
CCM Component Definition

1. Extended IDL
2. Equivalence
3. Component Implementation Definition

Language (CIDL)
Appendix A: Implementing a CCM Component

1. Extended IDL

Overview
-The CCM (CORBA 3.x) introduces new IDL constructs that support
component types. This comes in addition of features already available
for interface definitions (CORBA 2.x).

-However component instances are accessed through regular CORBA
object references. That is made possible by defining what is called the
Component Equivalent Interface.

-Component equivalent interface is a regular CORBA interface,
generated automatically, that carries all the operations associated with
the component.
•These include custom operations from supported interfaces as well as generic operations

derived from and associated with the components ports (e.g. facets, receptacles, etc.)

Components Definition
-Component types are declared using the keyword component.

-The equivalent interface supported by the component may inherit from
some user-defined interfaces. This relationship is expressed using
a supports clause on the component declaration.

•That’s the single way component definitions may introduce new operations.

• A support clause may refer to a single interface or to several interfaces
related by inheritance.

-Example

Car

Clock
//IDL Code

module vehicle {

interface Clock {
Time getTime ();
void ResetTime (in Time t);

};
component Car supports Clock {};

};

Components Facets
-Facets correspond to the interfaces provided by a component. Facets
are declared using the keyword provides.

-Notation
component XXX {

provides <interface_type> <facet_name>;
};

-Example
module motors {

interface Engine{};
interface Panel {};

component Car supports Clock{
provides Engine _engine;
provides Panel _panel;

};

};

Components Receptacles
-Correspond to the interfaces required by a component to function in
a given environment.

-A receptacle is defined by using the keyword uses followed by the
name of the receptacle.

-There are 2 kinds of receptacles: simplex receptacle and multiplex
receptacle.

Simplex Receptacle
•Can be connected to only one object.
-Notation
component XXX {

uses <interface_type> <receptacle_name>;
};

-Example
interface Customer {};

component Account {
uses Customer owner;

};

Multiplex receptacle
•Can be connected to several objects.

Notation
component XXX {

uses multiple <interface_type> <receptacle_name>;
};

Example
component Account {

uses multiple Customer owner;
};

Event Sources and Sinks
-Events-driven communication is used as alternative to invocation-based
communication, in order to decouple an object from its environment.

Event Type
-Notifications values are defined using CORBA valuetype type,
which is derived from Components::EventBase; eventtype is a
specialization of value type dedicated to asynchronous component
communication.
Notation
eventtype<name> {

//attributes
};

Example
module stockbrocker {

eventtype AlertSignal{
public string reason;

};
…

};

Publishers
-The keyword publishes is used to define an event source named
publisher that allows only 1-to-n communication,which makes it
equivalent to a multiplex receptacle.

Notation
component XXX {

publishes <event_type> <source_name>;
};

Example
module stockbroker {

eventtype AlertSignal{
public string reason;

};

component Broker {
publishes AlertSignal alert_source;

};
};

Emitters
-Correspond to event sources involved in point-to-point
communications with only one consumer; they are defined using
keyword emits.

Notation
component XXX {

emits <event_type> <source_name>;
};

Example
module stockbrocker {

eventtype StockLimit {
public long stock_value;

};

component Broker {
emits StockLimit limitAlert;

};
};

Event Sink
-An event sink (or consumer) is declared using the keyword consumes.
Notation
component XXX {
consumes <event_type> <sink_name>;

};

Example
module stockbrocker {
eventtype AlertSignal {

public string reason;
};

component Trader {
consumes AlertSignal alert_sink;

};
};

Attributes
-Attributes ports are defined and used for component configuration.
•They are defined in the same way as for interface, but are primarily and typically used for

configuration purposes.

component Broker {
attribute string broker_name;
emits StockLimit limitAlert;

};

Component Homes
-A CORBA component is managed by a special entity called a home,
which provides life cycle and additional services on behalf of the
component.

-A home manages component instances of a specific type.
•Multiple home types can manage the same component type; however
a component instance is associated to a unique home instance.

-A home is declared using the home keyword.

home BrockerHome manages Brocker { };

- Equivalent interfaces are generated for homes also.

