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Abstract

A new mesh model for images, which explicitly repre-
sents discontinuities (i.e., image edges), is proposed along
with a corresponding mesh-generation method that deter-
mines the mesh-model parameters for a given input im-
age. The proposed approach is demonstrated to be capable
of producing mesh-based image approximations of higher
quality (both objectively and subjectively) than those gen-
erated by the state-of-the-art error-diffusion (ED) method
of Yang, Wernick, and Brankov. For example, the image ap-
proximations produced by the proposed method are often
about 2.5 dB higher in PSNR than those produced by the
ED scheme.

1. Introduction

In recent years, there has been a growing interest in
image representations that are based on triangle meshes.
Such representations are beneficial in a number of appli-
cations, including image coding, motion tracking/compen-
sation [5], and geometric image manipulation [4]. Different
mesh models are characterized by different sets of model
parameters. In order to use a mesh model in a particular
application, we typically need a way in which to choose the
model parameters for a given input image. That is, a mesh-
generation method is needed. Many mesh-generation meth-
ods (along with their corresponding mesh models) have
been proposed to date, with one highly effective scheme
being the error-diffusion (ED) scheme of Yang et al. [5].
In this paper, we first introduce a mesh model that explic-
itly represents image edges. Then, we propose a mesh-
generation method, called the TA method, that selects the
model parameters for a given input image. As will be seen
later, our approach produces image approximations of much
better quality than those produced by the highly effective
ED scheme.

∗This work was supported by the Natural Sciences and Engineering
Research Council of Canada.

Table 1. Test images
Image Size Description
lena 512× 512 lady, USC image

database
peppers 512× 512 vegetables, USC

image database
bull 1024× 768 computer-

generated bull
glasses 1024× 768 ray-traced glass-

es/dishes
wheel 512× 512 antialiased color

wheel

The remainder of this paper is organized as follows.
First, Section 2 introduces our mesh model for images. Sec-
tion 3 presents our TA mesh-generation method. Then, in
Section 4, through experimental results, we evaluate the
performance of our method, showing it to yield much better
image approximations than the ED scheme. Finally, Sec-
tion 5 concludes the paper with a summary of our work.

In our work, we have employed numerous 8-bit/sample
grayscale (lattice-sampled) images as test data. Herein, we
present results for a small representative subset of these
images, namely the subset listed in Table 1. This subset
was deliberately chosen to include both photographic and
computer-generated imagery.

2. Mesh Model for Images

To begin, we introduce the mesh model for images em-
ployed by our proposed approach. The mesh model used
in our work is based on constrained Delaunay triangula-
tions [1]. In what follows, let Z denote the set of inte-
gers. Consider an image φ defined at the points Λ =
{0, 1, . . . ,W − 1}×{0, 1, . . . ,H − 1} (i.e., an image sam-
pled on a rectangular grid of width W and height H). Let
Γ = [0,W − 1] × [0, H − 1]. A mesh model for φ is
completely characterized by: 1) a set P = {pi} of sample
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Figure 1. The relationship between vertices,
constrained edges, and wedges. The (a) sin-
gle wedge, and (b) multiple-wedge cases.

points, where pi = (xi, yi) ∈ 1
2Z2 ∩ Γ; 2) a set E of edge

constraints (i.e., a set of pairs of sample points from P );
and 3) for each sample point pi, one or more wedge values
(where the term “wedge value” will be defined precisely
later). The quantities P and E along with the associated
wedge values are used to determine a function φ̂ defined
on Γ, where φ̂ is an approximation of φ. From the mesh
model φ̂, a lattice-sampled image can be reconstructed by
straightforward rasterization algorithms (such as four-times
supersampling). As a matter of terminology, we refer to
the quantity |P | / |Λ| as the sampling density. In what fol-
lows, we explain how φ̂ is defined in terms of P , E, and the
wedge values.

First, we construct a constrained Delaunay triangulation
of P with the constrained edgesE, which serves to partition
the image domain Γ into triangle faces. The constrained
edges are chosen to correspond to image edges. For each
vertex v ∈ P , the set of faces incident on v is partitioned
into what are called wedges. In particular, a wedge is a set
of consecutive faces in a loop around a vertex v that are
not separated by any constrained edge. This definition is
illustrated in Figure 1. If zero or one constrained edge is in-
cident on the vertex v, all faces incident on v form a single
wedge, as shown in Figure 1(a). Otherwise, if n constrained
edges are incident on v (where n ≥ 2), the faces incident
on v form n wedges, as shown in Figure 1(b). Wedges are
used to facilitate the modelling of discontinuities (i.e., im-
age edges). Since constrained edges are chosen to corre-
spond to image edges, a vertex v ∈ P that has more than
one wedge must be located along a discontinuity (i.e., im-
age edge). Each wedge of a vertex has associated with it
what is called a wedge value. The wedge value z of the
wedge w belonging to vertex v specifies the limit of φ̂(p) as
p approaches v from points inside the wedge w.

