
1

4.4 Software Reliability Engineering (SRE)

1. Introduction
2. SRE Process
3. Reliability Targets
4. Operational Profile
5. Reliability Validation
6. Example

Chap 4. Software Reliability

2

1. Introduction
-Software reliability engineering (SRE) is the prediction, measurement,
and management of software intensive systems, with the purpose of
achieving the highest customer satisfaction possible.

÷SRE can achieve significant reduction in testing and maintenance cost, better
resource and schedule control, and improved customer satisfaction.

-Software Reliability Engineering (SRE) is a multi-faceted discipline
covering the software product lifecycle. It involves both
technical and management activities in three target areas:

÷Software reliability measurement, prediction, and estimation.
÷Use of reliability target to guide software development process and maintenance.
÷Study of the impact of software reliability metrics and activities on operational

software behavior.

3

A n a ly s is
D e f in e

R e lia b il ity
T a rg e ts

T e s t in g

C o d in g

D e s ig n
D e v e lo p

o p e ra t io n a l
p ro f i le s

R e lia b ili ty
T e s t in g

2. SRE Process

- Typical SRE process involves three main steps:
÷Reliability goals definition: consists of capturing the customer expectations in terms

of reliable product or operations.
÷Operational profiles definition: consists of identifying and specifying the probable

patterns of usage of the software.
÷Reliability testing: the operational profiles are used to design test cases and drive
the reliability validation process.

4

List associated systems

Define necessary reliability

Design Operational Profiles

Prepare for test

Use failure data to guide
test

Execute Test

Requirements
Specification

Test Design &
Implementation

Detailed SRE Process

-Listing associated systems (of product) involves defining:
÷the base product,
÷the major variations of the base product
÷the frequently used components of the based product or variations.

5

3. Reliability Targets
-This involves:
1. Defining consistently the notion of failure for the software product.
2. Choosing common reference measure for all failure intensities (e.g., failures

per some natural unit or per hour).
3. Setting system Failure Intensity Objective (FIO) for each associated system

(software/hardware)
4. For any software you develop:

A. Find developed software FIO by subtracting the total of the FIOs of all hardware
and acquired software components from the system FIOs.

B. Choose software reliability strategies to meet developed software FIO and
schedule objectives with lowest development cost (i.e., Fault prevention, Fault
removal, Fault tolerance, Fault/failure forecasting)

Example 4.3.1: Various FIO may be defined for various parts of a system:
-System failure intensity objective µ= 30 failure/1,000,000 transactions
-MTTF for OS is 3,000 hours for 10 million transactions
-MTTF for hardware is 1 per 30 hours of operation

One must define a unique scale for all FIOs

6

To compute failure intensity objective for the developed software:
1. Set FIO for the whole system
2. Set a common measurement unit for failure intensity for the whole system
3. Subtract expected failure intensity for acquired components from the FIO.
4. Subtract expected failure intensity for the environment (OS, interface systems)

that the developed software will run on
5. The remaining will be failure intensity objective for the developed

software components.

Example 4.3.2: System FIO = 100 failure/1,000,000 transactions.
Failure intensity for hardware = 0.1 failure/hour
OS failure for a load of 100,000 transactions = 0.4 failure/hour
Therefore, developed software FIO = 95 failure/1,000,000 transactions

Example 4.3.3: Database system running on Win 2K
System failure intensity objective = 30 failure/1,000,000 transactions
MTTF for Win 2K is around 3,000 hours for 10 million transactions
Average hardware failure is 1 per 30 hours
Failure rate for other systems is 9 for one million transactions
What is FIO for the developed software?

Solution: µdeveloped_software=300-191=109 for 10,000,000 transactions

7

4. Operational Profile
-The operational profile of the software reflects how it will be used
in practice.
÷It consists of a specification of classes of input and the probability of their occurrence.
÷It is relatively easy to assess the operational profile for a new software system
that is replacing an existing manual or automated system.
÷However, when the system is new and innovative it is more difficult to anticipate
how it will be used.

-The operational profile is based on the characteristics of the
software environment, the functions used, their inputs and outputs,
and their usage frequencies.

