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Abstract

The paper presents a rigorous fullwave analysis of corrugated circular
waveguides. The propagation properties are determined from a classical eigen-
value problem with no recourse to space harmonics. A set of vector edge-
conditioned basis functions is used to guarantee numerical efficiency. The
speed of the method allows the accurate determination of the entire disper-
sion diagram of a large number of modes. Results are presented and com-
pared with available data to demonstrate the efficiency and accuracy of the
approach.

I. INTRODUCTION

Linear particle accelerators and slow-wave structures exploit the slow wave nature
of periodic structures to guarantee efficient electromagnetic coupling. Corrugated
circular waveguides are also important components in modern antenna feeds where
a high degree of symmetry in the radiation pattern and a very low crosspolarisation
are required [1}, [2].

From a mathematical point of view, the invariance of the structure under a discrete
translation by one period implies that the solutions of Maxwell’s equations obey the
Floquet condition [3].

Expansions in space harmonics is a popular approach for the analysis of corrugated
waveguides [2]. A disadvantage of this approach stems from the fact that the prop-
agation constant is eventually determined from a non-linear determinant equation.
An iterative process requiring the repeated evaluation of a determinant is used; de-
generate and closely located roots can pose a serious difficulty for such an approach.
The formulation used in this paper is based on the Coupled-Integral Equation Tech-
nique (CIET) [4]. It allows the determination of the propagation constants from
the classical eigenvalues of a generalized matrix eigenvalue problem. The dispersion
diagram of a large number of modes can be determined accurately with minimal
numerical effort. Applications of this approach have been reported in [5].

In this paper we use a set of edge-conditioned basis functions to investigate some
important features of the dispersion diagrams of corrugated circular waveguides. We

examine in detail the zero-thickness approximation where the thick corrugations are
replaced by a zero-thickness iris.
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II. THEORY

The structure under consideration is depicted in Figure 1. Tt consists of a logsless
corrugated circular waveguide of radins a. The inner radius of the corrugations
of thickness ¢ is b. The periodicity of the corrugations is p. Since the structure is

Figure 1. Cross section and side view of a corrugated circular waveguide

ndependent of the angular variable ¢, we can focus attention on modes with a given
angtlar dependence cos(md), for example, other modes can be analyzed similarly.
The modes of regions I and II are derived from electric and magnetic potentials
which we denote by &7/ and §iltetm

The exact transverse electric fields at at z = 0, 2 = ¢ and z = p are denoted by three
unknown vector functions X,, X, and X3, respectively, The Floquet condition is
systematically satisfied if we require that

Xg - 8"'7PX1 (1)

where 7 15 the unknown propagation constant. The remaining unknown functionsg
X, and X, are cxpanded in series of the form
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To include the edge conditions at the 90%-metallic wedges of the corrugations, we
introduce the following set of basis functions
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In the zero-thickness case, the following basis functions are used
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By expanding the numerators and denominators in Taylor series in the vicinity of
the metallic wedges, it is straight{orward to show that these basis functions have
indeed the proper edge conditions. To determine the expansion coefficients, we
derive two coupled vector integral equations for the functions X; and X,, which are
then solved by the moment method, It can be shown that the expansion coefficients
satisfy an eigenvalue equation of the form [5)

(K] [v] + e " [L][v] = 0. (8)

The propagation constants can be straightforwardly determined using standard soft-
wale packages.

III. RESULTS

The first few basis funetions for the 90? wedge are shown in Figures 2 and 3. Only
the basis functions corresponding to unit angular dependence are shown. For com-
parigon, the corresponding unperturbed modes of the of the smaller are also plotted.
In all cages, it can be seen that the components normal to the metallic wedge become
singular whereas the tangential ones vanish with an infinite slope.

Iigure 9: Azimuthal component of the first 2 TE basis functions (solid line).
The dashed line shows the corresponding unperturbed modes.
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Figure 3: Radial component of the first 2 TE basis functions (solid line). The
dashed line shows the corresponding unperturbed modes.

These basis functions were used to compute the dispersion diagram of a large number
of corrugated structures. Here we report a representative sample.

Figure 4 shows the results for the Hy; mode as obtained from the present work.
The circles which are experimental results taken from reference [1], are in excellent
agreement with the computed results. The data of this figure was generated usir.g
3 basis functions.

Figure 4: Dispersion curve of Hy; obtained using 3 bas’s functions when when
20=7.9423 cm, p =2 cm, 2b = 7.112 cm and d = 0.7449 cm. The circles are
experimental results from reference [1].

The case of irises of zero-thickness was also examined using the basis functions
above. Excellent agreement is obtained between our results and those presented in
reference [2].
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We next examine the adequacy of the zero-thickness approximation and limit the
discussion to the Hp, modes. Figure 5 shows the entire dispersion diagram when
p = a, b= 06a and d = 1/60. The solid lines are obtained from the formulation
which takes into account the finite thickness of the irises. The dashed lines are the
dispersion diagram of the zero-thickness approximation. It is obvious that the two
structures have practically identical dispersion diagrams for these dimensions and
in this frequency range.
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Figure 5: ko — (3 diagram of Figure 1, d=a/60 (solid line) and d=0 (dashed
line) when p = a, b = 0.6a.

When the thickness of the irises is increased it is expected that the zero-thickness
approximation fails to reproduce the actual propagation properties. Figure 6 shows
the dispersion diagram when p = a, b = 0.8a and d = a/8. The solid lines are
the dispersion diagram of the thick irises. The dotted-dashed lines correspond to
the zero=thickness approximation. It is obvious that substantial errors would result
from the zero-thickness approximation.

From the physics of the problem, we expect that the two discontinuities play a major
role in determining the propagation properties of this type of structure. Multiple
reflection occur between the two discontinuities separated by a distance d. The
zero-thickness approximation fails to take these reflections into account. A better
approximation may therefore consist in replacing each of the original thick irises with
two infinitely thin irises separated by a distance d. Indeed, the dashed lines in Figure
6 show that the dispersion diagram of the resulting structure approximates better
that of the thick irises (solid lines) than the standard zero-thickness approximation
(dotted-dashed). This observation also suggests that the dispersion diagram of the
zero-thickness approximation has less branches than the original structure with thick
irises. This point is not addressed in this discussion.
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Figure 6: kg — @ diagram of Figure 1 d=a/8 (solid lines) and d=0 (dashed
lines) when p = a, b = 0.6a.

IV. CONCLUSIONS

The propagation constants of Floquet modes are determined from the classical eigen-
values of a generalized matrix eigenvalue problem instead of a determinant equation.
A set of edge-conditioned vector basis functions was presented and used to accelerate
convergence of the numerical solution. Results obtained form the present work were
compared with available data and excellent agreement was documented. Multiple
reflections can not be neglected when thick irises are present.
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