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I. INTRODUCTION

Corrugated circular waveguides can be found in antenna feeds where a high
degree of symmetry in the radiation pattern or a very low crosspolarisation
is required [1]. Dual-depth corrugated waveguides have also been used when
the feed is operated at two separate frequency bands [2]. In order to reduces
losses and breakdown in high power microwave applications, the corrugation
pro�le is continuous [3] rather than involving step discontinuities.
A state-variable approach was used by Bromborsky and Ruth to determine
the propagation constants of TM0(n) modes in a sinusoidally corrugated cir-
cular waveguide [3]. This approach, however, requires basis functions which
are both continuous and di�erentiable at least once over the period of the
structure. Its applicability to multiple abrupt discontinuities has not been
demonstrated. On the other hand, the expansion in space harmonics as de-
scribed in [1], is extremely complicated when the unit cell contains more than
one depth [2]. In addition to leading to complex matrices, it requires solving
a non-linear determinant equation for the propagation constants. The disad-
vantage of a determinant formulation of periodic structures are well described
by Davies [4].
An alternative approach, which leads to a generalized matrix eigenvalue prob-
lem when the unit cell of the periodic structure contains multiple discontinu-
ities, was recently presented in [5]. The approach is exact for sharp discon-
tinuities, but continuous corrugation pro�les can be modelled by stair-case
approximations which is demonstrated here at the example of sinusoidally
oscillating waveguide walls. The dispersion curve of the accelerating modes
TM0(n) as well as hybrid modes with unit angular dependence are presented
and compared with available data.

II. THEORY

We consider a structure consisting of a lossless corrugated circular waveguide
whose internal radius is a continuous function f(z) of z. The period of the
structure is p. Note that modes of di�erent angular dependencies are not
coupled and, therefore, can be analyzed separately.
The continuous corrugation pro�le is approximated by n steps where n is
increased until convergence is reached. Following the formulation presented
in [5], a set of coupled integral equations for the transverse electric �eld at
the discontinuities in the unit cell are derived. The Floquet condition is
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automatically satis�ed by requiring the following relationship between the
electric �elds at discontinuities separated by one period

Xn+1 = e�pX1 (1)

Here,  is the propagation constant of the Floquet mode.
The unknown electric �elds are then expanded in series of basis functions

Xi =
MX

q=1

c(i)q Q
(i)
q ; i = 1; : : : n (2)

Applying the Method of Moments (MoM) to the coupled integral equations,
we get a set of linear matrix equations in the expansion coe�cients, namely

[A][c(1)] + [B][c(2)] + ep[C][c(1)] = 0
[D][c(1)] + [E][c(2)] + [F ][c(3)] = 0

: : :+ : : :+ : : : = 0
[R][c(n�2)] + [S][c(n�1)] + [T ][c(n)] = 0

[U ][c(n�1)] + [V ][c(n)] + e�p[W ][c(n)] = 0 (3)

The entries of the matrices in these equations involve sums over the modes of
the uniform sections approximating the pro�le of the unit cell. The modes of
the sections are used as basis functions.
The set of matrix equations can be transformed into a generalized matrix
eigenvalue problem of the form [A][X] + �[B][X] = 0 [5].

III. RESULTS

Figure 1 shows the dispersion diagram of accelerating modes TM0(n) in a sinu-
soidally corrugated circular waveguide. The internal radius of the waveguide
is assumed of the form R(z) = R0(1 + � cos(2� z

p
). Our numerical results are

presented for R0 = p and � = 0:1 (solid lines) and are in good agreement
with data taken from [3] (circles). Our results were obtained using 4 basis
functions and 15 steps per period. More basis functions and more steps were
used and led to neglegible changes.
One advantage of the present approach consists in its ability to determine not
only propagating modes, but evanescent as well as complex modes from the
same analysis. Figure 2 shows the real and imaginary parts of the propagation
constant. No complex modes were encountered for these dimensions but they
are present for larger values of �.
The dispersion diagram of hybrid modes in this structure can also be deter-
mined by including both TE and TM modes in the analysis. Figure 3 shows
the real and imaginary parts of the propagation constant. Complex modes are
shown by the thick lines. These results were obtained using 4 TE and 4 TM
basis functions and 12 steps per unit cell. Note that under the term complex
modes are also included what is at times referred to as �ltering modes with
Im[] = �

p
.
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We �nally mention that evanescent and complex modes can cause numerical
di�culties when the period p of the structure is too large. This is due to
calculations of terms ep.

IV. CONCLUSIONS

The propagation constants of Floquet modes in corrugated circular waveg-
uides with continuous corrugation pro�les were determined from a formulation
leading to a canonical matrix eigenvalue equation. The approach is validated
by comparison to available data for the dispersion relation of TM0(n) modes
in a sinusoidally corrugated waveguide. Results for hybrid modes were also
presented.

REFERENCES

1. P. J. B. Clarricoats and A. D. Olver, Corrugated Horns for Microwave Antennas,

Peregrinus, London, 1984.

2. A. D. Olver, K. K. Yang and P. J. B. Clarricoats, \Propagation and radiation

behaviour of dual-depth corrugated horns", Proc. Inst. Elec. Eng., vol. 131, pt.

H, pp. 179-185, June 1984.

3. A. Bromborsky and B. Ruth, \Calculation of TM0n dispersion relations in a

corrugated circular waveguide", IEEE Trans. Microwave Theory Tech., vol. 32,

pp. 600-605, June 1984.

4. J. B. Davies,\Complete modes in uniform waveguides", pp. 8-10 in Finite-

Element Software for Microwave Engineering, T. Itoh, G, Pelosi and P. P. Silvester

Ed. Wiley, New York, 1996.

5. S. Amari, R. Vahldieck and J. Bornemann, \Complete spectrum of multi-depth

corrugated circular waveguides", IEEE Microwave Guided Wave Lett., vol. 9, 1999

(in press).

−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

β p

F
re

qu
en

cy
 (

G
H

z)

R
0
 = p = 16.33 mm, δ = 0.1

Figure 1: Dispersion characteristics of TM0(n) modes when R0 = p
= 16.33 mm and � = 0.1. The circles are from [3].
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Figure 2: Real and imaginary parts of p vs frequency (TM0(n)

modes). Same dimensions as Figure 1.
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Figure 3: Real and imaginary parts of p vs frequency of hybrid
modes with unit azimuthal dependence (cos(�)). Same dimensions
as Figure 1.
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