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Abstract— A new technique is proposed for the design of high-
performance quincunx filter banks for the application of image coding.
This method yields linear-phase perfect-reconstruction systems with
high coding gain, good analysis/synthesis filter frequency responses,
and prescribed vanishing moment properties. Examples of filter banks
designed with this technique are presented and shown to be highly
effective for image coding.

I. INTRODUCTION

Filter banks have proven to be a highly effective tool for im-
age coding applications [1]. Although techniques for the design
of one-dimensional (1D) filter banks have become highly evolved,
the nonseparable two-dimensional (2D) design case is much more
difficult and far fewer effective methods have been proposed. In image
coding applications, one typically desires filter banks with all of the
following characteristics: perfect reconstruction (PR), linear phase,
high coding gain [2], good frequency selectivity, and satisfactory
vanishing moment properties. As it turns out, designing nonseparable
2D filter banks with all of the preceding properties is an extremely
challenging task. In this paper, we propose a new optimization-based
technique for constructing (nonseparable 2D) quincunx filter banks
with all of the desirable characteristics mentioned above, where we
formulate the design as a second-order cone programming (SOCP)
problem [3] utilizing the lifting framework [4]. Although lifting-based
design methods for quincunx filter banks have been proposed in [5],
[6], these methods only consider the case of interpolating filter banks
(i.e., filter banks with two lifting steps). Herein, we examine the more
general case.

The remainder of this paper is structured as follows. Section II
briefly introduces some notation and terminology used herein. Quin-
cunx filter banks are then discussed in Section III, and our new design
method is presented in Section IV. In Section V, we present some
new filter banks obtained with our method and demonstrate their
effectiveness for image coding. Finally, Section VI concludes with a
summary of our work and some closing remarks.

II. NOTATION AND TERMINOLOGY

In this paper, matrices and vectors are denoted by upper and
lower case boldface letters, respectively. For matrix multiplication,
we define the product notation as ∏N

k=M AAAk �AAANAAAN−1 · · ·AAAM+1AAAM for
N ≥ M. The sets of integers and ordered pairs of integers are denoted
as Z and Z

2, respectively. An element of a sequence x defined on Z
2

is denoted either as x[nnn] or x[n0,n1] (whichever is more convenient),
where nnn = [n0 n1]T and n0,n1 ∈ Z. Let nnn = [n0 n1]T , zzz = [z0 z1]T .
Then, we define |nnn| = n0 + n1 and zzznnn = zn0

0 zn1
1 . Furthermore, for a

matrix MMM = [mmm0 mmm1] with mmmk being the kth column of MMM, we define
zzzMMM = [zzzmmm0 zzzmmm1 ]T . In what follows, unless otherwise noted, we will
use MMM to denote the generating matrix

[
1 1
1 −1

]
of the quincunx lattice.

The Fourier transform of a sequence h is denoted as ĥ. A (2D) filter
H with impulse response h is said to be symmetric linear phase with
group delay ccc if, for some ccc ∈ 1

2 Z
2, h[nnn] = h[2ccc−nnn] for all nnn ∈Z

2. In
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Fig. 1. Canonical form of a quincunx filter bank.
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Fig. 2. Lifting realization of a quincunx filter bank. (a) Analysis side and
(b) synthesis side.

passing, we note that the frequency response ĥ(ωωω) of a linear-phase
filter with group delay ccc and impulse response h can be expressed as

ĥ(ωωω) = e− jωωωT ccc ∑
nnn∈Z2

h[nnn]cos
(

ωωωT (nnn−ccc)
)

. (1)

III. QUINCUNX FILTER BANKS

The canonical form of a quincunx filter bank is as shown in
Fig. 1, and consists of lowpass and highpass analysis filters H0 and
H1, lowpass and highpass synthesis filters G0 and G1, and MMM-fold
downsamplers and upsamplers. Rather than parameterizing the filter
bank in terms of its canonical form, we instead employ the lifting
framework [4]. The lifting realization of a quincunx filter bank has
the form shown in Fig. 2. Essentially, the filter bank is realized in
polyphase form, with the analysis and synthesis polyphase filtering
each being performed by a ladder network consisting of 2λ lifting
filters {Ak}. Without loss of generality, we may assume that none of
the {Ak(zzz)} are identically zero, except possibly A1(zzz) and A2λ (zzz).