-Defining the operational profile involves identifying major system
operations, their occurrence probabilities and their initiators:

1. Identify initiators of operations (i.e., user types, external systems, and the system itself)
2. Identify and list the operations invoked by each initiator
3. Determine occurrence rates of the operations
4. Determine occurrence probabilities by dividing the occurrence rates by the

total occurrence rate

8

Example 4.3.4 - FONE FOLLOWER (FF)
Product Description

1. Subscriber calls FF, enters planned phone numbers (forwardees) to which calls are
to be forwarded vs. time.

2. FF forwards incoming calls (voice or fax) from network to subscriber as per program.
Incomplete voice calls go to pager (if subscriber has one) and then voice mail.

-Operation: major system logical task performed for initiator, which returns
control to system when complete.

Illustrations - FF: Process fax call, Phone number entry, Audit section of phone number database

-Operational profile (OP): complete set of operations with probabilities of
occurrence
Illustration - FF:

O p e r a t i o n
O c c u r .
P r o b .

P r o c e s s v o i c e c a l l , n o p a g e r , a n s . 0 . 2 1
P r o c e s s v o i c e c a l l , p a g e r , a n s . 0 . 1 9
P r o c e s s f a x c a l l 0 . 1 7
P r o c e s s v o i c e c a l l , p a g e r , a n s . o n p a g e 0 . 1 3

÷
÷
÷

1

9

-The design of the operational profile involves some intermediary
profiles which are ultimately compounded. These include:

÷Customer profiles: describe individuals, groups of persons, or organizations
acquiring the system.

÷User profiles: describe individuals, groups of persons, or organizations employing
the system.

÷System mode profiles: describe sets of related business functions or operations.
÷Functional profiles: divide the system into a set of user-oriented functions or

operations with corresponding usage frequencies.

-The design of the operational profile consists of collecting and
analyzing the different conditions or modes under which the
software is used.

÷An operational profile is defined for each mode, and can be based on user profiles
or other considerations such as risk or business criticality.
÷An operational profile combines a collection of functional profiles underlying
specific usage scenarios, corresponding software commands and input states, and
associated probabilities

Operational Profile Design

10

Example 4.3.5: Operational profile for a telephone switch system

Customer profile

0.3Inter-city carrier

0.7Local carrier

ProbabilityCustomer group

User profile

totaltotal withinwithin

0.0597

.0003

0.1

0.06

0.035

0.035

0.21

0.42

0.09470.1990.05Other

.03530.0010.05Emergency
services

0.390.60.3Businesses

0.480.20.6Households

TotalInter-city (0.3)Local (0.7)User group

11

System Mode Profiles
÷Assume that 99% of inter-city and 90% of local household traffic is voice, while
only 70% of business traffic is voice for both customer categories.
÷Assume that system administration accounts for 30% and maintenance for 70%
of the “Other” user category, while the rest of the traffic is DATA.

0.06629Maintenance

0.02841System admin.

0.0353Emergency

0.1596Data

0.273Voice (business)

0.4374Voice (personal)

ProbabilityMode

12

5. Reliability Validation

-The process of validating the reliability of a system involves the
following steps:
1. Identify operational profiles: an operational profile identifies different classes

of system inputs and the probability of these inputs in normal use.
2. Prepare test data: a set of test data is constructed that reflect the operational

profile.
3. Apply test to system: the system is tested with these data and the number of

failures are also logged.
4. Compute reliability: after a statistically significant number of failures is

observed, the software reliability can then be computed.

-Reliability validation is achieved through statistical testing.
÷This contrasts with defect testing whose aim is to discover system faults.
÷The aim of statistical testing is to assess system reliability.

Identify
Operational

profiles

Compute
Observed
reliability

Apply test
to system

Prepare test
Data set

Overview

13

-However, statistical testing is not easy to apply in practice. The
principal difficulties include:
÷Operational profiles may not be an accurate reflection of the real use of the system.
÷Defining a large amount of test data may be time consuming and expensive if
it is not possible to generate this data automatically.
÷It is important to generate a statistically significant number of failures to allow
accurate reliability measurements.

