
NOVEL ANALYTIC GRADIENT EVALUATION TECHNIQUES
FOR OPTIMIZATION OF MICROWAVE STRUCTURES

S. Amari, P. Harscher, R. Vahldieck and J. Bornemann�

Swiss Federal Institute of Technology, ETH Zentrum, Gloriastrasse 35, CH – 8092 Z¨urich,
http://www.ifh.ee.ethz.ch.

�Department of Electrical and Computer Engineering
University of Victoria, BOX 3055

Victoria, B.C. V8W 3P6
http://www.ece.uvic.ca

Introduction

A
CCURATE design of modern and increas-
ingly complex microwave devices and struc-

tures can often be achieved only through sophis-
ticated optimization methods [1], [2]. It is gener-
ally accepted that efficient optimization methods
are those exploiting not only the values of the cost
function but its gradient and even its Hessian ma-
trix as well. The gradient of the cost function is
most of the time evaluated by repeated analyses
at closely-spaced values of the independent vari-
ables; such a process can be prohibitively time
consuming when the number of independent vari-
ables is large.
Recently, the Adjoint Network Method (ANM),
which has been known for a long while in the
area of circuit optimization, has been successfully
used to analytically evaluate the gradient of cost
functions for optimization of microwave filters
and radiating structures [3], [4]. By its own na-
ture, the ANM requires a network representation
of the structure to be optimized (and its adjoint).
The Mode-Matching Technique (MMT) was used
to extract the network’s matrix representation in
form of, e.g., the admittance matrix [3] or the scat-
tering matrix [4]. Starting from the scattering ma-
trix of a network, including internal ports, a direct
method of evaluating network sensitivities (gradi-
ent) was presented in [5].
Unfortunately more general numerical techniques
such as the Method of Moments (MoM) [6] or
the Finite Element Method (FEM) [7] do no di-
rectly yield a network representation in general.

Within these two methods, scattering problems are
reduced to matrix equations of the form

[A][x] = [b]: (1)

Here,[A] is aM�M matrix which depends on the
independent variables and represents the structure
to be optimized,[b] is the excitation and[x] is the
response. For example, the vector[x] contains the
expansion coefficients in MoM or the nodal values
in FEM.
With these features in mind, the paper addresses
the following questions:
1. Is it possible to determine analytically the gra-
dient of cost and response functions with respect
to structural changes in the system without first
deriving a network representation from[x] and
without finite differencing?
2. Is it possible to calculate group delays analyti-
cally from the matrix[A] and excitation[b]?
It is shown that, as long as the partial derivatives
of the matrix[A] and the excitation[b] are known
analytically, all relevant sensitivities can also be
determined analytically.

Theory

We assume that theanalysisof the structure to
be optimized has been put in the form of equation
(1). The optimization problem consists in deter-
mining the optimal values of the independent vari-
ablesa1; a2; : : : ; an such that the response func-
tion is equal to an optimal functionxopt. Note
that the independent variables appear explicitly in
both the matrix[A] as well as the excitation[b]
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in general. We also assume that the optimization
problem consists in minimizing a cost function F
which depends explicitly on the solution[x].
The partial derivative of the cost function with re-
spect toai can be written in the form

@F

@ai
=

MX

j=1

@F

@xj

@xj
@ai

(2)

Since the partial derivatives@F
@xj

are known, or can
be straightforwardly determined, the problem re-
duces to calculating the partial derivatives of the
solution[x] with respect toai. To evaluate these,
we take the partial derivative or equation (1) to get

@[A]

@ai
[x] + [A]

@[x]

@ai
=

@[b]

@ai
: (3)

Here, the derivative of a matrix is defined as a ma-
trix whose elements are the derivatives of the orig-
inal matrix. Rearranging this last equation and us-
ing equation (1), we get

@[x]

@ai
= [A]�1

@[b]

@ai
� [A]�1

@[A]

@ai
[A]�1[b]: (4)

This equation shows that the partial derivatives are
all known once the inverse[A]�1 is known along
with the partial derivatives of the entries of the ma-
trix [A] and [b]. If the partial derivatives of[A]
and [b] are known analytically, which is the case
of a large number of structures, the gradient is
then also known analytically from asingle inver-
sion of the matrix[A]. In the more general case,
the partial derivatives of[A] and [b] can be com-
puted from finite differences and still determine
the gradient of the cost function from asinglein-
version of the matrix[A], or equivalently from a
singleanalysis of the structure.

