37.66
2.00 43.26 40.46
3.00 44.49 41.91
4.00 45.50 42.23

cr 0.50 34.84 31.96
1.00 37.16 33.84
2.00 39.01 35.72
3.00 39.82 37.63
4.00 40.36 38.48

lena 0.50 21.82 17.76
1.00 25.92 21.50
2.00 29.99 26.38
3.00 31.62 28.50
4.00 32.84 29.83

peppers 0.50 20.54 17.04
1.00 25.64 21.74
2.00 29.74 26.79
3.00 31.50 28.90
4.00 32.37 29.85

shows part of the image approximation and correspond-

ing image-domain triangulation obtained with each of
the proposed and ED methods. From this figure, we can
see that the image approximation produced by the pro-
posed method in Figure 2(a) is clearly of higher visual
quality than the image obtained with the ED scheme in
Figure 2(c). In particular, the proposed method better
preserves detail, such as image edges, compared to the
ED scheme. The reason for the better performance in
the case of the proposed method can be seen by exam-
ining the image-domain triangulations in Figures 2(b)
and (d). A careful examination of these triangulations
shows that, in the case of the proposed method, the
triangulation edges are better aligned with image edges
(i.e., discontinuities in the image). This leads to im-
proved mesh quality.

In terms of complexity, it is worthwhile to note that
our proposed method has a relatively low computational
cost. On the first author’s very-modest eight-year-old
Lenovo notebook computer, the proposed method typi-
cally requires only a few seconds of computation time for
mesh generation. For example, to generate a mesh for
the lena image with a sampling density of 2%, the pro-
posed method requires 1.5 seconds on this old Lenovo
machine. So, the use of DDTs in our proposed method
does not lead to a mesh-generation scheme requiring
computation times on the order of minutes (or tens of
minutes), as is the case with some other DDT-based
mesh-generation approaches. The amount of time re-
quired by our proposed method is, in fact, quite modest.
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(a) (b)

(c) (d)

Figure 2: Part of the image approximation obtained
for the lena image at a sampling density of 2% with the
(a) proposed (29.99 dB) and (c) ED (26.38 dB) methods
and (b) and (d) their corresponding triangulations.

5 Conclusions

In this paper, we proposed an improved method for
generating mesh models of images, based on the ED
scheme. Our proposed method makes use of DDTs in
order to better exploit triangulation connectivity for im-
proved approximation quality. Through experimental
results, our proposed method was shown to produce im-
age approximations of significantly higher quality than
those obtained with the ED scheme, both in terms of
PSNR (typically, by more than 1.5 dB) and visual qual-
ity. The improved approximation quality yielded by our
proposed method comes at a relatively modest cost in
terms of computation time. Thus, our proposed method
is of great value to the many applications that require
mesh models of images.
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