Now, we specify precisely how the function φ̂ is defined
at each point p ∈ Γ. There are two cases to consider: 1) p
is not on a constrained edge; 2) p is on a constrained edge.

Case 1. First, let us consider the case that p is not on
a constrained edge. Let f denote a face of the triangula-

tion with vertices pi = (xi, yi), pj = (xj , yj), and pk =
(xk, yk) that contains the point p. Let zi, zj , and zk denote
the wedge values for the face f corresponding to the ver-
tices pi, pj , and pk, respectively. Then, φ̂(p) = g(p), where
the function g is the unique planar interpolant that passes
through the points (xi, yi, zi), (xj , yj , zj), and (xk, yk, zk).

Case 2. Next, let us consider the case that p is on a con-
strained edge. If p is not an endpoint of a constrained edge,
φ̂(p) is the average of the values on the two sides of the
image discontinuity (computed as in case 1). On the other
hand, if p is an endpoint of a constrained edge (i.e., a vertex
in the triangulation), φ̂(p) is the average of all wedge values
for (the vertex) p.

3. Proposed Mesh-Generation Method

In order for the mesh model introduced in the previous
section to be useful, we need a means to choose the model
parameters (i.e., P , E, and the wedge values), given an ar-
bitrary input image φ. In particular, we want to be able to
choose the model parameters such that |P | = K, where
K is the target (i.e., desired) number of sample points for
the mesh. Recall that P consists of triangulation vertices,
and each vertex can have one or more wedge values. As a
matter of terminology, a vertex with exactly one wedge is
called a nonedge point, while a vertex with more than one
wedge is called an edge point. To construct P and E, we
first choose a set Pe of edge points along with the corre-
sponding edge constraints E. Next, we choose a set Pn of
nonedge points. Then, P is chosen simply as P = Pe ∪Pn.
In practical terms, the sample points in Pe allow for a good
image approximation around image edges, while the sam-
ple points Pn permit a good approximation away from im-
age edges. Since we require that |P | = K, Pe and Pn are
chosen subject to the constraint that |Pe| + |Pn| = K. So,
in summary, our proposed method involves the following
three steps: 1) Select Pe and E. 2) Choose Pn, and let
P = Pe ∪Pn. 3) Select the wedge values for each vertex in
P . In what follows, we describe each of these three steps in
more detail.

SELECTION OF EDGE POINTS Pe AND EDGE CON-
STRAINTS E . To choose Pe and E, we first need to lo-
cate and represent the image edges. To this end, we employ
an edge-detection algorithm to produce the (binary) edge
map that locates the discontinuities in the image. To detect
edges, the modified Canny edge detector proposed in [2]
is employed. This edge detector has low and high thresh-
olds, which we denote as τlow and τhigh, respectively. For
simplicity, we employ only a single threshold parameter τ
and then choose τlow and τhigh in terms of τ as given by
τlow = τ and τhigh = 2τ . Since the accuracy of the de-
tected edges significantly impacts the quality of the mesh
produced, we locate edges with half-pixel accuracy. This
is done by applying the edge detector to a higher resolu-
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Figure 2. Process of producing simplified
polylines. (a) Original image, (b) edge map,
and (c) simplified polylines.

tion version of the image produced by linear interpolation,
which is sampled on the grid 1

2Z2 ∩ Γ. After the edge
map has been obtained, each group of edge pixels in the
edge map that are 8-connected are joined together to form
a polyline. In cases where a polyline has one or more self-
intersections (excluding loops), the polyline is split at each
intersection point. In this manner, the final set of polylines
obtained are guaranteed not to have any self-intersections
(although loops are permitted).

Having generated the polylines (which correspond to im-
age edges), we reduce the number of the points in each of
the polylines by using the Douglas-Peucker (DP) polyline-
simplification algorithm [3]. The DP algorithm, in effect,
removes points from a polyline such that the resulting sim-
plified polyline approximates the original to within a speci-
fied tolerance. Herein, we denote the tolerance used by the
DP scheme as ε. After all of the polylines have been sim-
plified, we choose Pe as the vertices of the simplified poly-
lines and E as the line segments of these polylines. The
process of producing simplified polylines from an image is
illustrated in Figure 2.