•Homes provide factory operations that are used to create instances of
the components they manage. They also provide some operations that
are used to locate and retrieve pre-existing component instances.

2. Equivalence
-The cidl compiler generates from the IDL 3.x definition equivalent
IDL 2.x code, and the supporting Component Implementation
Framework (CIF) necessary to develop and deploy the component.

Component Equivalent Interface
-A component equivalent interface is generated for every component.

-Component equivalent interface is a regular CORBA interface,
that carries equivalent operations associated with the features (e.g.
facets, receptacles, events etc.) of the component.

The equivalent interface for Car component would be:

interface Car:Components::CCMObject, Clock{
//equivalent operations definitions for ports and interfaces

};

component Car supports Clock{

…

}

Example:

Facets
Notation

provides <interface_type> <facet_name> ();

Equivalence
<interface_type> provide_<facet_name> ();

-Clients of a component instance can invoke corresponding method to
obtain a reference to the facet.

module motors {

interface Engine{};

interface Panel {};

component Car supports Clock{

provides Engine _engine;

provides Panel _panel;

};

};

Example

-The equivalent interface for Car component, would
be as follows:

interface Car:Components::CCMObject, Clock{
Engine provide_engine();
Panel provide_panel();

};

Receptacles
Simplex Receptacles
Notation

uses <interface_type> <receptacle_name>;

Equivalence
-Equivalent IDL will contain methods that clients can use to
connect/disconnect to the given receptacle.

void connect_<receptacle_name> (in <interface_type> cnxn)
raises (Components::AlreadyConnected,Components::InvalidConnection);

<interface_type> disconnect_<receptacle_name>() raises(Components::NoConnection);

<interface_type> get_connection_<receptacle_name> ();

Example interface Customer {};

component Account {

uses Customer owner;

};

interface Account {

//connections operations for receptacle owner;
void connect_owner(in Customer conxn) raises(Components::AlreadyConnected,

Components::InvalidConnection);
Customer disconnect_owner() raises(Components::NoConnection);

Customer get_connection_owner();
};

Multiplex Receptacles
Notation
uses multiple <interface_type> <receptacle_name>;

Equivalence
struct <receptacle_name>Connection {

<interface_type> objref;
Components::Cookie ck;

};

sequence <<receptacle_name>Connection> <receptacle_name>Connections;

Components:Cookie connect_<receptacle_name> (in <interface_type> cnxn)
raises (Components::ExceededConnectionLimit,Components::InvalidConnection);

<interface_type> disconnect_<receptacle_name>(in Components::Cookie ck)
raises(Components::NoConnection);

<receptacle_name>Connections get_connections_<receptacle_name> ();

Event Sources and Sinks

module stockbroker {

eventtype AlertSignal{

public string reason;

};

component Broker {

publishes AlertSignal

alert_source;

};

};

Publisher
Notation
publishes <event_type> <source_name>;

Equivalence
Components::Cookie subscribe_<source_name> (in <event_type>Consumer consumer)

raises(Components::ExceededConnectionLimit);
<event_type>Consumer unsubscribe_<source_name> (in Components::Cookie ck);

Example
-The equivalent interface generated for the event supplier broker
component will include the following:

interface Broker:Components::CCMObject {
Components::Cookie subscribe_alert_source(in AlertSignalConsumer consumer)

raises(Components::ExceededConnectionLimit);
AlertSignalConsumer unsubscribe_alert_source(in Components::Cookie ck)

raises (Components::InvalidConnection);
};

Emitter
Notation
emits <event_type> <source_name>;

Equivalence
void subscribe_<source_name> (in <event_type>Consumer consumer)

raises(Components::AlreadyConnected);
<event_type>Consumer unsubscribe_<source_name> () raises (Components::NoConnection);

Consumer
Notation
consumes <event_type> <sink_name>;

Equivalence
<event_type>Consumer get_consumer_<sink_name>();

Example

Example

module stockbrocker {

eventtype AlertSignal {

public string reason;

};

component Trader {

consumes AlertSignal alert_sink;

};

};

-The equivalent interface generated for event consumer Trader
component is as follows:

interface Trader:Components::CCMObject {
AlertSignal get_consumer_alert_sink();

};

3. Component Implementation Definition
Language (CIDL)

-CIDL is used to describe internal aspects and characteristics of component irrelevant
to clients, but essential for code generation and deployment in containers such as a
component’s category.