Situations may arise where the matrix[A] it-
self involves inversion of other matrices. In such
a case, the following expression for the partial
derivatives of the inverse of a matrix in terms of
those of the matrix itself is to be used

@[B]�1

@ai
= �[B]�1

@[B]

@ai
[B]�1 (5)

We finally note that, if needed, the Hessian matrix
can also be obtained from the present approach.

Results

The present approach is first applied to a simple
structure to document the accuracy of the com-
puted partial derivatives. We consider a single
E-plane stub in a rectangular waveguide. The
width of the stub isL. Assuming that the fun-
damental TE10 is incident on the stub, we pro-
pose to compute the partial derivative@S11

@L
as a

function of frequency using the present approach
and conventional finite differencing. The formu-
lation of this simple scattering problem within the
Coupled-Integral-Equation Technique (CIET) is
given in [8]. Edge-conditioned basis functions are
used to accelerate convergence of the numerical
solution. Figures 1 and 2 show the real and imag-
inary parts of this partial derivative as obtained
from the present analytic approach (solid line) and
finite difference with an increment�L = a=100.
It is evident that both calculations agree well ex-
cept for small deviations for frequencies between
11 and 13.8 GHz. However, when the increment
is reduced to�L = a=1000, the two results agree
and can not be distinguished as Figures 3 and 4
show.
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Fig. 1. Real part of@S11
@L

as a function of frequency. Solid
line: present method, dashed line: finite difference.
L = a = 2b = b1 = 19:05mm, � L = a/100.

The next example consists in a 7 stub E-plane
structure. We first evaluate the partial derivatives
of the scattering parameters of the TE10 mode with
respect to the inner dimensions of the filters (13 in
all). Table I shows these quantities as obtained
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Fig. 2. Imaginary part of@S11
@L

as a function of frequency.
Solid line: present method, dashed line: finite differ-
ence.L = a = 2b = b1 = 19:05mm, � L = a/100.
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Fig. 3. Real part of@S11
@L

as a function of frequency. Solid
line: present method, dashed line: finite difference.
L = a = 2b = b1 = 19:05mm, �L=a/1000.

from the present approach as well as finite differ-
encing for two values of the increment. It is again
evident that the results from the conventional finite
differencing converge to the results obtained from
the proposed technique when small enough values
of the increments in the independent variables are
used. This constitutes an additional validation of
this novel approach.
The present approach can also be applied to com-
puting group delays. It is easily shown that the
group delay is given by [1]

�g = �Im[
1

S21

@S21
@!

] (6)
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Fig. 4. Imaginary part of@S11
@L

as a function of frequency.
Solid line: present method, dashed line: finite differ-
ence.L = a = 2b = b1 = 19:05mm, �L=a/1000.

The group delay of of the 7-stub structure was
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Fig. 5. Group delay of a 7-stub structure versus fre-
quency. The analysis is performed using CIET with
edge-conditioned basis functions [8].

computed using the present approach. Figure 5
shows that the results obtained from the present
work (solid line) agree well with those from finite
differencing the phase ofS12 (dashed line). These
results were obtained from 2 edge-conditioned ba-
sis functions at each discontinuity.
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Table I
Partial derivatives@jS11j

@Li

i This method FD 1 FD 2

1 -126.4792 -127.0087 -126.4798
2 0.7323 0.8009 0.7324
3 -126.9130 -127.4637 -126.9135
4 1.0517 1.1316 1.0518
5 -127.1495 -127.7106 -127.1500
6 1.2017 1.2859 1.2018
7 -127.2251 -127.7893 -127.2257
8 1.2017 1.2859 1.2018
9 -127.1495 -127.7106 -127.1500
10 1.0517 1.1316 1.0518
11 -126.9130 -127.4637 -126.9135
12 0.7323 0.8009 0.7324
13 -126.4792 -127.0087 -126.4798

1 �Li= 0.1 mm
2 �Li= 0.1�m

Conclusions

A novel technique to evaluate gradients for opti-
mization of microwave structures and devices was
presented. The approach only requires that the
problem be formulated in terms of a general non-
homogeneous matrix equation such as encoun-
tered in the Moment Method or the Finite Element
Method. All partial derivatives are determined
from a single analysis of the structure. Numeri-
cal results show excellent agreement between the
present approach and the finite difference method
when small enough increments are used.
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