SELECTION OF NONEDGE POINTS Pn. Having de-
termined Pe and E, we now need to select the set Pn

of nonedge points. In order to ensure that the constraint
|P | = K is satisfied, we need to choose Pn to be disjoint
from Pe and to have Kn = K − |Pe| points. To select
these Kn points, we employ the ED method of Yang et
al. [5]. The ED method uses error diffusion in order to se-
lect a good nonuniform sampling pattern (i.e., set of sample
points) for an image. With the ED method, the number of
sample points is indirectly controlled by an error diffusion
threshold, which we denote by ρ herein. Moreover, in the
ED method, the sensitivity of sample-point selection to lo-
cal image structure (such as edges) can be controlled by a
contrast parameter, which we denote by γ herein. Unfor-
tunately, due to a startup effect in error diffusion, the ED
method has a tendency, when Kn is small, to select rela-
tively few sample points in the first few rows of an image.
This can lead to unusually high approximation error. To
combat this problem, we always force a small number of
points from the first row of the image to be included in Pn.
Also, we wish to avoid choosing points for Pn that have al-

ready been chosen for Pe. As it turns out, the γ parameter
can be used to to reduce the likelihood of choosing points
(via the ED method) that have already been included in the
set Pe. Since the ED method may not yield exactly the de-
sired number of points (namely, Kn), we repeatedly apply
the ED algorithm, adjusting the threshold ρ until the desired
number of points are obtained. With Pe and Pn determined,
we now choose P as P = Pe ∪ Pn.

SELECTION OF WEDGE VALUES. Having chosen P
and E, we now construct the constrained Delaunay trian-
gulation of P with the edge constraints E. The triangu-
lation process partitions the image domain Γ into triangle
faces, with the triangle faces incident on each vertex be-
ing grouped into wedges. For each wedge w of each vertex
v ∈ P , we must now compute the corresponding wedge
value z. There are two cases to consider: 1) v has exactly
one wedge; 2) v has more than one wedge. Consider the
case that v has exactly one wedge. In this case, there is only
one wedge value z to compute, which is done as follows. If
v ∈ Z2, z = φ(v); otherwise, a local linear interpolant g is
constructed about v, and z = g(v). Now, consider the case
that v has more than one wedge. Let v′ = v+d where d is a
displacement of length 1.5 away from v along the line that
bisects the wedge. If v′ ∈ Z2, z = φ(v); otherwise, a local
linear interpolant g is constructed about v′, and z = g(v′).

CHOICE OF γ , τ , AND ε. As seen above, our mesh-
generation method has three parameters, namely, γ, τ , and
ε. As it turns out, the choice of these parameters can greatly
affect the quality of the meshes produced by our method and
must be carefully chosen. Here, we provide a recommenda-
tion as to how these three parameters should be selected.
Based on experimentation, we found that the contrast pa-
rameter γ is best chosen as γ = 0.5. Larger values of γ
were found to place too many sample points close to edges,
which is undesirable in our scheme as we already choose
sample points along edges by other means. On the other
hand, smaller values of γ were found to spread points too
uniformly, which is also not desirable. As for the param-
eters τ and ε, the best choice was found to be dependent
on the sampling density. Again, based on experimental re-
sults, we recommend that ε and τ be chosen as indicated
in Table 2 (where the choice is dependent on the sampling
density). Generally speaking, as τ increases, fewer edge
points are selected. Also, as ε is increased, polylines are
simplified to a greater extent, resulting in fewer edge points
being chosen. If either too many or too few edge points are
selected, the performance of our method will be degraded.
With the choices of ε and τ given in the table, we strike the
best balance for the number of edge points. In the remain-
der of this paper, we refer to our mesh-generation method,
with the choice of γ, ε, and τ recommended above, as the
Tu-Adams (TA) method.

REMARK ON NONEDGE POINT SELECTION. As ex-
plained earlier, our proposed TA method uses the ED
scheme internally in order to select nonedge points. Here,



Table 2. Recommended choice of ε and τ
(which depends on sampling density)

Samp.
density

(%)
ε τ

[0, 0.7) 2 90
[0.7, 1.5) 2 70
[1.5, 2.5) 1 50
[2.5, 5) 1 40

Table 3. Comparison of mesh quality ob-
tained with TA and TA-Random methods in
terms of PSNR

Image
Samp.
density

(%)

PSNR (dB)

