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I. INTRODUCTION 

The two-dimensional  generalized  exponential integral has  been  widely  used 
in many  applications  that  involve  planar  transmission lines and radiating struc- 
tures. When  evaluating  mutual  and  self-impedances of individual  elements of a 
planar structure, calculation  of  the integral 
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in one  form  or  another,  has to be considered:  if  the  distance  between  the  two ele- 
ments  with  respect to the  wavelength is large, the  point-source  approximation  can 
be used; if the  target  element  cannot be classified as positioned in the far zone of 
the  source  element,  the integral has  to be actually  calculated.  The integral Zl corre- 
sponds to the  usage of pulses in the role of subsectional  expansion  functions in the 
method-of-moments  formulation;  if different expansion  functions  are desired, the 
integrand  of ZI needs to be properly  modulated and the limits of integration may 
change,  where  the  origin - point (x,y) =(O,O) - may be located inside, or on the 
boundary,  of  the integration region. 

The  integrand of I1 contains  a  singularity at the origin of the  coordinate sys- 
tem.  When  evaluating I1 through  the  forthcoming slice-and-dice scheme,  the sin- 
gularity cannot be rigorously  integrated  over.  The  approach  that  has  become 
standard in antenna  engineering is to evaluate integral 
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instead,  which in effect introduces an offset in the thii coordinate of the  Cartesian 
system.  However,  there is no  physical justification for the  introduction of  any off- 
set, as the integration is supposed to stand for sampling  the electric field intensity 
in the infinitesimally small  elevation  above  the  target-element  surface.  Introducing 
the offset a, however small, does  not  correspond to physical reality; furthermore, it 
- artificially and  unnecessarily - adds to the  system  an  unknown  variable,  which 
somehow  has to be determined. 

Proper  determination of a, assuming  one still can  use  the  word  'proper' in 
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this  context,  has  almost  become a discipline  in  itself,  thus  rendering a software 
package  'more' or 'less'  efficient.  Without  contributing  to  the  discussion,  one  can 
safely  conclude  that  the  determination  of  the  offset a, customarily  called  tuning 
[l], requires skills and extra computation,  which both are time  consuming. One 
way  of  determining a is to  observe  the  effects  of  varying a on  the  radiation  pattern 
and,  through  stability  analysis  and  experience,  find  the  usually  small range of a 
where  the  radiating  structure  behaves  as  expected. This approach,  however, is not 
reliable,  for  the  calculation of a radiation  pattern  involves a double  integration, 
which smoothens  the  pattern,  even if the utilized  current  distribution is not very 
accurate. A better  technique to determine  the  offset is  to follow how the  changing 
a affects  the  input  impedance of the  structure,  namely  its  real  part. As a varies,  typ- 
ically  there is a range  where  the  real  part  of  the  input  impedance is positive  and 
stable;  the  most  rational  choice  to  make  is  to  select  the  value of a that corresponds 
to  the  center of that range. 

In  the  following  section, we will  show  that  there  is  absolutely no need  for  in- 
troducing and tuning  an  offset,  since  the  integral 11 can be calculated  exactly. The 
validity of  the  technique  will be demonstrated by a comparison  with  measurements. 

II. INTEGRATION TECHNIQUE AND  NUMERICAL  RESULTS 

Rather than evaluating 11 directly,  we  start  with  the  calculation  of 12 and  then 
find  the  solution  for  the case of a=O . This  approach  is  perfectly  valid,  as 

I - limZ2 (3) - u+O 

The general  configuration  for  integrals  of  the  type of Zl and 12 is depicted  in  Fig. 1. 
Instead of performing  integration in the  Cartesian  coordinate  system,  we evaluate 
12 in polar coordinates,  resulting in 
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where p = /x' + y' and pC@) is  the  radial  distance  from  the  origin  of  the  coordi- 
nate system  to  the  contour  of  the  integration  region.  It is obvious  that  this  tech- 
nique is directly  applicable  also to cases  where  the  origin of the coordinate system 
is located  outside  of  the  integration  region - in these cases the  lower  integration 
limit over p would be some  positive  value pc1(8) instead  of  zero.  After  the change 
of variables 
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u = Jp2+uz (5 )  

we  get: 

Finally, 
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Upon  inspection,  the integral poses  no  numerical  difficulties.  The  above  equation 
is independent  of  the  shape of the  contour  describing  the  boundary of the integra- 
tion region.  For  the  rectangular  contour  of  Fig. l, p, (e) = x,/ (cose) for the 
right vertical line, p, (e) = y2/ (sine) for the upper  horizontal line, 
p, (e) = x , /  (cose) for the left vertical line, and p, (e) = y,/ (sine) for the 
lower  horizontal  line. 

Using this technique,  we  calculated  the  frequency  dependance  of  the  input 
reflection coefficient of a rectangular  patch  antenna ( [2] ,  length  3.85cm,  width 
3.18cm,  substrate  thickness  1.568mm, substrate relative permittivity 2.34) fed at 
the  center of the shorter edge of the  patch.  The  method  of  moments [3], with  non- 
overlapping  pulses as subsectional  expansion  functions is used, The model is a 
simple  wire-grid  one,  with  two  sets of wires: one  set parallel with  the  longer  edge 
of  the  patch;  the  other  perpendicular to the firs: one, parallel with  the  patch’s 
shorter  edge.  Magnitude  and  phase of the  calculated  input reflection coefficient are 
presented in Figs. 2a and  2b,  respectively;  they are in  a significantly better agree- 
ment  with  measurements  than  the  data  of [4], which  were  obtained by the  standard 
technique,  utilizing  tuning. The integral  of (7) was  calculated by the  Gaussian inte- 
gration, in 12 points;  further  increase  of  the  number of integration points  resulted 
only  in  minute  changes  that  were  within  the plotting accuracy. 

III. CONCLUSIONS 

It is demonstrated  that it is possible to accurately calculate the  two-dimen- 
sional generalized  exponential integral in the  method-of-moments  formulation. By 
performing  the  integration  in  polar  coordinates  over  the radial variable p, the sin- 
gularity existing in Cartesian  coordinates is removed  from  the  integrand. This in 
effect means that  the  commonly  applied  introduction of an offset into the  integrand 
and  subsequent  tuning of that  offset  can  be  eliminated entirely. As a result, the cal- 
culated  current distribution is unambiguous  and  exact. A comparison  between cal- 
culated  and  measured  input  impedance  data of a  patch  antenna  shows good 
agreement  and,  hence, verifies the  integral  evaluation,  even if a  simplified  model 
of non-overlapping  subsectional  expansion  functions is assumed.  The  proposed 
integral calculation requires  minimal  computational  effort;  only 12 points in the 
Gaussian  quadrature  are  needed  to  achieve  results  accurate to better than 0.1 per- 
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I3g.2 Input reflection  coefficient of the  patch of [2]: length  3.85cm,  width  3.18cm, 
substrate  thickness 1.568mm, substrate  relative  dielectric  constant 2.34 -- 
a) amplitude,  b)  phase;  solid  line:  calculated,  dashed  line:  measured. 
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