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Abstract— The Coupled-Integral-Equations Technique
(CIET) is used as a fast, accurate and reliable analysis tool
for the design of folded asymmetric H-plane waveguide fil-
ters in which source-load coupling is used to add two finite
transmission zeros. Designs examples of second-order fil-
ters with finite transmission zeros are presented. Numerical
results are validated by comparison with results from the
Finite Element Method (FEM) through the commercial soft-
ware package HFSS.

I. Introduction

OUPLED resonator filters permeate modern
communication systems where sharp cutoff

skirts are required to effectively separate adjacent
channels. In practice, these are often implemented
using coupled resonators with additional couplings to
generate finite transmission zeros [1-2].

The synthesis and design of coupled resonator fil-
ters have been the subject of intensive research efforts
over the past 3 decades [1-3]. In the original model of

� coupled resonators proposed by Atia and Williams,
it is assumed that the source feeds only resonator 1
while the load is coupled to only resonator� [1]. It
is well known that such a configuration can gener-
ate at most� � � finite transmission zeros; this oc-
curs when-among other couplings-resonators 1 and�

are cross coupled. Recently, configurations where the
source or the load, or both, are coupled to more than
one resonator and possibly to each other have been
used to generate more than� � � finite transmission
zeros [4-6].

A simple realization of filters with source-load cou-
pling consists in folded waveguide resonators with
an additional coupling slot between the source and
the load as shown in Figure 1. If the structure, such
as that in Figure 2, is symmetric with respect to the
center plane AA’ at� � 
 , the analysis can be split
into two stages corresponding to electric and metallic
walls in this plane. The overall response of the filter is
then obtained by adding and subtracting the individ-

ual scattering coefficients, e.g., [7]. Unfortunately, in
the stop-band of the filter, the scattering parameters of
the two symmetries (even and odd) are comparable in
magnitude; the difference between the two quantities
can be accurately computed only when the scattering
parameters of the two symmetry configurations are
determined with even a higher accuracy. This issue is
even more pronounced when finite transmission ze-
ros are present in the stop band. Furthermore, the ap-
proach is evidently limited to symmetric structures.

To overcome these limitations, we avoid splitting
the structure into its symmetries even when the struc-
ture is physically symmetric. A given discontinuity
is viewed either as a slot or a bifurcation depend-
ing on whether it crosses the plane AA’ or not. The
entire filter is then analyzed in one step using the
Coupled-Integral-Equations Technique (CIET) where
basis functions with the proper edge-conditions are
used [8]. The design is completed by an optimization
procedure which utilizes the CIET as an accurate and
reliable analysis tool.

II. Theory

We focus attention on Figure 1 which shows an
asymmetric structure divided into different subre-
gions. Following the Coupled-Integral-Equations
Technique (CIET), coupled integral equations for the
electric field at the discontinuities are derived and
then solved by the moment method. Two different
configurations must be considered: first, the bifurca-
tion and, secondly, the asymmetric iris. Let� 
 � � � ,
� � � � � � � � , and � � � � � denote the aperture electric
fields ordered from source to load as shown in Fig-
ure 1. Starting from modal expansions of the elec-
tric and magnetic fields in the different regions of the
structure, and enforcing the continuity of the mag-
netic field at apertures 1, 2 and 3, we get the following
integral equations:
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Here,
" R� and 3 R5 � are the wave admittances and the

propagation constants of the TE� S mode in the iT U sec-
tion. Equation (2) holds over the aperture between re-
gions II and III whereas equation (3) is valid over the
aperture between regions III and IV. The transform

&� RW � � � is defined by

&� RW � � � @ X � RW � � � ( R� � � � 7 � (4)

where the integral extends over the range of� W � � �
and ( R� � � � is the normalized modal distribution of the
magnetic field of the TE� S mode in the iT U section,
e.g., ( $� � � � @ [ �] < = 1 � � ^ `] � . The remaining integral
equation are similar to one of equations (1), (2) or
(3) and are therefore omitted. The derivation of these

equations follows straightforwardly from the discus-
sion in [8].

To guarantee the efficiency of the numerical so-
lution, edge-conditioned basis functions are con-
structed from the modes of the individual subregions
by introducing appropriate weighting factors which
include the proper field singularities at the disconti-
nuities. The application of the moment method, in
the form of Galerkin’s method, requires the evalua-
tion of integrals involving products of the basis func-
tions and the modes of the individual sections; these
can be expressed in terms of Bessel functions of order
1/6 [8]. The resulting matrix equation in the expan-
sion coefficients has several distinct features [9]. It is
extremely sparse with a known block structure which
is exploited through a customized inversion routine
based on LU decomposition.

Once the coupled integral equations are solved, the
scattering parameters of the modes of interest at the
two ports follow straightforwardly, e.g. [9]. Note that
no distinction is made between symmetric and asym-
metric structures.