Given the lifting filters {Ak}, the corresponding analysis filter
transfer functions H0(zzz) and H1(zzz) can be calculated as

Hk(zzz) = Hk,0

(
zzzMMM

)
+ z0Hk,1

(
zzzMMM

)
, (2)

where

[
H0,0(zzz) H0,1(zzz)
H1,0(zzz) H1,1(zzz)

]
=

λ
∏
k=1

([
1 A2k(zzz)
0 1

][
1 0

A2k−1(zzz) 1

])
.

The synthesis filter transfer functions G0(zzz) and G1(zzz) can then be
trivially computed as Gk(zzz) = (−1)1−kz−1

0 H1−k(−zzz).
The use of the above lifting-based parameterization is helpful in

a number of regards. First, the PR condition is structurally imposed.
Furthermore, we can structurally impose the linear-phase condition



with relative ease, as we shall see momentarily. This eliminates the
need for additional cumbersome constraints (for PR and linear phase)
during optimization. Lastly, we can trivially construct reversible
integer-to-integer mappings from the lifting realization [7].

As was suggested above, it is possible to structurally impose the
linear-phase condition with a prudent choice of lifting filters in Fig. 2.
Suppose that the lifting filters {Ak} are symmetric, with the filter Ak
having group delay ccck. Then, the filter bank will have linear phase if
each of the group delays satisfy

ccck = (−1)k [
1
2

1
2

]T
. (3)

In particular, with the preceding constraint on the choice of lifting
filters, one can show that the analysis filters H0 and H1 will have
linear phase with group delays [0 0 ]T and [−1 0 ]T , respectively. (The
proof is by induction, and is omitted here in the interest of brevity.)

In image coding applications, a quincunx filter bank is typically
applied in a recursive manner, resulting in an octave-band filter bank
structure. For an N-level octave-band filter bank generated from
a quincunx filter bank with analysis filters {Hk}, the equivalent
nonuniform filter bank has N +1 channels with analysis filters {H′

i}
and synthesis filters {G′

i}. The transfer functions of the analysis filters
{H′

i} are given by

H ′
i (zzz) =




∏N−1
k=0 H0

(
zzzMMMk

)
i = 0

H1

(
zzzMMMN−i

)
∏N−i−1

k=0 H0

(
zzzMMMk

)
1 ≤ i ≤ N −1

H1 (zzz) i = N.

(4)

The transfer functions of the synthesis filters {G′
i} can be derived in

a similar fashion.

A. Coding Gain

Coding gain is a measure of the energy compaction ability of a
filter bank, and is defined as the ratio between the reconstruction error
variance obtained by quantizing a signal directly to that obtained by
quantizing the corresponding subband coefficients using an optimal
bit allocation strategy. For an N-level octave-band filter bank, the
coding gain GSBC can be computed as [2]

GSBC =
N

∏
k=0

(AkBk/αk)−αk , (5)

where Ak = ∑
mmm∈Z2

∑
nnn∈Z2

h′k[mmm]h′k[nnn]r[mmm−nnn], Bk = αk ∑
nnn∈Z2

g
′2
k [nnn],

α0 = 2−N , αk = 2−(N+1−k) for k = 1,2, . . . ,N, h′k[nnn] and g′k[nnn] are the
impulse responses of the equivalent analysis and synthesis filters H′

k
and G′

k, and r is the autocorrelation of the input. Depending on the
source image model, r is given by

r[n0,n1] =

{
ρ |n0|+|n1| for separable model

ρ
√

n2
0+n2

1 for isotropic model,
(6)

where ρ is the correlation coefficient (typically, 0.90 ≤ ρ ≤ 0.95).

B. Vanishing Moments

The number of vanishing moments is important in the design of
filter banks, as it represents the ability to provide smooth image
representations. It is equivalent to the order of zero at [0 0]T in
the analysis or synthesis highpass-filter frequency response.

