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ABSTRACT: A non-perturbative analysis, including both
metallic and dielectric losses, of planar circuits is presented.
The Green’s impedance dyadics are modified to account
for metallic losses in the ground plane and the conduct-
ing surfaces. Dielectric constants are allowed complex val-
ues to describe their. Iossy properties. The complex resis-
tive boundary condition is modified to take into account the
fact that thin conductors distinguish between LSE and LSM
modes. The theory describes lossy ground planes exactly
and is exact for conductors of finite width in the limit of
small thickness. Expression for the conductance, the resis-
tance, the inductance and the capacitance matrices are pre-
sented as well as corresponding numerical results. Modal
attenuation constants and dispersion curves are discussed.

1. INTRODUCTION

Computer simulation of lossy components and circuits
used in microwave applications has not yet reached matu-
rity in methodology or speed of execution. Metallic losses
in planar circuits are commonly accounted for using pertur-
bation theory where it is assumed that the field distribu-
tion of the lossy structure is not markedly different form the
Iossless approximation. Such an assumption holds at sur-
faces with small curvatures or large thickness, in which case
the losses can be calculated through the concept of surface
impedance. Conductors which are not thick enough to block
incident electromagnetic fields, or circuits containing large
curvatures, such as a the edge of a thin patch or microstrip,

can not be adequately analyzed using the standard perturba-
tion theory. This has been pointed out by Pregla for the case
of lossy microstrip lines [1]. Dielectric losses are, however,
straightforwardly, at least in principle, described by allowing
the dielectric constants to assume imaginary parts.

Pond and coworkers combined the Spectral Domain Ap-
proach and the concept of complex resistive boundary con-
dition to calculate metallic losses in a superconducting mi-
crostripline [2]. Basis functions which include the singularity
at the edge were used in the Galerkin’s solution. The pres-
ence of the edge condition in the formulation leads, how-
ever, to diverging matrix elements and infinite damping if
the integrals are accurately evaluated. Kuo and Itoh used
the same technique to solve a similar problem using subsec-
tional basis functions which do not exhibit the edge condition
[3]. The technique was also applied to patches by Cai and
Bornemann [4]. In this presentation, we show how to ex-
tend the method to analyze thin planar circuits. The losses
in the ground plane are exactly described by our formula-
tion. The Greens’ impedance dyadics are modified to include
the metallic losses through new expressions for the surface

impedance which we also present. We show that the surface
impedance, being a response function, depends on the field
distribution. In particular, a thin good conductor responds
differently, i.e., has different surface impedances, to the LSE
and LSM modes which are used in the Spectral Domain Imit-
tance Approach. The capacitance and inductance matrices
of coupled lines have been investigated by Tripathi [5] using
the partial power definition of the characteristic impedances
and by Amari using modal powers [6]. In this presentation
we also present numerical results for the conductance and
the resistance matrices which describe Iossy systems. These
matrices provide a convenient vehicle for analyzing the time
response of systems of coupled lines.

2. THEORY

The effects of metallic losses can be accounted for by
a an extension of the analysis presented by Pond et .al [2].
The surface impedance of the thin conductor depends on the
field distribution in the structure. The LSE and LSM sur-
face impedances are derived from the solution of Maxwell’s
eauations for a conducting slab of thickness tand conductiv-
it~ a. The algebra is leng~hy but otherwise straightforward.
The modified Green’s impedance dyadics, which relates the
current density on the strips to the tangential electric field
outside of the strips, take the following form: m

where the elements Gij are given by
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Where Yl~~E and YIL~M are the LSE and LSM input ad-

mittances at the air-dielectric interface in the positive and
negative x-directions. They include not only the dielectric
losses but also the effect of the ground plane. The metallic

terms G~sE and G$’SM are given by
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and Y~ ‘ ‘ are the input admittances at the
t;p of the conducting strip (1) and at its bottom (2). De-
tails of the derivation will be discussed in the presenta-
tion, they are not presented here for lack of space. The

terms G~sE and G:SM both approach the usual surface

impedance Z~ = (1 + j)/a6 in the limit of thick conductor,
i.e., t/6 >>1. In the limit t -+ 0, they approach the Green’s
impedance dyadics of a system with no metallic losses at the
interface. When t = O, themodified dyadics given by equa-
tions (2) all vanish as long as the conductivity of the con-
ductors at the interface is finite. This reflects the fact that a
true surface current can exist only in a perfect conductor [7].
To complete the solution, the current density is expanded
over a set of basis functions which are nonzero only over the
met allized surfaces. For lossy systems, the current density
does not have the usual edge condition [3]. This does not,
however, mean that it is not singular at the edges. The only
requirement is that its singularity be not as strong as that
of a lossless infinitely thin strip. The propagation constants
and the current density are determined following the stan-
dard Galerkin’s method. There is an important point which
should be carefully handled when applying this approach to
multiply connected conducting surfaces. In such a situation,

the loss terms G~ should be interpreted as terms of appro-
priate submatrices since the current on a specific portion of
the conducting surface contributes to metallic losses only on
that portion.