-In contrast, IDL is used to describe external characteristics of a component such as
its interfaces, which are relevant to clients.

Composition
-Top-level construct used to describe a component.
•Defines the component category and the names of the component home and container executors in the
target programming language.

•An executor is equivalent to the implementation in target programming language. In Java,
for instance, the executor for home and container correspond to Java classes.
Composition structure
composition <category> <composition_name> {

home executor <home_executor_name> {

implements <home_type> ;

manages <executor_name>;

};

};

-Example:
component Broker {

attribute string broker_name;
emits StockLimit limitAlert;

};
home BrokerHome manages Broker {}
composition process BrokerImpl {

home executor BrokerHomeImpl {
implements BrokerHome;
manages BrokerProcessImpl;

};
•The code generator generates BrokerHomeImpl and BrokerProcessImpl as abstract classes.

Developers must subclass them, in order to implement the business logic.

Minimal composition structure and relationships

composition <category> <composition_name> {

home executor <home_executor_name> {

implements <home_type> ;

manages <executor_name>;

};

};

Component Categories
-There are four categories of CORBA components:
•Service component: has only a transient lifetime, and may exist only

for the duration of a single operation.
•Session component: have only transient lifetime and no persistent state,

their lifetime typically correspond to the duration
of a client interaction.

•Process component: has both a persistent lifetime and persistent state,
and is used to model business processes.

•Entity component: is used to model persistent entities; key difference
with other component types is that it has a primary key.

Durable

Durable

Conversational

Stateless

CORBA
Usage Model

Persistent

Persistent

Transient

Transient

Object
Reference

entityyesentityEntity

--entityProcess

session-sessionSession

--sessionService

EJB TypePrimary keyContainer API
Type

Component
category

Example
// USER-SPECIFIED IDL

//

module LooneyToons {

interface Bird {

void fly (in long how_long);

};

interface Cat {

void eat (in Bird lunch);

};

component Toon {

provides Bird tweety;

provides Cat sylvester;

};

home ToonHome manages Toon {};

};

// USER-SPECIFIED CIDL

//

import ::LooneyToons;

module MerryMelodies {

// this is the composition:

composition session ToonImpl {

home executor ToonHomeImpl {

implements LooneyToons::ToonHome;

manages ToonSessionImpl;

};

};

};

A1. CCM Component Creation and Deployment
-The development of a typical CCM component is carried according to
the following steps:

1. Specification
2. Design/Interface Definition
3. Implementation
4. Packaging
5. Assembling with other components
6. Deployment of components and assemblies

Appendix A: Implementing a CCM Component

Implementing Components using CIDL

IDL/CIDL/PSDL
compiler

Deployment Tool

Assembling Tool

Packaging Tool

Programming
Language Tools

CORBA
Component

Package

CORBA
Assembly
Package

Developer

Provider

Configurator
Designer

Administrator

Integrator

Functional code IDL/CIDL/PSDL

Stubs/
Skeletons

Component
descriptor

Implementation

Default
properties

Softpkg
descriptor

Home
properties

Component
properties

Assembly description

CBD Process using the CCM

A2. A Basic Example

Compiling the IDL
-Use the K2 CIDL compiler to convert component IDL code
(CORBA 3.0) to standard CORBA IDL (CORBA 2.3).

K2cidl --extended-components Calculator.idl
•The generated file (Calculator.idl2) can be compiled using IDL compilers provided by vendors

Writing the IDL
-We consider a calculator service that provides mathematical functions:
//Calculator.idl

#include “Components.idl”
module CalculatorModule {

interface Functions {
long factorial (in long number);

};
component CalculatorComp {provides Functions function;};
home CalculatorCompHome manages CalculatorComp {};

};

-Compilation of idl generates following files:
Calculator.cxx C++ Stub code

Calculator.hxx

Calculator.idl2 CORBA 2.0 idl generated from .idl file,
used to generate stub files for other
languages

Calculator_skel.cxx Skeleton code

Calculator_skel.hxx

Calculator_skel_tie.cxx Skeleton code for tie approach

Calculator_skel_tie.hxx

CalculatorC.i Orb related files

CalculatorS.i

CalculatorS_T.i

Writing the CIDL
-The CIDL definition supports the automatic generation of the
Component Implementation Framework (CIF) required for
deploying the component within a container.