For a linear-phase filter H with group delay ccc ∈ Z
2, its Fourier

transform ĥ(ωωω) can be computed by (1). The partial derivative of
ĥ(ωωω) without the exponential factor is

∂ m0+m1 ĥ
∂ωm0

0 ∂ωm1
1

=




∑
nnn∈Z2

h[nnn] (nnn−ccc)mmm cos
(

ωωωT (nnn−ccc)
)

for |mmm| even

− ∑
nnn∈Z2

h[nnn] (nnn−ccc)mmm sin
(

ωωωT (nnn−ccc)
)

otherwise,

where mmm = [m0 m1]T . To have an Nth order zero at ωωω = [0 0]T , the
filter coefficients must satisfy

∑
nnn∈Z2

h[nnn] (nnn−ccc)mmm = 0 for all even |mmm| such that |mmm| < N. (7)

IV. OPTIMAL DESIGN ALGORITHM

The design problem at hand will be formulated as an SOCP
problem where a linear function is minimized subject to a set of
second-order cone constraints [3]:

minimize bbbTxxx

subject to: ‖AAAT
i xxx+ccci‖ ≤ bbbT

i xxx+di for i = 1, . . . ,q.
(8)

A. Filter Banks with Two Lifting Steps

Consider a filter bank constructed with the lifting structure as in
Fig. 2. We begin with the simplest case with two lifting steps A1
and A2. In order for the analysis filters to have linear phase, A1 and
A2 are both symmetric with group delays satisfying (3). Let xxx = [aaa1

aaa2 ],
where aaa1 and aaa2 contain the n1 and n2 independent coefficients of
A1 and A2, respectively, and xxx ∈ R

n×1 with n = n1 +n2.
1) Vanishing Moments: In order for the filter bank to have Np

primal and Nd dual vanishing moments, xxx needs to be the solution
of an underdetermined linear system [6]

AAAxxx = bbb, (9)

where AAA ∈ R
m×n with rank r, bbb ∈ R

m×1 and m < n. By computing
the singular value decomposition (SVD) of AAA =UUUSSSVVV T , the solutions
to (9) can be parameterized as

xxx = AAA+bbb︸︷︷︸
xxxs

+VVV rφφφ = xxxs +VVV rφφφ , (10)

where AAA+ is the Moore-Penrose pseudoinverse of AAA, VVV r is a matrix
composed of the last n−r columns of VVV , and φφφ is an arbitrary vector
with n− r elements. In what follows, we use φφφ as the design vector.
Thus, the number of parameters involved is reduced from n to n− r.

2) Coding Gain: Combining equations (2), (4), (5), (6) and (10),
the coding gain GSBC of an N-level octave-band filter bank can be
written as a nonlinear function of φφφ . By taking the logarithm G =
−10log10 GSBC, the problem of maximizing GSBC is equivalent to
minimizing G. Our design strategy is that, for a given parameter
vector φφφ , we seek a small perturbation δδδφφφ such that G(φφφ +δδδφφφ ) is
reduced relative to G(φφφ). Because ‖δδδφφφ‖ is small, we can write the
quadratic and linear approximations of G(φφφ +δδδφφφ ) as

G(φφφ +δδδφφφ ) ≈ G(φφφ)+gggTδδδφφφ +
1
2

δδδ T
φφφ QQQδδδφφφ and (11)

G(φφφ +δδδφφφ ) ≈ G(φφφ)+gggTδδδφφφ , (12)

respectively, where ggg is the gradient and QQQ is the Hessian at
point φφφ . Having obtained such a δδδφφφ (subject to some additional
constraint to be described shortly), the parameter vector φφφ is up-
dated to φφφ +δδδφφφ . This iterative process continues until the reduction∣∣G(φφφ +δδδφφφ )−G(φφφ)

∣∣ becomes less than a prescribed tolerance ε .
3) Frequency Response: The constraint on frequency selectivity

can be formulated as a second-order cone. We define the weighted
error function of the frequency response of highpass analysis filter
H1 as

eh1 =
∫
[−π, π)2

W (ωωω)
∣∣ĥ1(ωωω)− ĥideal(ωωω)

