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Abstract

A new set of edge-conditioned basis functions for the
moment method solutions of electromagnetic problems
is introduced. The basis functions are themselves solu-
tions to the di�erential forms of Maxwell's equations and
satisfy the local boundary conditions at metallic wedges.
Numerical results using this new set are presented and
compared with available data for a ridged rectangular
waveguide to demonstrate its adequacy. An e�cient
technique to compute integrals of rapidly oscillating and
singular integrands will also be presented.

1 INTRODUCTION

The Method of Moments (MoM) is a frequently used
approach to solving integral, di�erential, and integro-
di�erential equations in electromagnetics; it has been
applied to practically any imaginable structure [1].
From a computational point of view, the e�ciency of the
method depends on the availability of basis functions
which approximate well the unknown function. When
sharp metallic edges are present, the convergence of the
technique is greatly improved by using basis functions
which include the edge conditions. A variety of such
functions were introduced and used by many researchers
[2]. These basis functions succeed in including the edge
conditions by using weighted elementary functions such
as polynomials and trigonometric functions.
However, it is important to point out that the edge-
conditioned basis functions encountered in the literature
are not solutions to the di�erential forms of Maxwell's
equations except in the limited vicinity of the metallic
edges as direct di�erentiation and substitution show.
In this paper, we propose to show how the local solutions
of Maxwell's equations in the vicinity of metallic wedges,
which are known in terms of Bessel functions with a free
parameter, can be used to construct general basis func-

tions which include the edge conditions and satisfy the
operational forms of Maxwell's equations. Admissible
values of the free parameter are determined from the
boundary conditions away from the metallic wedges.
In applying the momentmethod, it is necessary to calcu-
late weighted integrals of these singular and oscillating
basis functions. Accurate evaluation of these integrals
requires a careful handling of the singularities. A tech-
nique to deal with these numerical pathologies consists
in removing the singularity prior to numerical integra-
tion [3]. The oscillations in the integrands are handled
using a partial substitutional technique where the slowly
varying parts are replaced by splines or other interpola-
tions to allow for the remaining integrals to be computed
analytically.

2 THEORY

We consider the structure shown in Figure 1. It consists
of a symmetric metallic ridge of width 2s and height d
in a rectangular waveguide of cross section 2a � b. All
metallic surfaces are assumed lossless in this analysis.
We limit the analysis to the TE modes with a magnetic
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Figure 1. Cross section of ridged waveguide

wall along the x-asis. Other symmetries as well as the
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TM modes are obtained similarly. presentation.
The axial magnetic �eld of the TE modes with magnetic-
wall symmetry is expanded in series of the form

HI
z (x; y) =

1X
n=0

Ancos[n�
x� d

c
] sinh[1ny] (1)

and

HII
z (x; y) =

1X
n=0

Bncos[n�
x

b
] cosh[2n(y � a)] (2)

Here, 21n = (n�
c
)2�k2c , 2n = (n�

b
)2�k2c where kc is the

unknown cuto� wavenumber. At cuto�, the only non-
vanishing transverse components of the electromagnetic
�eld are Ex andHy. To enforce the boundary conditions
of Ex at the interface, let us assume that it is given by
a yet unknown function X(x) which vanishes over the
metallic part of the interface, i.e.

X(x) = 0; 0 � x � d: (3)

Using the expansions (1) and (2) in the boundary con-
ditions of Ex, the modal coe�cients An and Bn are ex-
pressed in terms of X as follows

An = 1
1ncosh[1ns]

2
c(1+�n0)

R b
d
X(x)cos[n� x�d

c
]dx

= 1
1ncosh[1ns]

~XI(n) (4)

and

Bn = 1
2nsinh[2n(s�a)]

2
b(1+�n0)

R b
d
X(x)cos[n� x

b
]dx

= 1
2nsinh[2n(s�a)]

~XII (n) (5)

From the continuity of the Hz at the interface, we
obtain an integral equation for X(x) [4].

1X
n=0

~XI (n) tanh[1ns]
1n

cos[n� x�d
c
]

+

1X
n=0

~XII (n)

2ntanh[2n(a�s)]
cos[n� x

b
] = 0 (6)

To solve this integral equation, we expand the function
X(x) in a series of basis functions

X(x) =

MX
i=1

ciBi(x); (7)

and apply Galerkin's method to obtain a homogeneous
set of equations in the coe�cients ci.

[A][c] = 0: (8)

Here, the entries of the matrix [A] are given by

[A]ij =

1X
n=0

~BI
i (n)

~BI
j (n)

tanh[1ns]

1n
(1 + �n0)

+
b

c

1X
n=0

~BII
i (n) ~BII

j (n)

2ntanh[2n(a�s)]
(1 + �n0): (9)

The cuto� wavenumbers are given by the zeros of the
determinant of the matrix [A], or equivalently, by the
zeros of the minimal singular value of [A] [5]. Similar
equations can be derived for TM and TE modes with an
electric wall symmetry.