//Calculator.cidl
#include “Calculator.idl”
module CalculatorCIDL {

composition service CalculatorCompImpl {
home executor CalculatorCompHomeImpl {

implements CalculatorModule::CalculatorCompHome;
manages CalculatorCompServiceImpl;

};
};

};
Compiling the CIDL
-The K2 CIDL generates skeleton code, default implementations and
XML descriptors for the CIDL definition.

K2cidl --impl -all --gen-desc Calculator.cidl

-The following files are generated from CIDL compilation:

Calculator_cimpl.cpp Component implementation files (template)

Calculator_cimpl.h

Calculator_cskel.cpp Skeleton code

Calculator_cskel.h

CalculatorModule_CalculatorComp.ccd CORBA Component Descriptor

CalculatorModule_CalculatorComp.cpf Component Property File

CalculatorModule_CalculatorComp.csd Component Softpack Descriptor

tmpk2d.k2d Used by K2 server

-Component implementation file generated after cidl compilation:

// **
// Generated by the CIDL to .cpp Translator
// Copyright (c) 2000 2001
// Internet Component Management Group
// All Rights Reserved
// **

#include "Calculator_cimpl.h"
#include <k2/Tools.h>

/**
*IDL:CalculatorModule/Functions/factorial:1.0
*/

CORBA::Long CalculatorCIDL::CalculatorCompServiceImpl _cimpl::
factorial(CORBA::Long) throw(CORBA::SystemException)

{
//TODO Implementation
CORBA::Long tmp = 0;
return tmp;

}

Implementing the Component
-Write the business logic by implementing the Functions interface:
modify corresponding methods prototypes
(in Calculator_cimpl.cpp) and provide the implementation:

CORBA::Long CalculatorCIDL::CalculatorCompServiceImpl _cimpl::
factorial(CORBA::Long number) throw(CORBA::SystemException)

{
CORBA::Float tmp = 0;
if (number > 1) tmp = (number*factorial(number-1));

else tmp= 1;
return tmp;

}

-Compile the component implementation code using make utility, which
generates a shared object (libCaculatorComp.so/CalculatorComp.dll)
that can be loaded by the container.

Packaging the Component
-The component implementation has to be compiled to obtain
the dynamic link library (dll) and then archive it together with
component descriptors. This gives us the component package.

•Use nmake utility by providing makefile.mak as the input:

nmake /f Makefile.mak

•Makefile.mak defines all the procedures to create the dll for the
component, groups the dll and description files, and puts them
into a zip file. The following file will be generated:

Calculator.zip

Deploying the Component
-A component is deployed under the form of a component package
in XML format, which represents the minimal deployment unit.
(see Tools Instructions Manual for details about specific platform).

Writing the Client
-The client accesses the deployed component using the component
home specified in the component IDL definition.
#include <k2/CompatiblePlatform.h>
#include <k2/CompatibleCorba.h>

//Include the stub generated after IDL compilation of the idl2 file
#include GEN_CLIENT_INCLUDE(Calculator)
//Tools.h provides a client side framework for accessing ORB and K2 services
#include <k2/Tools.h>
using namespace CalculatorModule;
int main(int argc, char* argv[]) {

CORBA::ORB_var orb;
try {

//Initialize the ORB and K2 related services; this returns a handle to access ORB
// and K2 Trading service

K2Utils::Tools* pK2tools= K2Utils::Tools::init(argc,argv);

//Returns a reference to Trader service; the location of Trader must be specified
//in a property file indicating HTTP host and port where K2Daemon is running

K2Trading::Lookup_var lookup = pK2tools->getK2Trader();
assert(!CORBA::is_nil(lookup));

//Locate a Home reference by querying the K2 Trader using the component home
// name. The Trader returns a load balanced reference to a component home, which
// is casted to obtain the Component Home reference.