∣∣2
dωωω, (13)

where W (ωωω) is a weighting function with different weights for the
stopband, transition band and passband, and ĥideal(ωωω) is the ideal
frequency response for a quincunx highpass filter. In order for the
filter H1 to have good frequency response, eh1 is required to satisfy

eh1 ≤ δh1 , (14)



where δh1 is a prescribed upper bound for the error function.
From (2), the Fourier transform of H1 can be written as

ĥ1(ωωω) = â1(MMMTωωω)+ e jω0 . (15)

Since A1 has linear-phase, â1(ωωω) assumes the form in (1). Thus,
â1(MMMTωωω) can be written as

â1(MMMTωωω) = e jω0aaaT
1 vvv1(ωωω), (16)

where aaa1 is the vector of independent coefficients of A1, and v1(ωωω)
is a vector of cosine functions of ωωω . The vector aaa1 can be expressed
in terms of φφφ by

aaa1 =
[
IIIn1 000

]︸ ︷︷ ︸
Ĩ̃ĨI

xxx = Ĩ̃ĨI (xxxs +VVV rφφφ) = Ĩ̃ĨIxxxs︸︷︷︸
x̃s̃xs̃xs

+ Ĩ̃ĨIVVV r︸︷︷︸
ṼrṼrṼr

φφφ = x̃sx̃sx̃s +ṼrṼrṼrφφφ , (17)

where IIIn1 is an identity matrix of size n1 ×n1.
From (13), (15), (16) and (17), eh1 can be viewed as a quadratic

function of φφφ given by

eh1 = φφφ THHHφφφφφφ +φφφ Tsssφφφ +Cφφφ , (18)

where HHHφφφ is a symmetric positive semidefinite matrix, sssφφφ is a vector,
and Cφφφ is a constant. If we replace φφφ by φφφ +δδδφφφ and let the SVD of HHHφφφ
be UUUHΣΣΣVVV T

H , then (18) can also be written as eh1 = ‖H̃HHδδδφφφ + s̃ss‖2 +C̃,
and the constraint (14) becomes a second-order cone

‖H̃HHδδδφφφ + s̃ss‖2 ≤ δh1 −C̃, (19)

where H̃HH = ΣΣΣ
1
2UUUT

H , s̃ss = 1
2H̃HH

−T (
2HHHφφφφφφ +sssφφφ

)
, and C̃ = φφφ THHHφφφφφφ +

φφφ Tsssφφφ +Cφφφ −‖s̃ss‖2.
4) Design Algorithm: Now we show how to employ the SOCP

algorithm to solve the problem of maximizing the coding gain
GSBC(xxx) with constraints AAAxxx = bbb as in (9) and eh1 ≤ δh1 as in (14).
This problem can be formulated as follows.

Step 1 Compute AAA and bbb in (9) for the desired numbers of
vanishing moments, and calculate HHHφφφ , sssφφφ , and Cφφφ in (18). Then,
select an initial point φφφ 0.

Step 2 For the kth iteration, at the point φφφ k, compute the gradient
ggg in (12) and H̃HH, s̃ss, and C̃ in (19), then solve the SOCP problem

minimize gggTδδδφφφ

subject to: ‖H̃HHδδδφφφ + s̃ss‖ ≤
√

δh1 −C̃

‖δδδφφφ‖ ≤ β ,

(20)

where β is a given small value used to ensure that the solution is
within the vicinity of φφφ k. More details about the choice of β and
δh1 in (20) can be found in [8]. We use the SeDuMi optimization
package [9] to seek the optimal solution δδδφφφ , and then update φφφ k to
φφφ k+1 = φφφ k +δδδφφφ .

Step 3 If |G(φφφ k+1)−G(φφφ k)| < ε , then output φφφ∗ = φφφ k+1, com-
pute xxx∗ = xxxs +VVV rφφφ∗, and stop. Otherwise, go to step 2.

The vector xxx∗ is then the optimal solution to this problem. The
filter bank constructed with the lifting filter coefficients in xxx∗ has
high coding gain, good frequency responses, and the desired number
of vanishing moments. We can also use the quadratic approximation
of G(φφφ + δδδφφφ ) as in (11) in the design algorithm to improve the
approximation accuracy.