14

Sequence of System Test
1. Acquired components: Certification test only
2. Developed product: Feature test and then load test for a new product; Feature

test, and then regression test for subsequent releases
3. Other systems interface: Load test only

-It is possible to change this sequence or testing different systems in parallel.

Types of Test
÷Certification Test: Accept or reject (binary decision) an acquired component for
a given target failure intensity.
÷Feature Test: A single execution of an operation with interaction between
operations minimized.
÷Load Test: Testing with field use data and accounting for interactions
÷Regression Test: Feature tests after every build involving significant change, i.e.,
check whether a bug fix worked.

15

Test Preparation

-Use the operational profiles to prepare test cases and test procedures.

-This involves the following activities:

1. Specify new test cases for new operations
A. Distribute new test cases to new operations based on operational profile

Illustration - FF:
Allocate 17% of test cases to Proc. fax call operation

B. Detail new test cases for each new operation by selecting from possible choices of
input variable values with equal probability

Illustration - FF:
Forwardee = Local calling area

2. Specify test procedure, based on the test operational profile. The test procedure
is the controller that invokes test cases during execution.

16

-This involves the following tasks:
1. Determine and allocate test time among associated systems and types of

test (i.e., feature, load, regression)
2. Invoke test in accordance with operational profile: this involves choosing

operations randomly in accordance with the operational profile.
3. Identify system failures and when they occurred
4. Use data to guide testing.

Test Execution

-In the reliability growth test, perform feature test first and then
load test. Then conduct regression test after each build that has a
significant change.

÷Invocation of test cases should occur at random times.
÷In feature test select in random order from the set of all new test cases
plus the regression test cases of the previous release.
÷In load test, invoke each operational mode for its allocated proportion
of time. The number of test cases invoked will be determined based
on the time the operational mode runs and its occurrence rate.

17

-Test case selection should be with replacement for test cases in load
test but not in feature or regression test.

÷In feature or regression test, the runs are much less likely to be different because
indirect input variables are tightly controlled.

÷In load test, the resulting runs will almost be different, because the indirect
variables can vary, causing to explore the failure behavior of different runs.

÷Repetitions are inefficient. But in load test, the number of runs is so large that the
probability of wasting test resources by repeating many runs is infinitesimal.

- Therefore, in load test, after each test, replace the element in the population, allowing
reselection.
-As operations may be associated with multiple faults, if selection is performed without
replacement, the operation can be selected only once therefore reducing the probability of
finding another bug.

18

Use of Failure Data To Guide Test
-Process system failure data collected from the test to direct the
testing process. This involves:

1. Tracking reliability growth, as faults are removed, of developed software of
base product and variations:

a. Estimate FI / FIO ratio
b. Plot FI / FIO ratio against time: Plot each new failure as it occurs on a reliability

demonstration chart.
c. Interpret plot

2. Certifying reliability of base product and variations that customers will
acceptance test: accept or reject software (operations) using reliability

demonstration chart.
3. Guiding product release

19

FI/FIO

Mcalls

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

Conventional test

Operational-profile-driven test

Example 4.3.6: Track Reliability Growth

Interpret Plot : Illustration - FF

20

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Mcalls

Solutions:
1. Defer features
2. Rebalance major

quality characteristics
3. Increase work hours

Scheduled
test

completion

Interpret Plot : Illustration - FF

21

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Mcalls

Investigate
significant

upward
trends

Possible causes:
1. Poor change control
2. Poor control of test

execution, resulting
in test selection
probabilities varying
in time

Interpret Plot : Illustration - FF

22

Mcalls

0

2

4

6

8

10

12

14

16

18

0 0.1 0.2 0.3 0.4 0.5

FI/FIO

Terminate
test

Interpret Plot : Illustration - FF

23

12

0 10862 4

16
14

0
2
4

6

8
10

Normalized units

Failure
number

Continue

Accept

Reject

Fail.
No.

Mcalls
at

Failure
Normalized

Units

1
2
3

0.00375
0.00625
0.025

0.75
1.25

5

Failure intensity objective:
200 failures / Mcalls

Certify Reliability – Dem. Chart:
Illus. - FF – BP Supersystem