The power transported by a mode can subsequently be
computed from the integration of the complex Poynting vec-
tor over the cross section

P=;
H

(E X H*).ds 4
s

To derive an equivalent circuit for the 10SSY structures, we
introduce modal currents and voltages which are assumed to
satisfy the transmission line equations
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Furthermore, the modal voltages and currents are also re-
quired to conserve the average power transported by each
mode, namely

[M~]~[M-~] = [P] 7

where [P] is the power diagonal matrix. Combining (5) to (7)
and assuming propagating solutions with propagation con-
stants [~], the matrices [L], [C], [R] and [G] are seen to be
given by
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c is the speed of light in free space. Note that these last four
expressions reproduce the results of the Iossless case if the
matrix [Ceff] is assumed real.

3. NUMERICAL RESULTS

The method presented here is applied to the case of two
coupled microstrip lines. Figure la shows the real part of the

effect ive dielectric constant Ceff = (@/ kO)2 versus the sep-

aration distance between the lines. The ground plane has

conductivity a = 4107 S/m and is 1 mm thick. The strips,

which are 10 pm thick, have the same conductivity as the
ground plane. All calculations are carried out at 1 GHz and

q. = 10 — j10–4. Figure lb is a plot of the attenuation con-
stant versus the separation distance of the two lines. Note
that the two curves approach each other in in the limit of
large values of s as the lines become decoupled and the two
modes degenerate into one. In addition, the attenuation of
the odd mode is consistently smaller than that of the even
mode. The main difference is due to the ground plane which
affects more the even mode, the odd mode has its currents
going out of one line into another with the ground plane play-
ing a minor role. Needless to say that the total attenuation
is interplay of the three cent ributions, the dielectric losses,
losses in the strips and the ground plane. The relative thick-
nesses of the strips and the ground plane determine which
mode is attenuated more. Figure 2a shows the elements of
the resist ante matrix [R]. The off-diagonal elements decrease
with s since the lines become decoupled in this limit. The
diagonal elements are however increasing with s. This be-
haviour is attributed to the finite conductivity of the ground
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Figure la. Real part of effective dielectric constant of the
even (dotted line) and odd (solid line) modes versus separa-
tion distance. WI = W2 = h = lmm, tc = 10pm, tg = lmm,

c = 10, tan& = 10–5.
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Figure lb. Attenuation constant of the even (dotted line)
and odd (solid line) modes versus separation distance. Di-
mensions and other parameters are same as in figure 1a.

plane. Similarly figure 2b shows the matrix [G] versus the
separation distance s. Its behaviour is similar to the [R] ma-
trix but the numerical values of Gii are much lower because

of the low losses in the dielectric (In(e) = —10-4). Numer-
ical data for the inductance and’ capajltance matrices are
also available and will be discussed during the presentation.
They compare well with those in reference [6].

1

0.8 :

~0.6 ..-
E

‘. +. -..
g *.*

-.
~ 0.4 - -..

----
----

---- ------

0.2-
---

0
0.5 1 1.5 2 2.5 3

s (mm)

Figure 2a. Elements of resistance matrix versus separation
distance. Solid line Rll = R22, dotted line R12 = R21.
Dimensions and other parameters are same as in figure la.

0.35 - ------ ----------- .----------
0.3 : &~-------

WI W2

~0.25 -
,

~- 1.

2
g 0.2 -

s, tan8

0.1 -

0.05

t

v 0.5 1 1.5 2 2.5 3
s (mm)

Figure 2b. Elements of conduct ante matrix versus separa-
tion distance. Solid line G1l = G22, dotted line G12 = G21.
Dimensions and other parameters are same as in figure la.

4. CONCLUSIONS

The method presented her can be used to analyze lossy
planar circuits for both metallic and dielectric loss. Its
power resides in the fact that the losses are included non-
perturbatively. Problems associated with edges and ex-
tremely thin conductors are rigorously described. The con-
ductance and resistance matrices of two symmetric coupled
lines were prmented,
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