B. Filter Banks with More Than Two Lifting Steps

Consider a linear-phase quincunx filter bank constructed with M
lifting filters A1, A2, . . . , AM as in Fig. 2. Let xxx be the design
vector consisting of aaa1, aaa2, . . . , aaaM , where aaai contains the independent
coefficients of filter Ai. In what follows, we show how to design such
quincunx filter banks with all of the desirable properties identified
earlier.

1) Coding Gain: The coding gain GSBC(xxx) of an N-level octave-
band filter bank is computed by (5). The linear approximation of G
with G(xxx) = −10log10 GSBC(xxx) is given by

G(xxx+δδδxxx) = G(xxx)+gggTδδδxxx, (21)

where ggg is the gradient at point xxx. Similar to the previous case, we
iteratively seek a small perturbation δδδxxx such that G(xxx+δδδxxx) is reduced
relative to G(xxx) until the reduction is less than a prescribed tolerance.

2) Vanishing Moments: Using (7), we can write the constraint on
the number of vanishing moments as a set of polynomial equations
in xxx. By substituting xxx by xxxk + δδδxxx with ‖δδδxxx‖ being small, these
polynomial equations can be approximated by an underdetermined
linear system

AAAkδδδxxx = bbbk. (22)

In this case, the filter bank constructed with lifting filter coefficients
xxxk +δδδxxx has the desired number of approximate vanishing moments.
The moments are typically extremely close to zero, as will be
illustrated in Section V.

3) Frequency Response: We define the weighted error function
eh1 of ĥ1(ωωω) as in (13), and eh1 must satisfy the constraint (14).
From (2), we know that ĥ1(ωωω) is a polynomial in xxx of order no less
than two. Similarly, we replace xxx by xxxk +δδδxxx. If ‖δδδxxx‖ is small enough,
we can omit the second and higher order terms of δδδxxx in ĥ1(ωωω), and
a quadratic approximation of eh1 is obtained as

eh1 = δδδ T
xxx HHHkδδδxxx +δδδ T

xxx sssk +Ck,

where HHHk is a symmetric positive semidefinite matrix, and HHHk, sssk
and Ck are dependent on xxxk. Then, the constraint eh1 ≤ δh1 can be
expressed in the form of a second-order cone

‖H̃HHkδδδxxx + s̃ssk‖2 ≤ δh1 −C̃k. (23)

4) Design Algorithm: We use an algorithm similar to that of the
previous case to solve this design problem.

Step 1 Select an initial point xxx0.
Step 2 For the kth iteration, at the point xxxk, compute the gradient

ggg of G(xxx) in (21), AAAk and bbbk in (22) and H̃HHk, s̃ssk, and C̃k in (23), then
solve the SOCP problem

minimize gggTδδδxxx

subject to: AAAkδδδxxx = bbbk

‖H̃HHkδδδxxx + s̃ssk‖ ≤
√

δh1 −C̃k

‖δδδxxx‖ ≤ β ,

where the linear constraint AAAkδδδxxx = bbbk can be parameterized as in
the previous algorithm to reduce the number of design variables, or
be approximated by ‖AAAkδδδxxx −bbbk‖ ≤ εδ with εδ being a prescribed
tolerance. Then, use the optimal solution δδδxxx to update xxxk to xxxk+1 =
xxxk +δδδxxx.

Step 3 If |G(xxxk+1)−G(xxxk)|< ε , then output xxx∗ = xxxk+1 and stop.
Otherwise, go to step 2.

V. DESIGN EXAMPLES

In order to demonstrate the effectiveness of our proposed design
method, we now give two examples of filter banks constructed
using our method. We then demonstrate their effectiveness for image
coding.