K2Trading::Offer_var offer = lookup->queryBest(“CalculatorCompHome”,””);
CalculatorCompHome_var home = CalculatorCompHome::_narrow(offer->reference);
assert(!CORBA::is_nil(home));

//Invoke the create method on the Home to obtain a Component instance reference.
CalculatorComp_ptr calculator_comp = home->create();

//Use the component instance; in this example, method factorial is invoked using
// component reference.

long n=100;
cout << “!” << n << “ = “ << calculator_comp->factorial(n);

pK2tools->cleanup();
}

catch (const CORBA::Exception& ex) {
cerr << “ERROR: “ << argv[0] << “: “ << endl;
return 1;

}
} //end of main

Testing the Component

1. Use the Management console to:
• Install the package Calculator.zip
•Start a CCM server and load Calculator component into the CCM
server instance.

2. Execute the client:
client –K2PropFile=client.cfg

•The client.cfg file indicates where the K2 daemon is currently
executing (can be obtained from the k2daemon.cfg file):

HTTP Daemon properties
k2.HTTPSERVER.NAME = <host name>
k2.HTTPSERVER.PORT = <port-no>

A3. Extending the Basic Example
-We consider a new component named Generator that uses the
calculator component to generate some id.

The IDL
//Calculator.idl

#inlude “Components.idl”
module CalculatorModule {

interface Functions {
long factorial (in long number);

};
interface IdGenerator {

long generate ();
}

component CalculatorComp {provides Functions function;};
home CalculatorCompHome manages CalculatorComp {};
component GeneratorComp {

provides IdGenerator;
uses Functions;
};

home GeneratorCompHome manages GeneratorComp {};
};

The CIDL
//Generator.cidl

#include Calculator.idl
module GeneratorCIDL {

composition session GeneratorCompImpl {
home executor GeneratorCompHomeImpl {

implements Calculator::GeneratorCompHome;
manages GeneratorCompSessionImpl;

};
};

};

Compiling the CIDL
K2cidl --gen-desc --impl-all Calculator.cidl
K2cidl --gen-desc --impl-all Generator.cidl

Writing the Components Implementations
-The Generator component uses a reference to the calculator
component, which may be resolved in the constructor and stored as
private variable, in GeneratorCompSessionImpl_cimpl.

//add the private reference variables to
// GeneratorCompSessionImpl_cimpl class

private:
//ORB Reference
CORBA::ORB_var orb;

//Trader reference
K2Trading:::Lookup_var trader;

//Reference to the calculator component
CalculatorComp_ptr comp_calculator;

//add the following code to the constructor of
//GeneratorCompSessionImpl_cimpl

K2Utils::Tools* pK2tools= K2Utils::Tools::init(argc,argv);
K2Trading::Lookup_var lookup = pK2tools->getK2Trader();
assert(!CORBA::is_nil(lookup));

K2Trading::Offer_var offer = lookup->queryBest(“CalculatorCompHome”,””);
CalculatorCompHome_var home = CalculatorCompHome::_narrow(offer->reference);
assert(!CORBA::is_nil(home));

//Initialize the calculator component reference
comp_calculator = home->create();

-Add the following implementations for the methods:
long generate () {

try {
long r = rand();
return comp_calculator->factorial(r);
}

catch (const CORBA::Exception& ex) {
cerr <<_LINE_<< “ -> ERROR: “ << “: “ << ex << endl;
}

}

-Include the additional header files in Generator_cimpl.h file
#include GEN_SERVER_INCLUDE(Calculator)
#include <k2/Tools.h>

Testing the Application
-To test the application:
•Use make to compile and package the components
•Deploy the components in the following sequence: calculator, and

then generator.
•Execute the client (The client can be written as seen previously):

client –K2PropFile=client.cfg

A4. Component Container
-Represents the run-time environment of component instances.
•The CORBA component container implements component access to global

system services such as transactions, security, events, and persistence.
•The container reuses the existing CORBA infrastructure. In doing so, the inherent
complexity of CORBA is hidden both to the developer and to the container.

-Container and component instances interact through two kinds of
interfaces:

• Internal API: a set of interfaces provided by the container to
component implementations.

•Callback Interfaces: a set of interfaces provided by component
implementations to the container.