The design is carried out by calculating a modi-
fied inter-cavity coupling matrix, which includes the
source-load coupling, from given filter specifications.
Initial dimensions are determined from the respective
CIET analysis routines by varying a single dimen-
sional parameter for every entry of the modified cou-
pling matrix. These parameters are subsequently used
in the fast and reliable CIET analysis of the overall fil-
ter where an optimization algorithm varies a given set
of dimensions until the filter specifications are met.
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Fig. 1. Typical top-view of a folded H-plane waveguide
resonator filter with source-load coupling.

III. Results

A number of filters with different requirements
were analyzed and optimized using the procedure de-
scribed above.

Two two-resonator filters which give the same mag-
nitude response but which are physical different were
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Fig. 2. H-plane structure used to implement Filters 1 and
3.
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Fig. 3. H-plane structure used to implement Filters 2 and
4.

designed to satisfy the following specifications. The
in-band return loss is 23 dB and the normalized trans-
mission zeros are located at

! a @ c ! d
. The insertion

and return loss of the two filters are shown in Fig-
ure 4. The solid line represents the response of Filter
1 whose layout is shown in Figure 2 and whose di-
mensions (in mm) are:� = 19.05, e 
 = 20.560, e �
= 5.053, e K = 4.066, e P = 2.094, e g = 12.140, e h
= 0.318, i 
 = 3.503, i � = 5.783, and
 = 4.501 mm.
The dashed line in Figure 4 shows the response of the
Filter 2 where the source-load coupling coefficient is
negative. The layout of this filter is shown in Figure
3 and its dimensions (in mm) are:� = 19.05, t = 1.00,

e 
 = 5.458, e � = 0.741, e K = 0.320, e P = 7.634, e g
= 7.990, e h = 16.409, e l = 9.037, e n = 7.132, e o
= 9.993, e 
 D = 0.020, i 
 = 3.407, i � = 7.897, i K =
1.709,i P = 9.176 mm. The height of the main waveg-
uide is 9.525 mm in both filters.

Up to 4 basis functions with the proper edge condi-
tions and up to 50 terms were summed in computing
the inner products in both cases. More basis func-
tions and terms were also used and led to insignificant
changes. The next example is presented to show the
performance of narrow-band filters which implement
using the symmetric structure in Figure 2. The stop-
band of these filters is free from spurious bands and
maintains a high level of attenuation as shown in Fig-
ure 5. Indeed, with only two resonators a minimum
insertion loss of over 60 dB is maintained over the
stopband. The two finite transmission zeros which
are brought about by the source-load coupling allow
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Fig. 4. Insertion and return loss of Filters 1 and 2. The
dimensions of the filters are given in the text.
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Fig. 5. Insertion and return loss of Filter 3.

a sharp cutoff. Without the source-load coupling the
zeros of a second order filter are both located at infin-
ity (assuming frequency independent coupling coef-
ficients). The present example clearly demonstrates
the potential advantage of the source-load coupling
despite the fact that the isolation of this type of filters
is always finite since it has the same number of poles
and zeros. The filter (Filter 3) shown in Figure 5 was
designed using the CIET with 4 basis functions and
50 terms in the sums. Its dimensions are (in mm):

� = 19.05, e 
 = 0.618, e � = 5.596, e K = 2.187, e P
= 1.406, e g = 3.724, e h = 11.465, i 
 = 5.957, i � =
6.289, and
 = 1 mm . The height of the main waveg-
uide is 9.525 mm. An expansion of the passband of
this filter is shown in Figure 6 where the two reflec-
tion zeros are clearly visible.

In order to validate the computer code used in
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Fig. 6. Passband of filter III.

the design of these filters, a filter (Filter 4) was de-
signed using the same approach and then analyzed
using both the CIET and the Finite Element Method
through the software package HFSS. The insertion
and return loss of the designed filter as a function of
frequency is are shown in Figure 7. The solid line
is obtained from HFSS and the dashed line is from
the CIET using 4 basis functions. The agreement
between the two methods is good. The dimensions
(in mm) of the filter which is implemented using the
structure in Figure 3 are :� = 19.05, t = 1.00,e 

= 5.458, e � = 1.926, e K = 0.339, e P = 7.769, e g =
0.829, e h = 16.494, e l = 10.16, e n = 6.374, e o =
11.059, e 
 D = 0.015, i 
 = 7.226, i � = 5.117, i K =
2.177, i P = 9.53 mm. The height of the main waveg-
uide is 9.525 mm.
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Fig. 7. Insertion and return loss of Filter 4. The solid
line is from the Finite Element Method (HFSS) and
dashed line from CIET.

IV. Conclusions

Folded H-plane resonator waveguide
filters with source-load coupling are designed and
analyzed using the Coupled-Integral-Equation Tech-
nique (CIET). The additional coupling of the source
and the load is used to add two finite transmission ze-
ros and enhance the stop band of the filters. Numeri-
cal results were validated by comparison with the Fi-
nite Element Method (FEM) through the commercial
software package HFSS.
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