Our first design, which will be henceforth referred to as CAL1,
has two primal and two dual vanishing moments, and employs two
lifting steps, each having a diamond support of 6×6. We optimized
for maximal coding gain assuming an isotropic image model (with
ρ = 0.95) and a six-level decomposition. The resulting filter bank has
a coding gain of 12.06 dB, and lowpass analysis and synthesis filters
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Fig. 3. Filter frequency responses for CAL1 filter bank. Frequency responses
of lowpass (a) analysis and (b) synthesis filters.
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Fig. 4. Filter frequency responses for CAL2 filter bank. Frequency responses
of lowpass (a) analysis and (b) synthesis filters.

with the frequency responses shown in Fig. 3. (The highpass filter
frequency responses are not given here, as they are simply modulated
versions of lowpass filter frequency responses.)

Our second design, which will be henceforth referred to as CAL2,
has two primal and two dual (approximate) vanishing moments, and
employs three lifting steps, each having a diamond support of 4×4.
Again, we optimized for maximal coding gain assuming an isotropic
image model (with ρ = 0.95) and a six-level decomposition. The
resulting filter bank has a coding gain of 12.23 dB, and lowpass
filters with the frequency responses shown in Fig. 4. Although, strictly
speaking, the moments are only near vanishing in this case, they
are on the order of 10−12 to 10−17, which is small enough to be
considered as zero for all practical purposes.

In what follows, for comparison purposes, we consider two filter
banks produced by methods previously proposed by others. The first
is a quincunx filter bank with six primal and six dual vanishing mo-
ments, constructed using the method of [6], and henceforth referred
to by the name KS. The second is the well-known separable 9/7 filter
bank [1], with four primal and four dual vanishing moments.

Table I provides the coding gains for our CAL1 and CAL2 designs
as well as the KS and 9/7 filter banks. Clearly, the CAL1 and CAL2
designs have a larger coding gain than the quincunx KS filter bank.
Furthermore, the CAL2 design also has a higher coding gain than
the 9/7 filter bank, which is quite impressive considering that the 9/7
filter bank is well known for its high coding gain.

In order to further demonstrate the utility of our new filter banks,
they were employed in a slightly modified version of the embedded
lossy/lossless image coder developed by the second author of this
paper [10]. This coder can be used with either nonseparable or sepa-
rable filter banks based on the lifting framework (as is the case here).
Reversible integer-to-integer versions of filter banks are employed.
For the most part, the JPEG-2000 test images [11] were used in our
experiments. Since our filter banks were designed for images that are
more isotropic in nature, we have chosen to present coding results
for such an image, namely the finger (i.e., fingerprint) image.

The finger image was coded in a lossy manner at various bit

TABLE I
CODING GAIN

COMPARISON

Transform GSBC
†

(dB)
CAL1 12.06
CAL2 12.23

KS 11.94
9/7 12.17
†coding gain

TABLE II
LOSSY COMPRESSION RESULTS FOR THE

FINGER IMAGE

CR† PSNR (dB)
CAL1 CAL2 KS 9/7

128 19.88 19.95 19.67 19.98
64 21.70 21.75 21.53 21.72
32 24.52 24.39 24.36 24.20
16 27.75 27.83 27.65 27.61

†compression ratio

rates, using each of the CAL1, CAL2, KS, and 9/7 filter banks,
and the resulting reconstruction errors measured. Six and three levels
of decomposition were employed in the cases of the quincunx and
separable filter banks, respectively. The results are shown in Table II.
Clearly, both of the CAL2 and CAL1 filter banks perform very well,
consistently outperforming the KS filter bank. The CAL2 design is
even able to outperform the 9/7 filter bank, except at the lowest
bit rate. This is a very encouraging result, as the 9/7 filter bank is
generally held to be one of the very best in the literature. Lastly,
it is worth noting that, although we only present results for the
finger image herein, the CAL2 and CAL1 filter banks consistently
outperform the KS filter bank for other images in the vast majority
of cases.

VI. CONCLUSIONS

In this paper, we have proposed a new optimization-based method
for the design of high-performance quincunx filter banks for the
application of image coding. This method yields linear-phase PR
systems with high coding gain, good analysis/synthesis filter fre-
quency responses, and prescribed vanishing moment properties. Two
examples of filter banks constructed with our method were presented
and shown to work very well for image coding, thus demonstrating
the effectiveness of our technique.
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