TA TA-Random

lena
1.0 25.72 24.35
2.0 29.04 27.39
3.0 30.16 28.66
4.0 30.38 29.48

peppers
1.0 24.02 24.38
2.0 28.08 27.43
3.0 29.51 28.66
4.0 30.07 29.35

we present some experimental results to show the effective-
ness of this choice. For comparison purposes, we consider
a modified version of our TA method, called TA-Random,
that selects nonedge points in a random fashion. For sev-
eral test images and sampling densities, we used the TA
and TA-Random methods to generate meshes, and then we
measured the quality of the resulting image approximations
in terms of PSNR. A representative subset of the results is
shown in Table 3. From these results, we can see that, at
sampling densities greater than 1%, the TA method clearly
outperforms the TA-Random method. In other words, our
use of the ED scheme for nonedge point selection is much
more effective than choosing the points randomly. At very
low sampling densities, such as 1% for the peppers im-
age, random point selection sometimes performs better, but
at such low rates the image quality is so poor as to not
be useful. So, in short, at sampling densities that are suf-
ficiently high to be of practical interest, the use of the
ED scheme for selecting nonedge points is far superior to
choosing such points randomly.

4. Evaluation of Proposed Method

Having introduced our mesh model and TA mesh-
generation method, we now evaluate our method’s perfor-

Table 4. Comparison of mesh quality ob-
tained with TA and ED methods in terms of
PSNR

Image
Samp.
density

(%)

PSNR (dB)

TA ED

lena

1.0 25.29 21.67
2.0 29.04 26.25
3.0 30.16 28.50
4.0 30.38 29.67

peppers

1.0 24.50 21.69
2.0 28.08 26.63
3.0 29.51 28.79
4.0 30.07 29.82

bull

0.1 17.06 13.96
0.25 30.23 17.60
0.5 34.33 27.57
1.0 36.97 34.00

glasses

1.0 24.82 20.67
2.0 27.98 25.52
3.0 29.21 27.98
4.0 29.63 29.31

wheel

0.1 25.27 9.16
0.25 31.10 12.29
0.5 34.19 14.95
1.0 35.60 22.36

mance by comparing the quality of the mesh-based image
approximations produced by our method with those gener-
ated by the ED scheme. For numerous images and sampling
densities, the TA and ED methods were used to generate
meshes and then the quality of the associated image approx-
imations were measured in terms of PSNR. A representative
subset of the results (for the images from Table 1) is shown
in Table 4.

From the results in the table, we can see that our TA
method can produce meshes of much higher quality than
the ED scheme in terms of PSNR. For complex images like
lena, peppers and glasses, our TA method outper-
forms that ED scheme by 0.25 dB to 4.15 dB, which is
quite significant. For images that have many sharp edges
like bull and wheel, the margin by which our TA method
beats the ED scheme is even greater, ranging from 2.97 dB
to 19.24 dB.

The reconstructed lena images and wheel images pro-
duced by different methods and their corresponding triangu-
lations are shown in Figures 3 and 4, respectively. From
these figures we can see that, our TA method outperforms
not only in terms of PSNR, but also in terms of the visual
quality. At a very low sample density (0.25%), the recon-
structed wheel image produced by our TA method achieves
a significant improvement compared with that produced by
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Figure 3. Image approximations obtained
with the (a) TA (29.04 dB) and (b) ED (26.25
dB) methods and their corresponding trian-
gulations (c) TA and (d) ED for the lena im-
age at a sampling density of 2%.

the ED method. Observe that, with the results produced by
our TA method, the edges of the triangulation align very
well with the image edges, and the number of sliver tri-
angles is much smaller, as compared to the ED scheme.
Since the discontinuities are explicitly preserved with our
TA method, the reconstructed images produced with our
method look much sharper and clearer, and have much
higher PSNR than those generated by the ED scheme. In
passing, we make one last observation. Earlier, we men-
tioned that the ED method can sometimes place an abnor-
mally small number of points in the first few rows of an im-
age. This effect is evident in the top part of the triangulation
in Figure 3(d).

5. Conclusions

In this paper, we have introduced a mesh model for im-
ages, which explicitly represents discontinuities (i.e., im-
age edges), and proposed a corresponding mesh-generation
method for selecting the model parameters for a given in-
put image. Our proposed approach was shown to produce
better quality mesh-based image approximations, in terms
of both PSNR and subjective quality, than the previously-
proposed state-of-the-art ED scheme, especially for images

(a) (b)

(c) (d)

Figure 4. Image approximations obtained
with the (a) TA (31.10 dB) and (b) ED (12.29
dB) methods and their corresponding trian-
gulations (c) TA and (d) ED for the wheel im-
age at a sampling density of 0.25%.

with sharp edges. Through the explicit representation of
image discontinuities, our approach is able to perform ex-
ceedingly well, further improving upon the the state of the
art in mesh-based image representations.
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