3 BASIS FUNCTIONS

For modes which are TE to the axis of a 90� metallic
wedge, the axial magnetic �eld has solutions of the form
[6]

J�(��)cos[�(�� �=2)]; � =
2n

3
;

n = 0; 1; 2 : : : (10)

where � is the radial distance from the metallic wedge.
Therefore, in a given angular direction, the behavior of
the axial magnetic �eld is proportional to J�(��), and
only the value � = 2=3 leads to singular �elds.
At the interface I-II, Ex, in the vicinity of the wedge,
is proportional to the radial derivative of the axial mag-
netic �eld

Ex / J 02=3(�(x� d)): (11)

The acceptable values of � are determined from observ-
ing that Ex is an even function about the electric wall
located at x = b, or

J 002=3(�b) = 0 (12)

Let r00i denote a root of the second derivative of J2=3,
then the following basis functions are used in this work

Bi(x) = J 02=3[r
00

i

x� d

c
] (13)

The basis functions for TM modes are constructed fol-
lowing similar steps to those of the previous section.
Since Ez vanishes at the metallic edge at x = d as well
as at the metallic wall at x = b, the following basis func-
tions are used

Bi(x) = J2=3[ri
x� d

c
] (14)

0-7803-4603-6/97/$5.00 (c) IEEE



Here, ri is a root of

J2=3(ri) = 0 (15)

The computation of the entries of the matrix [A] in equa-
tion (9) requires the evaluation of weighted integrals of
the basis functions. For example, a generic element of
[A] contains integrals of the form

Ii(n) =

Z b

d

J 02=3[r
00

i

x� d

c
]cos[

n�

b
]dx (16)

Since J 02=3(z) / z�1=3 as z ! 0, the integrand is singular
at x = d. This singularity is removed by integrating by
parts the derivative of the Bessel function leading to

Ii(n) =
c

r00i
[J2=3(r

00

i ) +
n�

b

Z b

d

J2=3[r
00

i

x� d

c
]sin[

n�

b
]dx

(17)
The remaining integrand is no longer singular and lends
itself to straightforward numerical integration except for
large values of n where the integrand oscillates rapidly.
To circumvent this problem we introduce a partial sub-
stitution in the integrand of the last equation in such a
way that the thus obtained integrals can be evaluated
analytically [7]. Assume that the function J2=3[r

00

i
x�d
c
]

is approximated by a set of interpolating functions Li(x)
in the interval d � x � b such that

J2=3[r
00

i

x� d

c
] =
X
j

pjLj(x) (18)

We also require that the integrals

~Lj(n) =

Z b

d

Lj(x)sin[
n�

b
]dx (19)

be known analytically. Using this equation in the ex-
pression of Ii(n), we get

Ii(n) =
c

r00i
[J2=3(r

00

i ) +
n�

b

X
j

pj ~Lj(n)] (20)

In this work, cubic splines, whose weighted integrals
against sines and cosines are known analytically, are used
for interpolation.

4 RESULTS

The new set of basis functions is used to compute the
TE and TM cuto� wavenumbers of the ridge waveguide
analyzed in [8].

Table I summarizes our results for the �rst 8 TE modes
with a magnetic wall symmetry along with those of ref-
erence [8]. Excellent agreement is seen from the two
sets of data. It is worth mentioning that for each mode,
one basis function is dominant while the remaining ones
have much smaller coe�cients reecting the fact that the
�eld distributions of the modes are well represented by
a single term in the expansion in equation (7). For these
modes, it was also necessary to add a term correspond-
ing to J0 in addition to the basis functions originating
from J2=3 and its derivative. The additional basis func-
tion is needed because the basis functions obtained from
Bessel functions of fractional order following the scheme
outlined here, all change sign. The following additional
term, was therefore used

BTE
1 (x) =

1

[(2 + d�x
c
)(x�d

c
)]1=3

(21)

Note that this functions includes the presence of an im-
age singularity in the metallic wall at x = b. The inte-
grals of this function against cosines can be expressed in
terms of Bessel function of order 1/6 [9].

TABLE I

Cuto� wavenumbers (rad/mm) of the �rst eight odd TE modes of a ridged waveguide

Mode 1 2 3 4 5 6 7 8

Present Method 0.0926 0.3332 0.3811 0.5263 0.6653 0.6916 0.7453 0.8295

Ref.[6] 0.0930 0.3332 0.3881 0.5265 0.6654 0.6913 0.7456 0.8298

a = b = 9.5 mm, s = 0.15 mm, d = 1.7 mm

Table II shows the cuto� wavenumbers of the �rst 8
TM modes, good agreement is observed between our re-
sults and those corresponding to the magnetic wall sym-
metry presented in [8]. For TM modes, and with the
present dimensions of the ridge, the �rst basis function
is dominant for all the modes reported here. The co-
e�cients of the second and higher bases functions are
50 times smaller than that of B1(x), thus leading to a
rapidly converging numerical solution.

5 CONCLUSIONS

A new set of global and edge-conditioned basis func-
tions obtained from local solutions of Maxwell's equa-
tions was introduced. Numerical results from a moment
method solution of a ridged rectangular waveguide using

0-7803-4603-6/97/$5.00 (c) IEEE



TABLE II

Cuto� wavenumbers (rad/mm) of the �rst eight TM modes of a ridge waveguide

Mode 1 2 3 4 5 6 7 8

Present Method 0.4711 0.4714 0.7410 0.7416 0.7481 0.7487 0.9400 0.9422

Ref.[6] 0.4665 0.7358 0.9427

a = b = 9.5 mm, s = 0.15 mm, d = 1.7 mm

1

the new basis functions are in excellent agreement with
data available in the literature. Rapid convergence for
all the modes is observed; typically one basis function
for TM modes and two for TE modes are su�cient.
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